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A B S T R A C T   

Bayesian Optimal Interval (BOIN) designs are a class of model-assisted dose-finding designs that can be used in oncology trials to determine the maximum tolerated 
dose (MTD) of a study drug based on safety or the optimal biological dose (OBD) based on safety and efficacy. BOIN designs provide a complete suite for dose finding 
in early phase trials, as well as a consistent way to explore different scenarios such as toxicity, efficacy, continuous outcomes, delayed toxicity or efficacy and drug 
combinations in a unified manner with easy access to software to implement most of these designs. Although built upon Bayesian probability models, BOIN designs 
are operationally simple in general and have good statistical operating characteristics compared to other dose-finding designs. This review paper describes the 
original BOIN design and its many extensions, their advantages and limitations, the software used to implement them, and the most suitable situation for use of each 
of these designs. Published examples of the implementation of BOIN designs are provided in the Appendix.   

1. Introduction 

The Bayesian Optimal Interval (BOIN) design and its extensions are a 
class of early phase dose-finding model-assisted designs used to deter-
mine a suitable dose for consideration in later phase oncology trials. The 
original BOIN design only considered toxicity in determining the 
maximum tolerated dose (MTD), but the main aim of these extension 
designs, especially those that consider both efficacy and toxicity in dose 
finding, is to determine a dose of the study drug that is efficacious but 
not too toxic. This is called the optimal biological dose (OBD). In 
chemotherapy drugs, it is assumed in general that there is a monotone 
increasing dose-response relationship for both toxicity and efficacy. 
Thus, it is meaningful to find a maximum dose that can be well tolerated 
by the population, i.e., the MTD. However, in many of the newer 
immuno-oncology drugs, although the toxicity of the drug increases 
with an increase in dose, the efficacy of the drug does not always in-
crease and could plateau at a lower dose. In these cases, it is imperative 
to find a dose that is optimal for both safety and efficacy to maximize the 
risk-benefit trade-off, i.e., the OBD. BOIN designs provide a complete 
suite for dose finding in early phase trials, and a consistent way to 

explore different scenarios in a unified manner with easy access to 
software [1] to implement most of these designs. Although built upon 
Bayesian probability models, these BOIN designs are not only opera-
tionally simple in general and have good statistical operating charac-
teristics when compared to other dose-finding designs, but also clinically 
sound especially when communicating with clinical investigators. 

BOIN designs are relatively new and have seen rapid development 
not only in the methods literature but also in the frequency of their 
implementation in clinical trials. In 2021, the FDA granted the BOIN 
design the fit-for-purpose designation for dose finding, which has 
increased its significance and utilization in drug development programs 
(Drug Development Tools: Fit-for-Purpose Initiative | FDA). Hence, we 
aim to provide an overview of the current snapshot of this important and 
rapidly evolving class of cutting-edge dose-finding designs. 

To address the unique practical challenges that arise from the 
development of precision oncology, several extensions of the original 
BOIN design have been proposed. In this article, we will provide 
thumbnail sketches of the original BOIN design and its extensions, 
discuss their advantages and limitations, list the software used to 
implement them, provide examples of their use (in the Appendix), and 
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detail the situation in which each of the designs in this class is suitable to 
use (Fig. 1). 

In this paper, we do not focus on comparing the BOIN design(s) with 
other designs, but instead present the different BOIN designs. The 
following BOIN designs that we consider constitute an up-to-date list. 
However, this is a rapidly expanding literature and additional designs 
may be added in the next few years. We further classify the BOIN designs 
into three categories: the first category only considers toxicity in dose 
finding to determine the MTD of a monotherapy, the second category 
uses both toxicity and efficacy to determine the OBD of a monotherapy, 
and the third category only considers toxicity of a combination therapy 
to determine either a single MTD or the MTD contour. 

In the first category, we review herein: 1) the original BOIN design 
that considers only the binary endpoint of dose limiting toxicity (DLT); 
2) the MT-BOIN design that considers different toxicity types and 
grades; 3) the gBOIN design that handles continuous and quasi-binary 
toxicity endpoints and binary toxicity endpoints; 4) the TITE-BOIN 
design that considers the time to DLT; and 5) the TITE-gBOIN design 

that considers quasi-Bernoulli toxicity endpoints, but which can be 
extended to continuous endpoints, and considers the time to the toxicity 
endpoint. 

In the second category, we review herein: 6) the BOIN-ET design that 
considers DLT and (binary) response; 7) the BOIN12 design which is a 1- 
stage design incorporating a utility function involving categorical 
toxicity and efficacy endpoints; 8) the U-BOIN design which is a 2-stage 
design incorporating a utility function involving categorical toxicity and 
efficacy endpoints; 9) the gBOIN-ET design that accounts for efficacy 
and toxicity grades; 10) the TITE-BOIN-ET design that considers the time 
to both the efficacy and toxicity events; and 11) the TITE-BOIN-12 
design that incorporates a utility function with the time to toxicity 
and efficacy events in dose selection. 

Finally, in the third category for combination therapies, we review 
herein: 12 a) the combination BOIN design that can be used to find the 
MTD or 12 b) the BOIN waterfall design to find the MTD contour for 
more than one drug. 

out

Fig. 1. How to choose a BOIN Design (adapted from trialdesign.org and from Zhou et al. [1]).  
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2. BOIN designs 

2.1. Toxicity only designs for monotherapy 

2.1.1. Standard/basic BOIN 
The BOIN design uses the observed DLT rate at each dose for 

determining the MTD of a new drug.1 This phase 1 dose-finding design is 
implemented in a simple manner, similar to that of the 3 + 3 design, but 
with better operating characteristics [2]. BOIN also has comparable or 
better operating characteristics than many model-based designs such as 
the continual reassessment method (CRM), and other model-assisted 
designs such as the modified toxicity probability interval (mTPI) and 
modified toxicity probability interval 2 (mTPI-2) [3] designs (note that 
the keyboard design [4], an extension of the mTPI design, is equivalent 
to mTPI-2) [5–9]. This basic BOIN design contains the 3 + 3 design and 
the accelerated titration design as special cases [10]. 

2.1.1.1. Design. The BOIN design is an interval-based, model-assisted 
design. It is constructed using a Bayesian decision-theoretic framework 
with the aim of minimizing the probability of incorrect dose escalation/ 
de-escalation decisions for each new cohort of patients. The BOIN design 
requires close collaboration between clinicians and biostatisticians to 
pre-specify some design parameters, which include the maximum sam-
ple size of the trial N, the cohort size (note that Park et al. investigated 
cohort size deviations in trials using designs such as the BOIN and CRM 
and showed that some cohort size deviation may be generally acceptable 
and has little association with the design performance [12]), and the 
target DLT rate ϕ. Additionally, one also needs to specify a DLT rate 
ϕ1<ϕ and a DLT rate ϕ2>ϕ. In general, ϕ1 can be treated as the lowest 
toxicity rate below which a dose is considered sub-therapeutic, and ϕ2 
can be treated as the highest toxicity rate above which a dose is 
considered excessively toxic. The recommended default values for ϕ1 
and ϕ2 are ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ. Once the design parameters are 
pre-specified, the optimal lower and upper boundaries, λe and λd, of 
BOIN are calculated such that these interval boundaries minimize the 
incorrect decision of dose escalation and de-escalation. The formulae for 

λe and λd for a non-informative prior, which assumes that each dose has 
equal prior probability of being at, below or above the MTD, are  

λe = log((1-ϕ1)/(1-ϕ))/log((ϕ(1-ϕ1))/(ϕ1(1-ϕ))), and                                      

λd = log((1-ϕ)/(1-ϕ2))/log((ϕ2(1-ϕ))/(ϕ(1-ϕ2))).                                           

Based on the interval boundaries, the specific steps to implement the 
BOIN design in a phase I dose-finding study are listed below, where pj is 
the true DLT probability at dose level j, and is estimated by the observed 
DLT rate p̂j = yj/nj, where yj is the number of patients with DLTs at dose 
level j and nj is the number of patients treated at dose level j [10]. Fig. 2 a 
depicts the dosing algorithm of the BOIN design.  

1. Treat the first cohort of patients at the lowest dose or the pre- 
specified starting dose.  

2. Calculate the observed DLT rate at the current dose level j ̂pj (=yj/nj) 
(see Fig. 2 b).  
a. If p̂j ≤λe, then treat the next cohort of patients at the next higher 

dose.  
b. If p̂j >λd,2 then treat the next cohort of patients at the next lower 

dose.  
c. If λe< p̂j ≤λd, then treat the next cohort of patients at the same 

dose level. 
Note that if p̂j ≤λe at the highest dose level j = J, then treat the next 
cohort of patients at the same dose even if escalation is recom-
mended. If ̂pj >λd at j = 1, then treat the next cohort of patients at the 
same dose even if de-escalation is recommended.  

3. The previous step is repeated until the maximum pre-specified 
sample size N is reached or dose level 1 is found to be too toxic per 
the dose elimination/overdose control rule described below, in 
which case no dose level can be selected as the MTD.  

4. At the end of the trial, the MTD is determined by first applying 
isotonic regression to the observed DLT rates to smooth these rates so 
that they are monotonically non-decreasing [13], and then selecting 
the dose for which the smoothed DLT rate is closest to the target DLT 
rate ϕ. 

The BOIN design incorporates a dose elimination/overdose control 
rule [10]. Consider the dose level j. If the posterior probability, which is 
calculated using the observed DLT rate at dose j, is large, then the dose is 
deemed to be too toxic and BOIN eliminates this dose and any higher 
doses from further consideration in the trial. 

The mathematical equation for the dose elimination rule to be 
checked at dose level j is as follows [14]: 

If P(pj>ϕ|yj, nj) > 0.95 and nj ≥ 3 (to minimize incorrect elimination 
of a safe dose level), then dose level j and higher will not be considered 
further in the trial. P(pj>ϕ|yj, nj) is evaluated based on a beta-binomial 
model, assuming yj| nj, pj ~ Binom(nj, pj) and pj ~ Beta(1,1) ~ Unif 
(0,1), which is a non-informative, uniform prior. Then the posterior 
distribution of pj ~ Beta(yj+1, nj-yj+1) for j = 1, …, J. 

2.1.1.2. Software.  

1) Software to implement the standard BOIN design is available at www 
.trialdesign.org. As mentioned, the standard BOIN design uses a non- 
informative approach by assuming that each dose has equal prior 
probability of being at, below or above the MTD. However, an 
informative prior based on historical data could also be used so that 
different amounts of prior information are available for different 
doses. Software to implement such a design, called the i-BOIN 
design, is available at www.trialdesign.org.   

2) The R package BOIN can be used to implement the standard BOIN 
design [14]. 

1 BOIN has been used in a variety of oncology trials including those for pe-
diatric tumors (ClinicalTrials.gov identifier: NCT02354547), adult tumors 
(ClinicalTrials.gov identifiers: NCT03577704, NCT0302316, NCT02942264, 
NCT03318900, NCT03600155, NCT0205075, NCT03740256, NCT03330028, 
NCT03114462, NCT03036904, NCT02705196, NCT02942095, NCT03740256, 
NCT03784677, and NCT03760081), solid tumors (breast [ClinicalTrials.gov 
identifier: NCT0302316], brain [ClinicalTrials.gov identifier: NCT02942264], 
ovarian [ClinicalTrials.gov identifier: NCT03318900], stomach [ClinicalTrials. 
gov identifier: NCT03330028], neck [ClinicalTrials.gov identifier: 
NCT03114462], lung [ClinicalTrials.gov identifier: NCT02942095), bladder 
[ClinicalTrials.gov identifier: NCT03740256], prostate [ClinicalTrials.gov 
identifier: NCT03784677], and germ cell [ClinicalTrials.gov identifier: 
NCT03760081]), and liquid tumors (leukemia [ClinicalTrials.gov identifier: 
NCT03600155], and lymphoma NCT03114462]). BOIN has been used for 
various treatment agents, including chemotherapy (ClinicalTrials.gov identi-
fier:NCT02942264), radiotherapy (ClinicalTrials.gov identifier: 
NCT03114462), checkpoint inhibitor (ClinicalTrials.gov identifier: 
NCT03600155), monoclonal antibody (ClinicalTrials.gov identifier: 
NCT03577704), oncolytic virus (ClinicalTrials.gov identifier: NCT02705196), 
and T-cell immunotherapy (ClinicalTrials.gov identifier: NCT03318900). BOIN 
also has also been used in non-oncology trials, such as stem cell therapy for 
stroke patients.  

2 Based on the FDA’s review of the local BOIN design under the non- 
informative prior for the fit-for-purpose designation, an erratum to the orig-
inal de-escalation and stay at the same dose rules of this design [11] was 
published recently. The de-escalation rule was changed from p̂j ≥λd to p̂j 
>λd and the stay at the same dose rule was changed from λe< p̂j <λd to λe< p̂j 

≤λd. This does not affect the design’s application to an actual trial as it is 
virtually impossible to meet the exact boundary criteria in practice (Erratum to 
Liu and Yuan [11], 2022). 
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3) The BOIN design can be implemented using the desktop application 
available at https://biostatistics.mdanderson.org/SoftwareDow 
nload/SingleSoftware/Index/99. 

2.1.1.3. Advantages/limitations. Although built upon Bayesian proba-
bility models, the BOIN design is operationally simple, since once λe and 
λd are pre-determined for the given target DLT rate, the dosing decision 
for each new cohort of patients is based mainly on comparing the 
observed DLT rate at the current dose with λe and λd. The BOIN design 
selects the MTD more accurately and doses a larger percentage of pa-
tients at the MTD than the 3 + 3 design does, and it has a lower prob-
ability of overdosing patients than some other designs [10]. 

This basic BOIN design considers only toxicity in its dosing decisions 
without using efficacy data, which is an important limitation for 
immuno-oncology drugs where efficacy does not always increase with 
higher doses. BOIN also does not consider late-onset toxicities or efficacy 
responses. Finally, BOIN mainly uses the data from the current dose level 
for dosing decisions and not data collected across all dose levels. How-
ever, it is a sequential design where the consecutive dosing decisions 
indirectly use the information from the adjacent doses, and this results in 
good statistical operating characteristics. For this same reason, many of 
the BOIN designs described later also inherit high efficiency and good 
operating characteristics comparable to model-based designs that use 
data across all doses. 

2.1.2. MT-BOIN 
The MT-BOIN (multiple toxicity BOIN) design(s) is an extension of 

the BOIN design that considers different toxicity types and grades [15]. 

2.1.2.1. Design. Here, for the dosing algorithm, we focus on one of the 
cases that MT-BOIN considers, namely that of two non-nested toxicity 
outcomes3 where the two toxicities do not depend on each other. The 
specific steps of the MT-BOIN design to identify the MTD with two non- 
nested toxicity outcomes Y1 and Y2 are as follows [15]:  

1. Enroll the first cohort of patients at the lowest dose or starting dose.  
2. The number of patients who have experienced toxicity Yl is ylj out of 

nj treated patients. The toxicity rate at dose level j for toxicity Yl is 
p̂lj = ylj/nj, l = 1, 2. The dose level assigned to the next cohort of 
patients is based on comparing p̂lj with the pre-specified lower and 

Fig. 2. Dosing Algorithm of the Basic BOIN Design (Refer to Section 2.1.1 for details).  

3 The relationship between the two toxicity outcomes can be nested or non- 
nested, depending on whether one toxicity outcome is a subset of the other 
outcome or not. For example, if one toxicity outcome is defined as grade ≥ 3 
toxicity in the liver and the second toxicity outcome is grade ≥ 3 toxicity in 
other organs (not liver), then the two outcomes are non-nested. When the two 
toxicity outcomes are defined based on the maximum toxicity grade, say the 
first toxicity outcome is the event of maximum toxicity grade ≥ 2 and the sec-
ond outcome is the event of maximum toxicity grade ≥ 3, then the second 
toxicity outcome is nested in the first toxicity outcome. 
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upper toxicity boundaries λle(nj, ϕl0) and λld(nj, ϕl0), l = 1,2. The 
target toxicity probability of Yl is denoted by ϕl0.  
a) If p̂1j ≤ λ1e(nj, ϕ10) and p̂2j ≤ λ2e(nj, ϕ20), then the current dose 

level is safe for both toxicities; escalate the dose and treat the next 
cohort of patients at dose j+1.  

b) p̂1j > λ1d(nj, ϕ10) (or ̂p2j > λ2d(nj, ϕ20)), then the current dose level 
is too toxic for outcome Y1 (or Y2); de-escalate the dose and treat 
the next cohort of patients at dose j-1.  

c) otherwise stay at this dose and treat the next cohort of patients at 
dose j.  

3. The previous step is repeated until the maximum pre-specified 
sample size N is reached or the trial is terminated early for safety 
reasons.  

4. At the end of the trial, the MTD is determined by first applying 
isotonic regression to the estimated toxicity rates p̂lj = ylj/nj, j = 1, 
…., J to smooth these rates so that they are transformed to mono-
tonically non-decreasing rates ̃plj. The MTD dose ̂j+=min{̂jl*, l = 1, 

2}, where ̂jl* = arg min| p̃lj - ϕl0|, jεM (see Ref. [15] for further de-
tails), and the set M = {j: nj > 0} contains all the tested dose levels. If 
there are ties for p̃

l̂j l*
,l = 1,2, the dose level tested with the most 

patients from the tied set is chosen. 

For non-nested toxicity outcomes, the optimal interval boundaries of 
the MT-BOIN design(s) are the same as those of the BOIN design by 
treating the multiple toxicity outcomes marginally [15]. The MT-BOIN 
design also deals with nested3 toxicity outcomes [15]. The MT-BOIN 
design has also been extended to drug combinations [15]. 

2.1.2.2. Software. The boundaries of MT-BOIN are the same as those of 
the standard BOIN design for non-nested outcomes. Thus, the BOIN 
software can be used to implement MT-BOIN. 

2.1.2.3. Advantages/limitations. MT-BOIN is simple to implement and 
has comparable operating characteristics to those of model-based de-
signs such as MC-CRM [44] (CRM design that accounts for multiple 
toxicity constraints) [15]. MT-BOIN is also more robust than 
model-based designs since it does not rely on a parametric dose-response 
assumption. In addition to non-nested and nested toxicities, MT-BOIN 
can be adapted to handle drug combinations [15]. 

MT-BOIN does not consider late-onset toxicities or efficacy 
responses. 

2.1.3. gBOIN 
The gBOIN (generalized BOIN) design [16] is a more general version 

of BOIN that can handle continuous endpoints such as total toxicity 
burden4 [17], toxicity burden score5 [18] or total toxicity profile6 [19] 
and quasi-binary toxicity endpoints such as normalized equivalent 
toxicity score7 [20] and binary endpoints such as DLT. The sample mean 

of the toxicity endpoint at the current dose j is denoted as μ̂j =
∑nj

i=1
yi/ nj, 

where y1, …, ynj are the observed toxicity data from nj patients treated at 
dose dj. μ̂j is the observed toxicity rate at dose level j for a binary or 

quasi-binary endpoint and is the observed sample mean for a continuous 
endpoint. The dose escalation and de-escalation boundaries λe and λd for 
Bernoulli, quasi-Bernoulli and continuous toxicity endpoints for the 
parameters ϕ1 = 0.6ϕ0 and ϕ2 = 1.4ϕ0 are given in Table 2 of [16]; with 
ϕ0 being the target toxicity value – it is a rate for a binary or quasi-binary 
endpoint, and a mean for a continuous endpoint. 

2.1.3.1. Design. The dosing algorithm of the gBOIN design is as follows 
and is also given in Fig. 1 of Mu et al. [16]:  

1) The first cohort of patients is treated at the lowest dose or at the pre- 
specified starting dose.  

2) Let the current dose level be j.  
a. If μ̂j ≤λe, then treat the next cohort of patients at the next higher 

dose.  
b. If μ̂j >λd, then treat the next cohort of patients at the next lower 

dose.  
c. If λe< μ̂j ≤λd, then treat the next cohort of patients at the same 

dose level.  
3) The previous step is repeated until the maximum pre-specified 

sample size N is reached or dose level 1 is found to be too toxic per 
the dose elimination rule, in which case no dose level can be selected 
as the MTD; the same dose elimination rule used in BOIN is also used 
in gBOIN.  

4) At the end of the trial, the MTD is determined by first applying 
isotonic regression to the observed toxicity values to smooth these 
values so that they are monotonically non-decreasing [13], and then 
selecting the dose for which the smoothed toxicity value is closest to 
the target toxicity value ϕ0. If there are ties in the smoothed toxicity 
values, the highest dose level among the ties for which the smoothed 
toxicity value is < ϕ0 or the lowest dose level among the ties for 
which the smoothed toxicity value is >ϕ0 is chosen. 

2.1.3.2. Software. gBOIN can be implemented using the Uni-
fiedDoseFinding R package available at https://cran.r-project.org/web/ 
packages/UnifiedDoseFinding/index.html. 

2.1.3.3. Advantages/limitations. The gBOIN design [16] has good sta-
tistical operating characteristics compared to existing designs that 
handle toxicity grades such as the quasi-CRM design [44]. It is simple to 
implement, since its dosing decisions involve comparing the sample 
mean of the endpoint with the two pre-specified boundaries of dose 
escalation and de-escalation, and do not involve any model fitting. It 
also does not require a lead-in phase and its decision rules can be applied 
throughout the trial, unlike some model-based designs that need to 
collect preliminary data through a pre-phase before the model can be 
reliably estimated [16]. Although the gBOIN design mainly uses data 
from the current dose level for dosing decisions, it indirectly uses the 
information from the adjacent doses due to its sequential dose 
escalation/de-escalation process and its performance is usually as good 
as or better than the model-based designs that borrow information 
across doses. 

The required elicitation of weights (to determine a toxicity score) 
and a target involves a time-consuming collaboration between clinicians 
and biostatisticians. gBOIN does not consider late-onset toxicities or 
efficacy responses. 

2.1.4. TITE-BOIN 
In the BOIN design, the next cohort of patients can only be dosed 

after all the patients in the current cohort have either experienced a DLT 
or have completed the DLT evaluation period without a DLT. The TITE- 
BOIN (Time-to-Event-BOIN) design accommodates late onset toxicities 
and rapid accrual, allowing dosing decisions even with pending DLT 
data from some of the patients in the current cohort. When there are no 
pending DLT data, it reverts to the BOIN design [22]. 

4 Computed as the arithmetic sum of different grades and types of toxicity, 
weighted by the severity weights that are elicited from clinicians [16].  

5 Computed by using a weighted sum, where the severity weights were 
estimated via regression using historical data [16].  

6 Computed as the Euclidean norm of the severity weights [16].  
7 Defined as quantitative measurement of the overall toxicity severity for 

each patient, normalized to a value between 0 and 1 [20]. 
8 Setting u3≥u2 means that the patient is willing to tolerate toxicity in ex-

change for efficacy and generally leads to a more thorough exploration of the 
dose space compared to setting u3<u2 [21]. 
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2.1.4.1. Design. The specific steps of the TITE-BOIN design are as fol-
lows [22]:  

1) Enroll the first cohort of patients at the lowest dose or starting dose.  
2) Enroll the next cohort of patients based on the number of patients 

with DLTs and number of patients with pending DLT data at the 
current dose and based on a dosing decision table such as Table 1. 
Here, we chose to show the dosing rules only up to 9 treated patients 
but the table in Yuan et al. [22], also shows the rules for 12 and 15 
patients.  

3) Repeat step 2 until the pre-specified maximum sample size is 
reached. The MTD is determined by first applying isotonic regression 
to the observed DLT rates to smooth these rates so that they are 
monotonically non-decreasing, and then selecting the dose for which 
the smoothed DLT rate is closest to the target DLT rate ϕ. 

2.1.4.2. Software. Software to implement the TITE-BOIN design is 
available at www.trialdesign.org. 

2.1.4.3. Advantages/limitations. The TITE-BOIN design is an easy to 
implement, well-performing dose-finding design that considers late- 
onset toxicities and rapid accrual, allowing dosing decisions even with 

pending DLT data from some patients in the current cohort. The design 
generally shortens the trial duration substantially compared to waiting 
for the occurrence of pending DLT events. It is more flexible in choosing 
the target DLT rate and more accurate in MTD selection than the rolling 
six design [24], a modified 3 + 3 design that allows for accrual of up to 6 
patients even if there are pending data in some patients [22]. TITE-BOIN 
has similar accuracy in MTD selection as the TITE-CRM design, but it has 
better overdose control and is easier to implement [22]. 

The TITE-BOIN design uses DLT data only at the current dose for 
dosing decisions. This is in contrast to the TITE-CRM design, which 
considers data from all dose levels via a dose-toxicity model. However, 
simulations show that the effect of using only the current dose data leads 
to negligible efficiency loss [25, 38]. The TITE-BOIN design assumes 
that the time to DLT is distributed uniformly over the DLT assessment 
window, which is similar to what is assumed in the TITE-CRM design. 
TITE-BOIN is robust to this uniformity assumption, but if reliable prior 
information is available on the distribution of the time to DLT, then an 
informative prior can be used to improve design efficiency [22]. 
TITE-BOIN does not consider efficacy endpoints for its dosing decisions. 

2.1.5. TITE-gBOIN 
The TITE-gBOIN is a non-parametric, model-assisted design that is an 

extension of the gBOIN design that accounts for toxicity grades based on 
both cumulative and pending numeric toxicity scores [26]. Although the 
reference by Takeda et al. [26] focuses on quasi-Bernoulli toxicity 
endpoints, the TITE-gBOIN design proposed by the authors can be 
extended to continuous endpoints. The TITE-gBOIN design minimizes 
the posterior probability of incorrect dose allocation for patients, while 
allowing sequential enrollment even with pending toxicity assessment 
for some patients. If there are no patients with pending toxicity assess-
ments, TITE-gBOIN provides very similar results to those of gBOIN. 

2.1.5.1. Design. When there are pending toxicity data, the observed 
mean toxicity at the current cohort, ̂μj, cannot be calculated, as was done 
for the gBOIN design. However, μ̂j can be replaced by the estimated rate 
μ̃j based on the likelihood with pending quasi-Bernoulli toxicity data - ̃μj 

is the maximum likelihood estimate of μj. Once ̃μj is obtained, the dosing 
algorithm of the gBOIN design can be used with ̃μj taking the place of μ̂j 

in the gBOIN algorithm. If patient accrual is much faster than outcome 
evaluation, a rule that suspends dose allocation until there is adequate 
information may need to be employed. For example, accrual can be 
suspended to await the availability of more data when more than 50% of 
the patients’ toxicity outcomes are pending at the current dose. 

In this design, the estimated quasi-Bernoulli toxicity probability ̃μj is 
updated until all the patients have completed their toxicity assessment. 
At the end of the trial, the MTD is determined by first applying isotonic 
regression to the estimated quasi-Bernoulli toxicity probabilities to 
smooth these values so that they are monotonically non-decreasing, and 
then selecting the dose for which the smoothed quasi-Bernoulli toxicity 
probability is closest to the target quasi-Bernoulli toxicity probability ϕ0. 

2.1.5.2. Software. Software to implement the TITE-gBOIN design is 
available at https://github.com/qingxiaa/titegboin. 

2.1.5.3. Advantages/limitations. The TITE-gBOIN design is a robust 
design that is simple to implement. Simulations in various realistic 
scenarios show that the TITE-gBOIN design is comparable in perfor-
mance to the gBOIN design and it has a higher probability of selecting 
the MTD correctly and allocating more patients to the MTD than other 
available approaches [26]. It reduces trial duration compared to designs 
that do not allow sequential dose allocation. 

The design performance may depend on the appropriate specifica-
tion of the quasi-Bernoulli endpoint such as the normalized equivalent 
toxicity score (ETS) [26]. A time-consuming collaboration between 

Table 1 
Dose-escalation and de-escalation rule for TITE-BOIN with a target DLT rate of 
0.2 and a cohort size of 3.  

Number 
Treated 

Number of 
DLTs 

Number with 
data pending 

STFT 

Escalate Stay De- 
escalate 

3 0 ≤1 Y   
3 0 ≥2  Suspend 

Accrual  
3 1 ≤2   Y 
3 ≥2 ≤1   Y&Elim 
6 0 ≤3 Y   
6 0 ≥4  Suspend 

Accrual  
6 1 ≤3  Y  
6 1 ≥4  Suspend 

Accrual  
6 2 ≤4   Y 
6 ≥3 ≤3   Y&Elim 
9 0 ≤4 Y   
9 0 ≥5  Suspend 

Accrual  
9 1 ≤2 Y   
9 1 3 ≥0.77 <0.77  
9 1 4 ≥2.15 <2.15  
9 1 ≥5  Suspend 

Accrual  
9 2 0  Y  
9 2 1  >0.52 ≤0.52 
9 2 2  >1.59 ≤1.59 
9 2 3  >2.66 ≤2.66 
9 2 4  >3.73 ≤3.73 
9 2 ≥5  Suspend 

Accrual  
9 3 ≤6   Y 
9 ≥4 ≤5   Y&Elim 

NOTE: “Number treated” is the total number of patients treated at the current 
dose level, “Number of DLTs” is the number of patients who experienced DLT at 
the current dose level, “Number with data pending” denotes that number of 
patients whose DLT data are pending at the current dose level, “STFT” is the 
standardized total follow-up time for the patients with data pending, defined as 
the total follow-up time (TFT) for the patients with data pending divided by the 
length of the DLT assessment window (example to calculate STFT is shown in the 
Appendix). “Y" represents “Yes,” and “Y&Elim” represents “Yes and Eliminate.” 
When a dose is eliminated, all higher doses should also be eliminated [22]. 
“Suspend accrual” means the following: patient accrual is suspended to await the 
availability of more data when more than 50% of the patients’ DLT outcomes are 
pending at the current dose [22]. 
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clinicians and biostatisticians is required to accurately derive the 
quasi-Bernoulli endpoint utilizing the weight for each toxicity grade and 
the drug-specific toxicity profiles [26]. The clinician needs to consider 
the clinical meaning while assigning the quasi-Bernoulli endpoint to a 
given grade of toxicity, while the biostatistician needs to evaluate the 
robustness of the quasi-Bernoulli endpoint being considered via simu-
lations [26]. TITE-gBOIN does not consider efficacy responses. 

2.2. Toxicity and efficacy designs for monotherapy 

2.2.1. BOIN-ET 
For some targeted therapies, such as biological agents and immu-

notherapies, the efficacy may not necessarily increase with an increase 
in dose. Hence, it is necessary to determine the OBD by considering both 
toxicity and efficacy. The BOIN-ET (BOIN Efficacy Toxicity) design, a 
phase I/II model-assisted design, is an extension of the BOIN design that 
utilizes both binary efficacy and toxicity outcomes in determining the 
OBD [27]. The STEIN design is an extension of the BOIN design that 
considers drug efficacy in addition to toxicity and is based on the BOIN 
design boundaries [28]. While similar to BOIN-ET in its dosing algo-
rithm, STEIN independently identifies the optimal decision boundaries 
for toxicity and efficacy, whereas BOIN-ET jointly optimizes these 
parameters. 

2.2.1.1. Design. Assuming the current cohort of patients is treated at 
dose level j, the BOIN-ET design is implemented as described below (the 
algorithm is also shown in Table 2) [27]. For toxicity, p̂j is the observed 
DLT rate at dose level j. ϕ is the pre-specified target DLT rate with the 
lower and upper boundary of the target DLT interval being λe and λd, 
respectively. For efficacy, q1, …..,qj are the true efficacy probabilities at 
each dose level j, estimated by q̂j = xj/nj, the observed response rate at 
dose level j, where xj is the number of patients with responses observed 
and nj is the number of patients treated at dose level j. δ is the 
pre-specified target efficacy probability and η1 is the efficacy cut-off 
satisfying 0≤ η1<δ < 1 and is computed numerically.  

1) If p̂j ≤ λe and q̂j ≤ η1, dose the next cohort of patients at dose level 
j+1.  

2) If p̂j ≤ λd and q̂j > η1, dose the next cohort of patients at the same 
dose level j.  

3) If p̂j > λd, dose the next cohort of patients at dose level j-1.  
4) If λe < p̂j ≤ λd and q̂j ≤ η1, due to the possibility of a non-monotonic 

dose-efficacy relationship, we define a set of admissible doses Aj=(j- 
1, j, j+1).  
o We select a dose from the admissible dose levels j − 1, j, j + 1 for 

the next cohort as follows:  
a) If dose level j + 1 has not been used earlier, escalate the dose to 

level j + 1.  
b) If the above point does not apply, choose the dose that has the 

maximum probability of efficacy according to ̂qj− 1, ̂qj, and ̂qj+1.  
c) If neither point above applies because the doses share the same 

estimated maximum probability of efficacy, randomly choose 1 
dose among the doses that share the maximum probability of 
efficacy. 

The optimal values of the three parameters λe, λd and η1 to be used in 
the dosing decisions cannot be derived analytically but can be computed 
numerically. Once these are estimated, the dosing rules of the trial can 
be pre-specified, as in Table 3, which uses values of λe, λd and η1 esti-
mated to be 0.14, 0.35 and 0.48 [27]. 

At the end of the trial, isotonic regression is applied to smooth the 
observed toxicity rates so that they are monotonically non-decreasing. 
The MTD is selected as the dose for which the isotonic DLT rate is 
closest to the target DLT rate ϕ. For efficacy, fractional polynomials with 
2 degrees of freedom, to allow non-monotonic dose-response relation-
ships, are used to fit the data. A subset of J dose levels B = {j: j ≤ m} 
satisfying the tolerability, where the mth dose is the estimated MTD, is 
defined. Among set B, the OBD is the dose j* that maximizes the efficacy 
probability. 

2.2.1.2. Software. Takeda et al. provide SAS code upon request to 
implement the BOIN-ET design. The following reference provides 
example dosing decision tables for cohort sizes of 3 and 6 to implement 
the BOIN-ET design [27]. 

2.2.1.3. Advantages/limitations. The statistical operating characteristics 
of the BOIN-ET design have been compared to those of other designs 
[27], such as the design proposed by Thall and Cook (TC method [30]), 
and the design proposed by Sato, Hirakawa, and Hamada (SHH method, 
[31]). In general, the BOIN-ET design selects the OBD more accurately 
and puts a higher average number of patients at the OBD than the 
model-based, Bayesian adaptive TC and SHH designs [27]. BOIN-ET is 
simpler and easier to implement than these designs, is safer, and pro-
vides much better overdosing control [27]. 

However, when the efficacy rate is sufficient at lower doses, the 
BOIN-ET design tends to allocate more patients to doses higher than the 
OBD, because of its forced escalation when p̂j ≤ λe and q̂j ≤ η1. Thus, if 
the true OBD is at lower doses, BOIN12 (described below), which is more 
conservative in dose escalation than BOIN-ET, will select the OBD more 
accurately (and vice-versa when the true OBD is at higher doses). 
Further, BOIN-ET may not be suitable for solid tumors, where the 
RECIST criteria are used for the efficacy assessment [32]. In this case, it 
may cause delays in implementing the dosing decisions because the 
RECIST efficacy evaluation usually occurs later than the toxicity eval-
uation. Hence, this design may be most applicable to oncology trials 
where the response assessment period and the DLT assessment period 
are on similar time scales, assuming that the short-term binary response 
used in the trial decision making can predict long-term responses such as 
overall survival. 

2.2.2. BOIN12 
BOIN12 is a flexible phase I/II model-assisted design to determine 

the OBD by optimizing the risk-benefit tradeoff. Each cohort of patients 
is allocated to the dose that maximizes the toxicity-efficacy trade-off 
[21]. BOIN12 uses categorical toxicity and efficacy data in a single stage 

Table 2 
Dosing Decision Table for the BOIN-ET Design.   

0≤ p̂j ≤ λe λe < p̂j ≤ λd λd < p̂j ≤ 1 

η1 < q̂j ≤ 1 Stay Stay De-escalate 
0 ≤ q̂j ≤ η1 Escalate Escalate/Stay/De-escalate De-escalate  

Table 3 
Example Dose Finding Table for the BOIN-ET Design.    

Cumulative Number of Responses  

0 1 2 3 4 5 6 

Cumulative Number of 
DLTs 

0 E E E S S S S 
1 E/S/ 

D 
E/S/ 
D 

E/S/ 
D 

S S S S 

2 E/S/ 
D 

E/S/ 
D 

E/S/ 
D 

S S S S 

3 D D D D D D D 
4 D D D D D D D 
5 D D D D D D D 
6 D D D D D D D 

D =De-Escalate, E = Escalate, S=Stay. The target toxicity probability and effi-
cacy probability assumed are ϕ = 0.3 and δ = 0.6 respectively. The assumed 
design parameters of ϕ1 = 0.1ϕ, ϕ2 = 1.4ϕ and δ1 = 0.6δ lead to optimal values 
of λe, λd and η1 of 0.14, 0.35 and 0.48. 
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to determine the OBD. A posterior interval estimator is employed to 
determine the next dose assignment. 

2.2.2.1. Design. The specific steps of the BOIN12 dosing algorithm for a 
binary efficacy and a binary toxicity endpoint are described below; the 
flow diagram for the BOIN12 dosing algorithm is also given in Fig. 1 of 
Lin et al. [21].  

1. Treat the first cohort of patients at the lowest dose or pre-specified 
starting dose.  

2. p1, …..,pj are the true DLT probabilities and q1, …..,qj are the true 
efficacy probabilities at each dose level j. The observed DLT rate at 
dose level j is p̂j, and it is equal to the number of patients who 
experience a DLT at dose level j divided by nj, the number of patients 
treated at dose level j. The observed response rate at dose level j is q̂j, 

and it is calculated similarly. The lower boundary of the pre- 
calculated target DLT interval is λe and the upper boundary is λd, 
based on the BOIN design and ϕT. ϕT and ϕE are the pre-specified 
toxicity upper limit and efficacy lower limit, respectively. Gener-
ally, ϕT should be set at a value slightly higher than the target toxicity 
rate used in conventional toxicity-based phase I trials, and ϕE can 
take the value of the alternate response rate specified for a standard 
phase II trial.  
a) If p̂j >λd then treat the next cohort of patients at the next lower 

dose j-1.  
b) If λe< p̂j and nj ≥ 6, then determine the desirability of doses j and 

j-1 using the pre-specified RDS (rank-based desirability score) 
table (e.g. Table 3 in Ref. [21]; a part of which is reproduced here 
(Table 4)). The RDS is based on a utility score elicited from cli-
nicians. A larger value of RDS implies a higher utility. The mean 
utility at dose j is given by u(j) = Ψ1u1+ Ψ2u2+ Ψ3u3+ Ψ4u4, 
where u1 (=100), u2 (= an elicited score between 0 and 100), u3 
(=an elicited score between 0 and 1008) and u4 (=0) denote the 
utility scores ascribed to the outcomes of 1) efficacy and no 
toxicity, 2) no toxicity and no efficacy, 3) both toxicity and effi-
cacy and 4) toxicity and no efficacy respectively, and Ψ1, Ψ2, Ψ3, 
Ψ4 denote the probabilities of observing these outcomes at dose j - 
note: Ψ1j +Ψ3j = qj and Ψ3j +Ψ4j = pj. The utility function used is 
flexible; details on how RDS is calculated based on the utility is 
provided in Lin et al. [21]. Treat the next cohort of patients at the 
dose that has the highest desirability. 

c) If p̂j ≤λe or if λe< p̂j ≤λd and nj < 6, then determine the desir-
ability of dose levels j, j-1 and j+1 using the pre-specified RDS 
table. Treat the next cohort of patients at the dose that has the 
highest desirability.  

3. The previous step is repeated until the maximum pre-specified 
sample size N is reached.  

4. The OBD is then selected based on the following 2-step procedure:  
a) The MTD is determined by first applying isotonic regression to 

smooth the observed DLT rates so that they are monotonically 
non-decreasing, and then selecting the dose for which the 
smoothed DLT rate is closest to the pre-specified toxicity upper 
limit ϕT.  

b) The final OBD is the dose level that has the highest estimated 
utility value of those doses not higher than the MTD. 

2.2.2.2. Software. Software to implement the BOIN12 design is avail-
able at www.trialdesign.org. 

2.2.2.3. Advantages/limitations. BOIN12 is based on a utility trade-off 
function and is more general, while BOIN-ET is based on marginal 
toxicity and marginal efficacy rates and does not incorporate a toxicity- 
efficacy utility trade-off function in dose finding. The BOIN12 design is 
simple to implement, and it selects the OBD more accurately and doses 
more patients at the OBD compared to dose-finding designs such as the 
TC method [30], TEPI (Toxicity Efficacy Probability Interval) [33] and 
3 + 3 CE (cohort expansion) (i.e. a 3 + 3 design followed by a CE at the 
identified MTD, with Simon’s two-stage design used to monitor efficacy 
in CE) designs. The dosing decision table for the BOIN12 design can be 
used to make dosing decisions and allocate patients to a dose without 
any complex calculations [21]. 

In some immunotherapy trials, late onset toxicities and responses 
may be observed. This will preclude using the BOIN12 design, since it 
assumes that the toxicity and efficacy outcomes are available by the time 
of the dose assignment of the next cohort. 

2.2.3. U-BOIN 
The utility BOIN (U-BOIN) design can be used to determine the OBD 

of the drug considering both efficacy and toxicity data. It is a two-stage 
utility-based, seamless Bayesian phase I/II model-assisted design [34]. 

Table 4 
Decision Table (RDS Table) for BOIN12 assuming the upper toxicity limit ϕT to 
be 0.35 and the lower efficacy limit ϕE to be 0.25 and the utility specification 
given in Table 1 of Lin et al. [21].  

No of Patients No of Toxicities No of Efficacies Desirability Score 

0 0 0 60 
3 0 0 35 
3 0 1 55 
3 0 2 76 
3 0 3 91 
3 1 0 24 
3 1 1 44 
3 1 2 63 
3 1 3 80 
3 2 0 13 
3 2 1 31 
3 2 2 48 
3 2 3 69 
3 3 Any ED 
6 0 0 22 
6 0 1 38 
6 0 2 51 
6 0 3 67 
6 0 4 81 
6 0 5 93 
6 0 6 100 
6 1 0 15 
6 1 1 27 
6 1 2 42 
6 1 3 56 
6 1 4 72 
6 1 5 87 
6 1 6 96 
6 2 0 8 
6 2 1 19 
6 2 2 34 
6 2 3 47 
6 2 4 64 
6 2 5 77 
6 2 6 90 
6 3 0 4 
6 3 1 12 
6 3 2 22 
6 3 3 38 
6 3 4 51 
6 3 5 67 
6 3 6 81 
6 4 0 1 
6 4 1 6 
6 4 2 15 
6 4 3 27 
6 4 4 42 
6 4 5 56 
6 4 6 72 
6 ≥5 Any ED 

ED means the dose should be eliminated because it does not satisfy the safety 
and efficacy admissible criteria (i.e., not admissible because of high toxicity or 
low efficacy). 
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Only toxicity data are used in the first stage, and both toxicity and ef-
ficacy data are used in the second stage to determine the OBD. U-BOIN 
can handle categorical efficacy and toxicity endpoints, but in the below 
section, we assume that the efficacy and toxicity endpoints are binary. A 
posterior point estimator is employed in the dosing decisions. 

2.2.3.1. Design. The specific steps of the U-BOIN design are described 
below and are also depicted in Fig. 1 of Zhou et al. [34]. 

The U-BOIN design comprises two seamless stages. 
Stage 1 is the same as the BOIN design and its aim is to identify a set 

of admissible doses for Stage 2. In Stage 1, the dose finding is based only 
on DLT data although efficacy data are also collected. In Stage 1, the trial 
proceeds exactly as the BOIN design. Once the number of patients 
treated at one of the doses reaches the pre-specified maximum sample 
size s1, the trial proceeds to Stage 2. 

In Stage 2, the efficacy and toxicity data from both stages are used to 
determine the OBD for efficacy and toxicity. Note that π̂T, j =mj/nj is the 
observed DLT rate at dose level j, where mj is the number of patients who 
experienced a DLT at dose level j and nj is the number of patients treated 
at dose level j. λe and λd are the pre-determined optimal escalation 
boundary and de-escalation boundary for the BOIN design based on the 
considered target DLT rate. 

In Stage 2, the trial proceeds as follows:  

1) Let j* be the highest dose that has been tried. If π̂T, j* ≤ λe and j* is not 
the highest dose level in the trial, then assign the next cohort of 
patients to j*+1. If not, proceed to step 2.  

2) Determine the admissible set of doses based on the data D observed 
thus far in stages 1 and 2. Assign the next cohort of patients to the 
dose that has the largest posterior mean utility value among the 
admissible doses. If there is no admissible dose, terminate the trial – 
there is no OBD. 

A dose is inadmissible if either of the following criteria is satisfied: 

Pr
(
πT,j > πT

⃒
⃒D

)
> CT or Pr

(
πE,j < π E

⃒
⃒
⃒D

)
> CE,

where πT,j is the marginal probability of toxicity at dose level j, πT is the 
maximum tolerable DLT rate, πE,j is the marginal probability of efficacy 
at dose level j, and π E is the lowest acceptable response rate. CE and CT 
are probability cutoffs. In general, CT = 0.95 and CE = 0.9.  

3) Repeat steps 1 and 2 until the maximum pre-specified sample size N 
is reached or the number of patients treated at one of the doses 
reaches the pre-specified maximum sample size s2 (s2>s1).  

4) The OBD is the dose among the admissible doses with the largest 
posterior mean utility value. 

2.2.3.2. Utility function. The utility function is used for dosing decisions 
in Stage 2 and for determining the OBD. 

The true mean utility for dose level j is given as follows: 

Uj =
∑K

k=1
φkπjk.

To define πjk, consider the following outcomes: 

Y = 1 = (1, 0) = patient experiences DLT and no response and φ1 is 
the weight given in consultation with clinicians to this outcome of 
toxicity and response and is usually 0. 
Y = 2 = (0, 0) = patient experiences no DLT and no response and φ2 
is the weight given in consultation with clinicians to this outcome of 
toxicity and response. 
Y = 3 = (1, 1) = patient experiences DLT and a response and φ3 is the 
weight given in consultation with clinicians to this outcome of 
toxicity and response. 

Y = 4 = (0, 1) = patient experiences no DLT and a response and φ4 is 
the weight given in consultation with clinicians to this outcome of 
toxicity and response and is usually 100. 

Define 
πjk = Pr(Y = k|d= j), k = 1, …, K (here K = 4) and d is the dose level 

and goes from j = 1, …, J, and 
∑K

k=1
πjk = 1. 

We assume that Y follows a Dirichlet-multinomial model. At an 
interim decision time, we assume that nj patients have been treated at 
dose d = j, among which njk patients have outcome Y = k, where 

nj =
∑K

k=1
njk. Given the observed interim data Dj=(nj1, nj2, …, njK), the 

posterior distribution of πj = (πj1, πj2, …, πjK) is πj
⃒
⃒Dj and follows a 

Dirichlet distribution. 
The true mean utility Uj depends on πj,k, which is unknown. The 

mean utility Ûj is estimated based on the observed interim data D = {Dj} 
as follows: 

Û j =
∑K

k=1
φkE

(
πjk

⃒
⃒D

)
.

The OBD is the admissible dose that has the highest utility value. 
OBD = argmaxjεAUj, where A is the admissible set. 

2.2.3.3. Software. Software to implement the U-BOIN design is avail-
able at www.trialdesign.org. 

2.2.3.4. Advantages/limitations. The U-BOIN design is simple to imple-
ment and is well-performing. It can be implemented in a trial using pre- 
determined decision tables and does not require complex model fitting 
and estimation [35]. Compared to a model-based design such as the TC 
method, U-BOIN identifies the OBD more accurately and is more robust 
[34]. In addition, due to the incorporation of the first stage, U-BOIN 
estimates the MTD accurately. 

The U-BOIN design models efficacy and toxicity at each dose inde-
pendently while model-based designs, such as the TC method, model 
efficacy and toxicity across all doses via a parametric model for dose- 
efficacy and dose-toxicity curves. Thus, there may be a potential effi-
ciency loss for U-BOIN, although this loss is believed to be minimal or 
negligible [34]. U-BOIN is comparable to BOIN12 in accuracy of OBD 
selection, but it requires a relatively large sample size to guarantee a 
desirable performance due to the use of two stages. The sample size 
required by U-BOIN is usually greater than the sample size used in 
MTD-finding trials. In stage 2, U-BOIN assumes that both the toxicity 
and efficacy outcomes are available by the time of the dose assignment 
of the next cohort. 

2.2.4. gBOIN-ET 
The gBOIN-ET design is a phase I/II model-assisted, non-parametric 

design that is an extension of the BOIN-ET design and that accounts for 
ordinal graded efficacy and toxicity [36]. Although the reference by 
Takeda et al. focuses on quasi-Bernoulli toxicity and efficacy endpoints, 
gBOIN-ET can be extended to continuous endpoints. gBOIN-ET aims to 
minimizes the posterior probability of incorrect dose allocation for pa-
tients regarding efficacy and toxicity [36]. While BOIN12 and gBOIN-ET 
can handle categorical toxicity and efficacy endpoints, BOIN-12 uses an 
efficacy-toxicity utility function to determine the OBD, while gBOIN-ET 
does not. 

2.2.4.1. Design. The quasi maximum likelihood estimators for the 
quasi-Bernoulli endpoints are equal to the observed average quasi- 
Bernoulli endpoints at each dose level. Thus, the observed toxicity 
probability and the observed efficacy probability in BOIN-ET can be 
replaced by the observed quasi-Bernoulli toxicity probability and the 
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observed quasi-Bernoulli efficacy probability respectively, using the 
quasi-Bernoulli likelihood [36]. The dosing decision rules of BOIN-ET 
can then be implemented using the observed quasi-Bernoulli toxicity 
probability and the observed quasi-Bernoulli efficacy probability. At the 
end of the trial, isotonic regression is applied for toxicity and the 
regression model with the fractional polynomial is applied for efficacy, 
in order to determine the OBD [36]. Further details of the dosing algo-
rithm, calculation of the Bayesian optimal boundaries, early termination 
criteria and OBD selection are given in Takeda et al. [36]. 

2.2.4.2. Software. SAS code is available to implement the gBOIN-ET 
design. 

2.2.4.3. Advantages/limitations. The gBOIN-ET design is simple and 
easy to implement in oncology trials than model-based approaches. 
Simulations used to investigate the operating characteristics of gBOIN- 
ET show that it has a higher performance than the other designs 
investigated (BOIN12, gBOIN, BOIN-ET) in terms of the correct OBD 
selection, the average number of patients allocated to the OBDs, not 
selecting overdoses as the OBDs and not assigning patients to overdoses 
[36]. 

The design performance may depend on the appropriate specifica-
tion of the quasi-Bernoulli endpoints [36]. A time-consuming collabo-
ration between clinicians and biostatisticians is required to accurately 
derive the quasi-Bernoulli endpoints utilizing the weight for each 
toxicity grade and efficacy grade [36]. gBOIN-ET may select lower doses 
as OBDs if the low quasi-Bernoulli efficacy probability is mis-specified as 
the target quasi-Bernoulli efficacy probability [36]. Hence clinicians and 
biostatisticians need to consider target quasi-Bernoulli efficacy and 
toxicity probabilities that are realistic for the study drug. gBOIN-ET does 
not consider the accrual rate, the outcome evaluation period and the 
late-onset outcomes [36]. It may also be valuable to incorporate his-
torical and personalized information into the gBOIN-ET design to 
improve the efficiency of phase I/II dose-finding trials [36]. 

2.2.5. TITE BOIN-ET 
The TITE-BOIN-ET is a model-assisted design that considers cumu-

lative and pending toxicity and efficacy data. The TITE-BOIN-ET (Time- 
to-Event-BOIN Efficacy Toxicity) design is an extension of the BOIN-ET 
design that has been proposed to consider the following factors in dose 
finding: 1) fast accrual rates, 2) the difference in evaluation periods for 
toxicity and efficacy, and 3) the late onset outcomes [37]. 

2.2.5.1. Design. When there are pending toxicity and efficacy data, the 
observed DLT and response rates at the current cohort cannot be 

calculated, as was done for the BOIN-ET design. However, the observed 
DLT and response rates can be replaced by the estimated DLT and 
response rates based on the likelihood with pending toxicity and efficacy 
data. As a result, a dosing decision table similar to that used for the 
BOIN-ET design can be employed. The use of such a table does not 
require any model fitting and accounts for the pending efficacy and 
toxicity data. Table 5 is for a cohort size of 3, and a target toxicity 
probability and target efficacy probability of ϕ = 0.3 and δ = 0.6 
respectively [37]. The assumed design parameters of ϕ1 = 0.1ϕ, 
ϕ2 = 1.4ϕ and δ1 = 0.6δ lead to optimal values of λe, λd and η1 of 0.13, 
0.35 and 0.48, respectively. 

The effective sample size for efficacy at dose j is 

ESSEj=Numberof non − pendingpatients forefficacyatdoselevel j

+
Total Follow − up time for pending patients for efficacy at dose level j

Length of assessment window for efficacy
.

The effective sample size of toxicity at dose j is 

ESSTj=Numberof non − pendingpatients for toxicityatdoselevel j

+
Total Follow − up time for pending patients for toxicity at dose level j

Length of assessment window for toxicity
.

Table 5 can be used directly to determine to which dose level the next 
cohort of patients should be assigned, once the number of patients with 
DLTs and responses at dose level j are known and the effective sample 
sizes for efficacy and toxicity at dose j are calculated. 

The estimated toxicity rate and the estimated efficacy rate are 
updated until the patients complete the toxicity and efficacy assessment 
periods even without new enrollment [37]. At the end of the trial, 
isotonic regression is applied so that the estimated toxicity probabilities 
are monotonically non-decreasing. The MTD is selected as the dose 
whose isotonic regression estimator is closest to the target DLT rate ϕ. 
For efficacy, fractional polynomials with 2 degrees of freedom to allow 
non-monotonic dose-response relationships are used to fit the data. A 
subset of J dose levels, B = {j: j ≤ m}, satisfying the tolerability where 
the mth dose is the estimated MTD, is defined. Among the set B, the OBD 
is the dose j* that maximizes the efficacy probability (the efficacy 
probabilities are those estimated by the fractional polynomial). 

2.2.5.2. Software. Takeda et al. provide SAS code upon request to 
implement the TITE-BOIN-ET design. The following reference provides 
an example dosing decision table for cohort size 3 to implement the 
TITE-BOIN-ET design [37]. 

2.2.5.3. Advantages/limitations. The TITE-BOIN-ET design is robust, 
much simpler, and easier to implement than model-based approaches. A 
simulation study across a range of realistic settings shows that the TITE- 
BOIN-ET design selects the OBD more accurately and puts a higher 
average number of patients at the OBD than model-based approaches 
such as the design by Thall and Cook and the design by Jin et al. [37,43]. 
The trial duration is also significantly shortened when using the 
TITE-BOIN-ET design compared to using designs without sequential 
enrollment [37]. 

However, when the efficacy response rate is sufficient at lower doses, 
the TITE-BOIN-ET design tends to allocate more patients to doses higher 
than the OBD, similar to BOIN-ET. If patient accrual is faster than the 
outcome evaluation, then the available information may still not be 
sufficient even if the pending data are considered. In such a case, sus-
pension rules as in Lin and Yuan [25] (e.g. dose escalation is not allowed 
if fewer than 2 patients at any dose level have completed their assess-
ment) or as in Yuan et al. [22] (see footnote of Table 1 for the suspension 
rule used in Ref. [22]) may need to be considered to delay the dosing 
decisions until adequate information is available [37]. 

2.2.6. TITE-BOIN12 
When there are pending outcomes for toxicity or response, the 

Table 5 
Dosing Decision Rules for the TITE-BOIN-ET Design.   

Cumulative number of responses 

Cumulative 
number of 
toxicities  

0 1 2 3 
0 E E if ESSEj >2.07 

S if ESSE 

j ≤ 2.07 

S S 

1 E/S/D if 
ESSTj ≥2.87a 

D if 
ESSTj<2.87 

E/S/D if ESSEj 

>2.07 and ESSTj 

≥2.87a 

S if ESSEj ≤2.07 
and ESSTj 

≥2.87, 
D if ESSTj<2.87 

S if ESSTj 

≥2.87 
D if ESST 

j < 2.87 

S if ESSTj 

≥2.87 
D if ESST 

j < 2.87 

2 D D D D 
3 D D D D 

E = Escalate, D =De-escalate and S=Stay. 
a The rules used in the E/S/D cases in TITE-BOIN-ET to decide whether to 

escalate, de-escalate or stay at the same dose are the same as those used in BOIN- 
ET for the E/S/D case to decide whether to escalate, de-escalate or stay at the 
same dose (see BOIN-ET section). 
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BOIN12 design is not an option as it cannot calculate the DLT probability 
and dose desirability. The TITE-BOIN12 design is a utility-based phase I/ 
II model-assisted design that deals with late-onset toxicities and re-
sponses, allowing the study to proceed with dosing the next cohort of 
patients even in the presence of pending outcomes for toxicity or 
response for some patients [39]. TITE-BOIN12 reduces to the BOIN12 
design when there are no pending outcomes for toxicity or response. 

2.2.6.1. Design. In this design, either Bayesian data augmentation 
(BDA) or the approximated likelihood method can be used in the dose- 
finding decisions when there are pending outcomes for some patients for 
toxicity or response. Using BDA or the approximated likelihood method, 
the same dose-finding algorithm can be used for TITE-BOIN12 as with 
BOIN12, with a few changes. At each interim analysis, the TITE-BOIN12 
design updates the estimate for admissibility criteria, the marginal DLT 
probability and the dose desirability for all doses. TITE-BOIN12 also has 
the additional following accrual suspension rule: if more than 50% of the 
patients have pending DLT or efficacy outcomes at the current dose, the 
trial needs to be suspended until more data become available. Further 
details of the dosing algorithm are given in Zhou et al. [39]. 

2.2.6.2. Software. Software to implement the TITE-BOIN12 design is 
available at www.trialdesign.org. 

2.2.6.3. Advantages/limitations. TITE-BOIN12 is a well-performing 
design that allows continuous accrual while still ensuring patient 
safety and accuracy of OBD identification. In most cases, this design has 
better over-dose control and higher accuracy of OBD identification, than 
model-based designs such as the TC method [39]. TITE-BOIN12 ac-
commodates different shapes of dose-efficacy curves compared to the TC 
method. It shortens the trial duration and incorporates risk-benefit 
trade-off with input on the utility values from clinicians [39]. 

TITE-BOIN12 assumes that the time to DLT and efficacy are 
distributed uniformly over the assessment window, while calculating 
the STFT, which is similar to what is assumed in the TITE-BOIN and 
TITE-CRM designs [39]. This design is robust to this assumption, similar 
to what is demonstrated for TITE-CRM [40] and for TITE-BOIN [22]. 
However, if reliable prior information is available on the distribution of 
the time to DLT or response, an informative prior can be used for either 
or both to improve design efficiency. No decision table can be generated 
for TITE-BOIN12 prior to the trial conduct due to the large number of 
possible values for the STFT. However, dose desirability can be easily 
calculated based on interim data using existing software to determine 
the dose assignment for the next cohort of patients. 

3. Combination designs 

Drug combination provides an appealing way to obtain synergistic 
treatment effects and overcome resistance of monotherapy in oncology 
[14]. Trials to identify the MTD for combined therapies are more 
complicated than monotherapy trials, due to the higher dimensionality 
of the dose space and the partially-known toxicity order between the 
combined doses. Combination BOIN design(s) for phase I trials allows 
dose finding in 2 dimensions [29]. Assume that the trial tests J doses of 
drug A with A1 <A2 < ….< AJ (A1 is the lowest dose and AJ is the 
highest) and K doses of drug B with B1 < B2 < ….< BK (B1 is the lowest 
dose and BK is the highest), and pjk is the true DLT rate of the combi-
nation of Aj and Bk denoted as AjBk. The toxicities probabilities are only 
partially ordered because dose combination Aj’Bk’ will be more toxic 
than dose combination AjBk if j’>j and k’>k but this may or may not be 
true if j’>j but k’<k [14]. At the end of the trial, either a single MTD or 
multiple MTDs (MTD contour) can be selected, depending on the trial 
and its application [23]. 

3.1. Design 

3.1.1. BOIN comb design to find single MTD 
The pre-specified target DLT rate is ϕ, the lower boundary of the pre- 

specified (pre-calculated) target DLT interval is λe, and the upper 
boundary of the target DLT interval is λd. The pre-specified maximum 
sample size of the trial is N. AjBk is the current dose level. The observed 
DLT rate at AjBk is p̂jk = yjk/njk, where yjk is the number of patients with 
DLTs observed at dose AjBk and njk is the number of patients treated at 
dose AjBk. Define an admissible dose escalation set as AE = {Aj+1Bk, 
AjBk+1} and an admissible dose de-escalation set as AD = {Aj− 1Bk, 
AjBk− 1}. Also for dose-escalation, de-escalation decisions, consider P(pjk 
ε (λe, λd)|Djk), which measures how likely it is that a dose combination is 
located within the acceptable toxicity interval (λe, λd), where Djk=(yjk, 
njk). 

The specific steps of the BOIN combination design for finding a single 
MTD [29] are as follows:  

1. Treat the first cohort of patients at the lowest dose combination or a 
pre-specified dose combination.  

2. If the current dose level is AjBk and the observed DLT rate is p̂jk, then 
assign the next cohort of patients as follows: 

If p̂jk ≤ λe, then escalate and treat the next cohort of patients at that 
dose in AE that has the largest value of P(pj’k’ ε (λe, λd)|Djk). 

If p̂jk >λd, then de-escalate and treat the next cohort of patients at 
that dose in AD that has the largest value of P(pj’k’ ε (λe, λd)|Djk). 

If λe< p̂jk ≤λd, then treat the next combination of patients at the same 
dose. 

Note that in step 2, if two doses have the same value of P(pj’k’ ε (λe, 
λd)|Djk) in AE or AD, then either of the two doses can be chosen either 
randomly or based on clinical considerations. If no dose combination 
exists in AE and AD due to being at the boundaries of the dose matrix, 
then the next cohort of patients is treated at the same dose level [14]. In 
the software of the BOIN Comb design, the value P(pj’k’ ε (λe, λd)|Djk) is 
translated into a desirability score. As a result, the implementation of the 
BOIN Comb design can be based on a standard BOIN decision table with 
an additional desirability score table (an example of such a table taken 
from Zhou et al. [1] is shown (Table 6)).  

3. The previous step is repeated until the maximum pre-specified 
sample size N is reached or the trial is stopped due to excessive 
toxicity per the dose elimination rule.  

4. At the end of the trial, the MTD is determined by first applying 
isotonic regression in two dimensions to the observed DLT rates to 

Table 6 
Desirability score table for the BOIN Comb design with the target DLT proba-
bility of 0.3 [1].  

Number of Patients Number of DLTs Desirability Score 

0 0 6 
3 0 7 
3 1 11 
3 2 5 
3 ≥3 E 
6 0 3 
6 1 13 
6 2 16 
6 3 10 
6 ≥4 E 
9 0 2 
9 1 9 
9 2 17 
9 3 18 
9 4 12 
9 ≥5 E 

“E”: eliminate current and higher doses. 
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Table 7 
Summary of the BOIN Design and its Extensions.  

Design Description of Design Advantages Disadvantages Software References 

BOIN The BOIN design uses the 
observed DLT rate at each dose 
for determining the MTD of a 
new drug. This phase I design 
can be implemented in a simple 
manner, similar to that of the 3 
+ 3 design but has better 
operating characteristics, and 
has comparable or better 
operating characteristics than 
many model-based designs such 
as CRM, and model-assisted 
designs such as mTPI-2. 

Although built upon Bayesian 
probability models, the BOIN 
design is operationally simple, 
since once λe and λd are pre- 
determined for the given target 
DLT rate, the dosing decision for 
each new cohort of patients is 
based mainly on comparing the 
observed DLT rate at the current 
dose with λe and λd. The design 
selects the MTD more accurately 
and doses a larger percentage of 
patients at the MTD than the 3 +
3 design does, and it has a lower 
probability of overdosing 
patients than some other designs 
[10]. 

This design considers only 
toxicity in its dosing decisions 
without using efficacy data, 
which is an important limitation 
for immuno-oncology drugs 
where efficacy does not always 
increase with higher doses. It also 
does not consider late-onset 
toxicities or efficacy responses. 
BOIN mainly uses the data from 
the current dose level for dosing 
decisions and not data collected 
across all doses. However, it is a 
sequential design where the 
consecutive dosing decisions 
indirectly use the information 
from the adjacent doses, and this 
results in good statistical 
operating characteristics. 

1) www.trialdesign.org 
2) R package: 
BOIN 
3) Desktop application: https://biost 
atistics.mdanderson.org/Software 
Download/SingleSoftware/Index/99 

[5,10,11] 

MT-BOIN The MT-BOIN design(s) is an 
extension of the BOIN design 
that considers different toxicity 
types and grades. 

MT-BOIN is simple to implement 
and has comparable operating 
characteristics to those of 
model-based designs such as 
MC-CRM. MT-BOIN is also more 
robust than model-based designs 
since it does not rely on a 
parametric dose-response 
assumption. In addition to non- 
nested and nested toxicities, MT- 
BOIN can handle drug 
combinations. 

MT-BOIN does not consider late- 
onset toxicities or efficacy 
responses. 

The boundaries of MT-BOIN are 
exactly the same as those in the 
standard BOIN design for non-nested 
outcomes. Thus, the BOIN software 
can be used to implement MT-BOIN. 

[15] 

gBOIN The gBOIN design is a more 
general version of the BOIN 
design that can handle 
continuous, quasi-binary, and 
binary toxicity endpoints. 

The gBOIN design has good 
statistical operating 
characteristics compared to 
existing designs that handle 
toxicity grades such as the quasi- 
CRM design [16]. It is simple to 
implement, since its dosing 
decisions involve comparing the 
sample mean of the endpoint 
with the two pre-specified 
boundaries of dose escalation 
and de-escalation, and do not 
involve any model fitting. It does 
not require a lead-in phase and 
its decision rules can be applied 
throughout the trial, unlike 
some model-based designs that 
need to collect preliminary data 
through a pre-phase before the 
model can be reliably estimated. 
Although gBOIN mainly uses 
data from the current dose level 
for dosing decisions, its 
performance is usually as good 
as or better than the 
model-based designs that 
borrow information across 
doses. 

The required elicitation of 
weights (to determine a toxicity 
score) and a target involves a 
time-consuming collaboration 
between clinicians and 
biostatisticians. gBOIN does not 
consider late-onset toxicities or 
efficacy responses. 

gBOIN can be implemented using the 
UnifiedDoseFinding R package 
available at https://cran.r-project.or 
g/web/packages/UnifiedDoseFindi 
ng/index.html. 

[16] 

TITE-BOIN In the TITE-BOIN design, new 
patients can be enrolled even 
when the DLT data are pending 
for some of the patients in the 
previous cohort. When there are 
no pending DLT data, it reduces 
to the BOIN design. 

TITE-BOIN is easy to implement 
and is well-performing. It takes 
into account late-onset DLTs and 
rapid accrual, allowing dosing 
decisions even with pending 
DLT data from some patients in 
the current cohort. TITE-BOIN 
generally shortens the trial 
duration substantially compared 
to waiting for the occurrence of 
pending toxicity events. It is 
more flexible in choosing the 
target DLT rate and more 
accurate in MTD selection than 
the rolling 6 design. It has 

TITE-BOIN uses DLT data only at 
the current dose for dosing 
decisions, in contrast to TITE- 
CRM, which considers data from 
all dose levels. However, 
simulations show that the effect 
of using only the current dose 
data leads to negligible efficiency 
loss [25, 38]. TITE-BOIN assumes 
that the time to DLT is distributed 
uniformly over the DLT 
assessment window, similar to 
what TITE-CRM does. This design 
is robust to this uniformity 
assumption, but if reliable prior 

www.trialdesign.org [22,25] 

(continued on next page) 
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Table 7 (continued ) 

Design Description of Design Advantages Disadvantages Software References 

similar accuracy in MTD 
selection as TITE-CRM, but it has 
better overdose control and is 
easier to implement. 

information is available on the 
distribution of the time to DLT, 
then an informative prior can be 
used to improve design efficiency 
[22]. TITE-BOIN does not 
consider efficacy endpoints for its 
dosing decisions. 

TITE-gBOIN The TITE-gBOIN is a non- 
parametric, model-assisted 
design that is an extension of the 
gBOIN design that accounts for 
toxicity grades based on both 
cumulative and pending 
numeric toxicity scores. 

TITE-gBOIN is a robust design 
that is simple to implement. 
Simulations in various realistic 
scenarios show that TITE-gBOIN 
is comparable in performance to 
gBOIN and it has a higher 
probability of selecting the MTD 
correctly and allocating more 
patients to the MTD than other 
available approaches [26]. It 
reduces trial duration compared 
to designs that do not allow 
sequential dose allocation. 

The design performance may 
depend on the appropriate 
specification of the quasi- 
Bernoulli endpoint such as the 
normalized ETS [26]. A 
time-consuming collaboration 
between clinicians and 
biostatisticians is required to 
accurately derive the 
quasi-Bernoulli endpoint utilizing 
the weight for each toxicity grade 
and the drug-specific toxicity 
profiles [26]. TITE-gBOIN does 
not consider efficacy responses. 

Software to implement the TITE- 
gBOIN design is available at https:// 
github.com/qingxiaa/titegboin. 

[26] 

BOIN-ET BOIN-ET design, a phase I/II 
design, is an extension of the 
BOIN design that utilizes both 
binary efficacy and toxicity 
outcomes in determining the 
OBD 

In general, the BOIN-ET design 
selects the OBD more accurately 
and puts a higher average 
number of patients at the OBD 
than the model-based TC and 
SHH designs [27]. It is simpler 
and easier to implement, is safer, 
and provides much better 
overdosing control than these 
designs [27]. 

When the efficacy rate is 
sufficient at lower doses, BOIN- 
ET tends to allocate more patients 
to doses higher than the OBD. 
BOIN-ET may not be suitable for 
solid tumors, where the RECIST 
criteria are used for the efficacy 
assessment; it may cause delays in 
implementing the dosing 
decisions because the RECIST 
efficacy evaluation usually occurs 
later than the toxicity evaluation. 
Hence, the design may be most 
applicable to trials where the 
response assessment period and 
the DLT assessment period are on 
similar time scales. 

Takeda et al. provide SAS code upon 
request to implement the BOIN-ET 
design. The following reference 
provides example dosing decision 
tables for cohort sizes of 3 and 6 to 
implement the BOIN-ET design [27]. 

[27] 

BOIN12 BOIN12 is a flexible phase I/II 
design that can be used to 
determine the OBD. Each cohort 
of patients is allocated to the 
dose that optimizes the toxicity- 
efficacy trade-off. While U-BOIN 
has 2 stages with only toxicity 
data being used in the first stage 
and both toxicity and efficacy 
data being used in the second 
stage, BOIN12 has only one stage 
and uses both categorical 
toxicity and efficacy data in this 
single stage. 

BOIN12 is based on a utility 
trade-off function and is more 
general, while BOIN-ET is based 
on marginal toxicity and 
marginal efficacy rates and does 
not incorporate toxicity-efficacy 
trade-off in dose finding. The 
BOIN12 design is simple to 
implement, and it selects the 
OBD more accurately and doses 
more patients at the OBD 
compared to existing dose- 
finding designs such as the TC 
method, TEPI and 3 + 3 CE 
designs. The dosing decision 
table for the BOIN12 design can 
be used easily to make dosing 
decisions and allocate patients 
to a dose without any complex 
calculations [21]. 

In some immunotherapy trials, 
late onset toxicities and responses 
may be observed. This will 
preclude using the BOIN12 
design, since it assumes that the 
toxicity and efficacy outcomes 
are available by the time of the 
dose assignment of the next 
cohort. 

www.trialdesign.org [21] 

U-BOIN U-BOIN is a utility-based, 
seamless Bayesian phase I/II 
design used to determine the 
OBD. The weights used in the 
utility function for different 
combinations of efficacy and 
toxicity (e.g. no response and no 
DLT, response and no DLT, no 
response and DLT and response 
and DLT) are chosen based on 
discussions with clinicians. 

The U-BOIN design is simple to 
implement and is well- 
performing. It can be 
implemented in a trial using pre- 
determined decision tables and 
does not require complex model 
fitting and estimation [35]. 
Compared to a model-based 
design such as the TC method, 
U-BOIN identifies the OBD more 
accurately and is more robust 
[34]. Due to the incorporation of 
the first stage, U-BOIN also 
estimates the MTD accurately. 

U-BOIN models efficacy and 
toxicity at each dose 
independently while model-based 
designs such as the TC method 
model efficacy and toxicity across 
all doses. Thus, there may be a 
potential efficiency loss for U- 
BOIN, although this loss is 
believed to be minimal or 
negligible [34]. U-BOIN is 
comparable to BOIN12 in 
accuracy of OBD selection, but it 
requires a relatively large sample 
size to guarantee a desirable 
performance due to the use of two 
stages. The sample size required 
by U-BOIN is usually greater than 
the sample size used in 

www.trialdesign.org [34,35] 

(continued on next page) 
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Table 7 (continued ) 

Design Description of Design Advantages Disadvantages Software References 

MTD-finding trials. In stage 2, 
U-BOIN assumes that both the 
toxicity and efficacy outcomes 
are available by the time of the 
dose assignment of the next 
cohort. 

gBOIN-ET The gBOIN-ET design is a phase 
I/II model-assisted, non- 
parametric design that is an 
extension of the BOIN-ET design 
and that accounts for ordinal 
graded efficacy and toxicity. 

gBOIN-ET is simple and easy to 
implement in oncology trials 
than model-based approaches. 
Simulations investigating the 
operating characteristics of 
gBOIN-ET show that it has a 
higher performance than 
BOIN12, gBOIN, BOIN-ET in 
terms of the correct OBD 
selection, the average number of 
patients allocated to the OBDs, 
not selecting overdoses as the 
OBDs and not assigning patients 
to overdoses. 

The design performance may 
depend on the appropriate 
specification of the quasi- 
Bernoulli endpoints. A time- 
consuming collaboration 
between clinicians and 
biostatisticians is required to 
accurately derive the quasi- 
Bernoulli endpoints utilizing the 
weight for each toxicity grade 
and efficacy grade. gBOIN-ET 
may select lower doses as OBDs if 
the low quasi-Bernoulli efficacy 
probability is mis-specified as the 
target quasi-Bernoulli efficacy 
probability. gBOIN-ET does not 
consider the accrual rate, the 
outcome evaluation period and 
the late-onset outcomes [36]. 

SAS code is available to implement 
the gBOIN-ET design. 

[36] 

TITE-BOIN- 
ET 

This model-assisted design is an 
extension of the BOIN-ET design 
that considers both pending 
efficacy and toxicity data in the 
dosing decisions. 

The design is robust, much 
simpler, and easier to implement 
than model-based approaches. 
TITE-BOIN-ET selects the OBD 
more accurately and puts a 
higher average number of 
patients at the OBD than model- 
based approaches such as the 
design by Thall and Cook and 
that by Jin et al. [37]. The trial 
duration is significantly 
shortened when using 
TITE-BOIN-ET compared to 
using designs without sequential 
enrollment [37]. 

When the efficacy response rate is 
sufficient at lower doses, the 
TITE-BOIN-ET design tends to 
allocate more patients to doses 
higher than the OBD. If patient 
accrual is faster than the outcome 
evaluation, then the available 
information may still not be 
sufficient even if the pending data 
are considered. In such a case, 
suspension rules as in Refs. [22, 
25] may need to be considered to 
delay the dosing decisions until 
adequate information is available 
[37]. 

Takeda et al. provide SAS code upon 
request to implement the TITE-BOIN- 
ET design. The following reference 
provides an example dosing decision 
table for cohort size 3 to implement 
the TITE-BOIN-ET design [37]. 

[37] 

TITE-BOIN12 TITE-BOIN12 design is a utility- 
based phase I/II design that 
deals with late-onset toxicities 
and responses and allows the 
study to proceed with dosing the 
next cohort of patients even in 
the presence of pending 
outcomes for toxicity or 
response for some patients. It 
reduces to the BOIN12 design 
when there are no pending 
outcomes for toxicity or 
response. 

TITE-BOIN12 is a well- 
performing design that allows 
continuous accrual while still 
ensuring patient safety and 
accuracy of OBD identification. 
In most cases, it has better over- 
dose control and higher 
accuracy of OBD identification, 
than model-based designs such 
as the TC method [39]. 
TITE-BOIN12 accommodates 
different shapes of dose-efficacy 
curves compared to the TC 
method. It shortens the trial 
duration and incorporates 
risk-benefit trade-off with input 
on the utility values from 
clinicians [39]. 

TITE-BOIN12 assumes that the 
time to DLT and efficacy are 
distributed uniformly over the 
assessment window, while 
calculating the STFT, which is 
similar to what is assumed in the 
TITE-BOIN and TITE-CRM 
designs [39]. This design is robust 
to this assumption, similar to 
what is demonstrated for 
TITE-CRM [40] and for 
TITE-BOIN [22]. However, if 
reliable prior information is 
available on the distribution of 
the time to DLT or efficacy, an 
informative prior can be used for 
either or both to improve design 
efficiency. No decision table can 
be generated for TITE-BOIN12 
prior to the trial conduct. 

www.trialdesign.org [39] 

Combination 
BOIN 

The combination BOIN design(s) 
is used to design phase I trials 
that investigate a combination of 
two drugs with multiple dose 
levels for each drug. These 
designs can be used to determine 
the MTD or the MTD contour for 
a combination of drugs. 

As drug combination trials are 
becoming increasingly common, 
these designs are increasing in 
importance and use. The 
combination BOIN designs are 
easy to understand and 
implement and have comparable 
performance characteristics to 
model-based designs such as the 
partial ordering CRM and 
copula-type regression method 
[29]. 

The combination BOIN designs 
consider only toxicity and not 
efficacy in dosing decisions, 
which is important for immuno- 
oncology drugs where efficacy 
does not always increase with an 
increase in dose. They do not 
consider late-onset toxicities or 
responses. 

www.trialdesign.org 
R package: 
BOIN 

[14,29,41, 
42]  
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smooth these rates so that they are monotonically non-decreasing 
when one drug level is fixed at a certain dose, and then selecting 
the dose for which the smoothed/isotonic DLT rate is closest to the 
target DLT rate ϕ. 

3.1.2. BOIN waterfall design to find an MTD contour 
For many drug combination trials, it is of interest to find the MTD 

contour, a set of multiple MTDs rather than a single MTD [41,42]. The 
extended design to find the MTD contour is called the BOIN waterfall 
design. This design finds the MTD contour via a sequence of 
one-dimensional dose-finding tasks known as subtrials. The subtrials are 
completed in order from the top to the bottom of the two-dimensional 
matrix formed by doses of one drug on each axis assuming a two drug 
combination. The DLT rate at each dose level is estimated based on the 
DLT data from all the subtrials using isotonic regression in two di-
mensions. For each row of the two-dimensional matrix, the MTD 
selected is the dose combination that has the smoothed DLT rate after 
isotonic regression closest to the target DLT rate ϕ. If all combinations in 
the row are overly toxic, no MTD is selected. The sample size required 
for finding the MTD contour is larger than that required for combination 
trials that aim to find a single MTD [41,42]. 

3.1.2.1. Software. Software to implement the combination BOIN design 
to determine a single MTD or the MTD contour is available at www. 
trialdesign.org. The R package BOIN can also be used to implement 
the combination BOIN design [14]. 

3.1.2.2. Advantages/limitations. As drug combination trials are 
becoming increasingly common, these designs are increasing in impor-
tance and use. The combination BOIN designs are easy to understand 
and implement and have comparable performance characteristics to 
model-based designs such as the partial ordering CRM and copula-type 
regression method [29]. 

The combination BOIN designs consider only toxicity and not effi-
cacy in dosing decisions, which is important for immuno-oncology drugs 
where efficacy does not always increase with an increase in dose. They 
do not consider late-onset toxicities or responses. 

4. Discussion 

BOIN designs are a class of model-assisted dose-finding designs used 
in oncology trials, with the main aim being to estimate either the MTD or 
the OBD of a study drug. In BOIN designs that only consider the drug 
toxicity, the goal is to determine the MTD. In BOIN designs that consider 
both drug efficacy and toxicity, the goal is to determine the OBD, an 
optimal drug dose that is efficacious but not too toxic. In chemotherapy 
drugs, it is assumed in general that there is a monotone increasing dose- 
response relationship for both toxicity and efficacy. Thus, it is mean-
ingful to find the maximum tolerated dose of the drug. However, in 
many of the newer immuno-oncology drugs, although the toxicity of the 
drug increases with an increase in dose, the efficacy of the drug does not 
always increase and could plateau at a lower dose. For such drugs, it is 
imperative to find the OBD, which is a dose that optimizes the risk- 
benefit trade-off. In this context, note that in the case of drugs where 
no DLTs are expected to be observed in the dose range being explored 
and where the drug is expected to be efficacious, pharmacodynamic/ 
pharmacokinetic (PK/PD) guided escalation designs, and not BOIN de-
signs, need to be considered to determine the drug dose to be used in 
further trials. 

BOIN designs are relatively new and have seen rapid development 
not only in the methods literature but also in the frequency of their 
implementation in clinical trials; also the fit-for-purpose designation 
granted to the local BOIN design under the non-informative prior by the 
FDA emphasizes its importance and significance as a drug development 
tool. If the FDA extends the fit-for-purpose designation of the BOIN 

design to other BOIN designs such as TITE-BOIN and BOIN12 in the 
future, this would further emphasize the utility of this class of designs in 
drug development. BOIN designs provide a general framework to 
incorporate and investigate different aspects of dose finding, for 
example, toxicity, efficacy, binary or continuous outcomes, delayed 
toxicity and delayed efficacy and drug combinations. Thus, BOIN de-
signs provide a complete suite of tools for dose finding in early phase 
trials, and a consistent way to explore different scenarios in a unified 
manner with easy access to software [1] for use to implement most of 
these designs; many of them including BOIN, TITE-BOIN, BOIN Comb 
have been implemented in real clinical trials, and even the very recent 
BOIN12 is currently being implemented in clinical trials. Further, in the 
BOIN designs, the dosing algorithm and dose selection (MTD/OBD) are 
independent in general, which is another advantage since methods other 
than isotonic regression, for example logistic regression, can be applied 
for dose selection. Although built upon Bayesian probability models, 
BOIN designs are generally operationally simple, have good statistical 
operating characteristics when compared to other dose-finding designs 
[5], and are also clinically sound especially when communicating with 
clinical investigators. 

Due to the small sample size in early phase trials, BOIN designs do 
not consider patient heterogeneity, e.g., a mixture of patients who are 
sensitive and not sensitive to immune checkpoint inhibitors [21]. When 
the population of sensitive and non-sensitive patients can be 
pre-defined, BOIN designs may be used separately for each population. If 
this cannot be done and the sub-populations are unknown and need to be 
identified during the trial, a larger sample size is required and further 
research is needed as to how to apply BOIN designs in this case [21]. 

In summary, in this article, we have provided thumbnail sketches of 
the original BOIN design and its many extensions, discussing their ad-
vantages and limitations, software to implement them, examples of their 
use (Table 7 and Appendix) and the situation in which each of the de-
signs in this class is suitable for use (Fig. 1). 
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Appendix. of example trials where BOIN designs are used: 

Example of BOIN Design: 

A phase I clinical trial that used the BOIN design is the trial for an 
aurora kinase inhibitor (AKI) as monotherapy, in combination with 
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docetaxel in patients with advanced solid tumors [11]. The docetaxel 
was an IV at a fixed dosage of 75 mg/m2. Six dose levels (20, 40, 80, 150, 
250, 350 mg) of the AKI were investigated, and the dose was adminis-
tered on days 1, 8 and 15 of a 28-day cycle. 36 patients were treated and 
the cohort size was 3. The BOIN design was used for dose finding with a 
target DLT rate of 0.25. The operating characteristics of the BOIN design 
were investigated for protocol preparation, and 10000 simulations were 
carried out for each of four scenarios. The statistical operating charac-
teristics of the BOIN design were further compared to those of the CRM, 
mTPI and CCD (cumulative cohort design) designs. The BOIN design 
yielded similar results for MTD selection percentage and average num-
ber of patients allocated to the MTD as these other designs but had a 
lower risk of overdosing patients. 

Example of TITE-BOIN Design: 

In the reference [22], the example of a phase 1 trial with a target DLT 
rate of 0.2 and five dose levels is used to illustrate the TITE-BOIN design. 

The DLT assessment window was 3 months, the accrual rate was 2 
patients/month, the maximum sample size was 30 and the cohort size 
was 3.  

1) The first three patients were treated at the lowest dose level. At day 
60, there were no DLTs in any of the patients and all 3 patients had 
data pending at this time. Based on the dosing table, accrual was 
halted until the first two patients finished the assessment period 
without experiencing a DLT. They both did not experience a DLT.  

2) Based on the TITE-BOIN design, the dose level was escalated and 
patients 4, 5 and 6, were administered dose level 2. Patient 4 expe-
rienced a DLT by the arrival of patient 7 on day 165. Patients 5 and 6 
had finished only 1/3 and 1/6 of their follow-up at this time without 
experiencing a DLT.  

3) Per the design, the dose level was de-escalated and patients 7, 8 and 9 
were dosed at dose level 1. By day 230, 3 out of the 6 patients in dose 
level 1 had completed their DLT assessment with no DLTs.  

4) Per design, the dose level was escalated and patients 10, 11 and 12 
received dose level 2. When patient 13 was to be dosed on day 255, 
one of the 6 patients in dose level 2 had experienced a DLT.  

5) Per design, patients 13, 14 and 15 were dosed at dose level 2. 9 
patients had been treated at dose level 2 by day 300, with 1 DLT 
observed and 5 pending patients. The trial was then halted for 15 
days to collect more DLT data. On day 315, patients 3, 4, 5, 6, 10 and 
11 had completed their follow-up while patients 12, 13, 14, 15 had 
been followed for 75, 60, 45 and 30 days respectively, and the DLT 
assessment period was 90 days. The STFT was (75 + 60+45 + 30)/ 
90 = 2.33 for dose level 2, which was greater than the escalation 
boundary of 2.15.  

6) Per design, the dose level was escalated and patients 16, 17 and 18 
were treated at dose level 3.  

7) One DLT had been observed at dose level 3 before the arrival of 
patient 19. Per design, the dose level was de-escalated and patients 
19, 20 and 21 were administered dose level 2.  

8) At the end of the trial, dose level 2 was selected as the MTD. At dose 
level 2, 4 out of 21 patients had experienced a DLT, resulting in a DLT 
rate of 0.19.  

9) The entire trial with the TITE-BOIN design took 615 days or 20.5 
months, while it would have taken 1200 days or 40 months with a 
traditional design, which requires a complete DLT assessment for 
each cohort of patients (either experience a DLT or complete the DLT 
assessment period) before enrolling the next cohort of patients. 

Example of BOIN12 Design: 

The implementation of the BOIN12 design is illustrated in the 
following reference using the methotrexate (MTX) plus erlotinib plus 
celecoxib trial [21]. There were 5 dose levels of MTX (3, 6, 9, 12 and 

15 mg/m2). The MTX was given in combination with 150 mg erlotinib 
and 200 mg celecoxib. The sample size used was 30 and the cohort size 
was 3. The highest toxicity probability ϕT was assumed to be 0.35 and 
the lowest acceptable efficacy probability ϕE was assumed to be 0.25. 
The escalation and de-escalation boundaries corresponding to ϕT from 
the BOIN design were λe = 0.276 and λd = 0.419.  

1) The first cohort of 3 patients were dosed at the lowest dose, dose 
level 1, i.e. 3 mg/m2 MTX. No patient experienced a DLT or response. 
Hence the observed toxicity rate of 0 was < λe of 0.276. Based on the 
dosing algorithm step 2 c) and the desirability score table (Table 3 in 
Lin et al. [21] – the desirability score of dose levels 1 and 2 were 35 
and 60 respectively), the dose level was escalated since dose level 2 
had a higher desirability score. The next cohort of 3 patients was 
dosed at dose level 2.  

2) Among these 3 patients in dose level 2, one patient experienced a 
DLT and one experienced a response. Based on the dosing algorithm 
step 2 c) and the desirability score table (Table 3 in Lin et al. [21] – 
the desirability score of dose levels 1, 2 and 3 were 35, 44 and 60 
respectively), the dose level was escalated since dose level 3 had the 
highest desirability score. The next cohort of 3 patients was dosed at 
dose level 3.  

3) The next cohorts of patients were dosed similarly by continuously 
updating the desirability of the doses and making the dosing de-
cisions accordingly until the maximum sample size of 30 was 
reached.  

4) The number of patients dosed, patients with DLTs and responses in 
the 5 doses at the end of the trial were (3, 3, 6, 12, 6), (0, 1, 1, 3, 3) 
and (0, 1, 2, 6, 3) respectively. The final estimates of the utilities of 
the five doses were 40, 46.7, 53.3, 60 and 50 respectively.  

5) Thus, dose level 4 (12 mg/m2 MTX) with the highest utility value was 
selected as the OBD. 

Example of TITE-BOIN-ET Design: 

To illustrate the use of the TITE-BOIN-ET design [37], considered a 
phase I/II study of gilteritinib to assess the safety, tolerability and 
pharmacokinetic effects of gilteritinib in FLT3 mutation-positive 
(FKLT3mut+) AML patients. A total of 252 patients with AML 
received a once-daily dose of oral gilteritinib in one of seven dose 
escalation cohorts (n = 23; doses - 20, 40, 80, 120, 200, 300 and 450 mg) 
or dose expansion cohorts (n = 229). The dose finding was based on an 
accelerated titration design and safety was monitored using the Bayesian 
logistic model [37]. The patient enrollment was 22 months, the DLT 
observation period was 30 days for the dose escalation cohorts and the 
median time to best response for FLT3mut + patients at dosages ≥80 mg 
was 7.2 weeks. From the trial, the number of patients who had DLTs and 
the number who achieved composite remission (CRc) was known. The 
MTD was established to be 300 mg and the dose chosen as the starting 
dose for later studies was 120 mg. 

The trial was re-analyzed using the TITE-BOIN-ET design. Based on 
the results of the trial, the following parameters were assumed for the 
simulations of the TITE-BOIN-ET design. The DLT observation period 
was assumed to be 30 days, the efficacy assessment period to be 60 days 
and the accrual rate to be 1 patient per 2.6 days. A bell-shape curve was 
assumed for the true underlying probability for CRc and a monotonic 
pattern was assumed for the true probability of DLT, based on the 
observed rates in the trial. The target DLT rate was assumed to be ϕ = 0.3 
and the target efficacy rate to be δ = 0.6. The design parameters used 
were ϕ1 = 0.1ϕ, ϕ2 = 1.4ϕ and δ1 = 0.6δ, leading to optimal values of λe, 
λd and η1 of 0.14, 0.35, and 0.48. The simulations were done for sample 
sizes of 48, 96, 144 and 252, the cohort size was 3 and the starting dose 
was 20 mg. The simulations showed that the TITE-BOIN-ET design 
accurately selected the OBD and shortened the trial duration compared 
to the original trial design. 
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Example of Combination BOIN Designs: 

To illustrate the combination BOIN designs, The reference by Lin and 
Yin [29] considers an already completed trial with four doses of ner-
atinib (120, 160, 200 and 240 mg) and 4 doses of temsirolimus (15, 25, 
50 and 75 mg). The trial used the modified non-parametric up-down 
method for dose-finding decisions. The MTDs were defined to be the 
doses whose estimated toxicity rates were closest to but lower than the 
target toxicity rate of 0.33. 

The authors used the combination BOIN design to redesign the trial, 
by setting ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ, leading to an optimal interval of 
(0.260,0.395). The maximum sample size used was 60 and the cohort 
size used was 2; the first cohort of patients was treated at the lowest dose 
of neratinib and temsilorimus. Implementing the combination BOIN 
design, the authors obtained the estimated toxicity probability at each 
dose level at the end of the trial. The dose combination with estimated 
DLT closest to but lower than 0.33 was selected as the MTD. The com-
bination BOIN design was shown to quickly find the MTD and dose a 
large percentage of patients at the MTD. 

Simulations were also conducted by Lin and Yin [29] to determine 
multiple MTDs (MTD contour). The maximum sample size used was 60 
and the cohort size used was 1 or 2. 1000 simulations were conducted 
and 2 MTDs were chosen at the end of each simulation. Each simulation 
was started from dose combinations (1, 2) and (2,1). The simulation 
results included the percentages of selections of the MTDs and overly 
toxic dose combinations and the corresponding percentages of patient 
allocations [29]. In comparison to the combination BOIN design that 
chose a single MTD, the combination BOIN design that chose 2 MTDs 1) 
resulted in a higher percentage of MTD selections, 2) assigned fewer 
patients to the MTDs, and 3) allocated as well as selected a larger 
number of overly toxic dose combinations. 
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