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ABSTRACT Rediscovered as a potential epigenetic mark, N®-methyladenine DNA
modification (6mA) was recently reported to be sensitive to environmental stressors
in several multicellular eukaryotes. As 6mA distribution and function differ signifi-
cantly in multicellular and unicellular organisms, whether and how 6mA in unicellu-
lar eukaryotes responds to environmental stress remains elusive. Here, we character-
ized the dynamic changes of 6mA under starvation in the unicellular model
organism Tetrahymena thermophila. Single-molecule, real-time (SMRT) sequencing
reveals that DNA 6mA levels in starved cells are significantly reduced, especially sym-
metric 6mA, compared to those in vegetatively growing cells. Despite a global 6mA
reduction, the fraction of asymmetric 6mA with a high methylation level was
increased, which might be the driving force for stronger nucleosome positioning in
starved cells. Starvation affects expression of many metabolism-related genes, the
expression level change of which is associated with the amount of 6mA change,
thereby linking 6mA with global transcription and starvation adaptation. The reduc-
tion of symmetric 6mA and the increase of asymmetric 6mA coincide with the
downregulation of AMT1 and upregulation of AMT2 and AMT5, which are suppos-
edly the MT-A70 methyltransferases required for symmetric and asymmetric 6maA,
respectively. These results demonstrated that a regulated 6mA response to environ-
mental cues is evolutionarily conserved in eukaryotes.

IMPORTANCE Increasing evidence indicated that 6mA could respond to environmen-
tal stressors in multicellular eukaryotes. As 6mA distribution and function differ sig-
nificantly in multicellular and unicellular organisms, whether and how 6mA in unicel-
lular eukaryotes responds to environmental stress remains elusive. In the present
work, we characterized the dynamic changes of 6mA under starvation in the unicel-
lular model organism Tetrahymena thermophila. Our results provide insights into
how Tetrahymena fine-tunes its 6mA level and composition upon starvation, suggest-
ing that a regulated 6mA response to environmental cues is evolutionarily conserved
in eukaryotes.

KEYWORDS 6mA, starvation, unicellular eukaryote, Tetrahymena thermophila

6-methyladenine DNA modification (6mA) was recently reported to act as a poten-
tial epigenetic mark sensitive to environmental stressors. In human cell lines, mito-
chondrial DNA 6mA levels increase significantly under hypoxic stress (1). In mouse
brain, 6mA levels increase dramatically in response to chronic stress and is inversely
associated with stress-response neuronal genes (2). In Caenorhabditis elegans, 6mA is
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upregulated under conditions of mitochondrial stress, a response that is essential for
the transmission of stress adaptation to progeny (3). In rice, 6mA levels negatively cor-
relate with cold tolerance and positively correlate with salt and heat tolerance (4). All
these findings suggest a process of active 6mA regulation for stress adaptation in mul-
ticellular eukaryotes.

It should be noted, however, that 6mA in unicellular eukaryotes displays distinctly dif-
ferent characteristics than its counterparts in multicellular organisms. While unicellular
6mA is preferentially located in ApT dinucleotides and is associated with actively tran-
scribed genes, the opposite is true for multicellular 6mA (5-10). More intriguingly, these
modifications are catalyzed by two divergent groups of MT-A70 methyltransferases
(MTases), AMT1 and METTLA4, respectively (5, 11-13). These discrepancies prompted us to
investigate whether and how 6mA in unicellular eukaryotes responds to environmental
stress.

6mA in the unicellular model organism Tetrahymena thermophila was detected dec-
ades ago (14, 15) and is now the subject of intensive study due to the recent resur-
gence of interest in it (5, 12, 16-18). Upon starvation conditions, Tetrahymena cells
undergo oral replacement, transformation into fast-swimming dispersal forms, and
downregulation of cell size (19, 20). Starvation is not only a distinct physiological state
but also a prerequisite to induce sexual reproduction (21-24). During this process, the
anterior cell cortex is remodeled in preparation for conjugation. This involves novel
membrane synthesis and glycoprotein “capping,” otherwise known as tip transforma-
tion (25-28). These ultrastructural and biochemical changes all occur in a relatively
short time and involve epigenetic factors. Indeed, the phosphorylation state of H1 was
reported to regulate genes expression in response to starvation (29).

In this study, we applied single-molecule, real-time (SMRT) sequencing to investi-
gate how 6mA level and composition in T. thermophila are affected by starvation. We
linked the 6mA change with the gene expression level change and physiological
events that occur during starvation. We also attributed 6mA dynamic shift to the coin-
cidental change of several MT-A70 6mA methyltransferases.

RESULTS

DNA 6mA level in Tetrahymena was reduced during starvation. To detect
whether 6mA in Tetrahymena was affected by starvation, we performed immunofluo-
rescence (IF) staining of vegetative and starved cells with a 6mA-specific antibody. The
6mA level in the macronucleus (MAC) dropped dramatically after only 3 h starvation,
and it was further reduced with the progression of starvation (Fig. 1A and B), while the
MAC DNA content remained stable (see Fig. S1 in the supplemental material) (30, 31).

We next performed SMRT sequencing of cells starved for 24h (524). In total
1,077,887 reads were generated, corresponding to 103x average coverage of the
Tetrahymena MAC genome (Table S1). We called 312,521 sites with high confidence
(normalized coverage > 25 x; quality value [Qv] > 30), representing 0.39% of the total
adenines (Table 1). This number is lower than that in vegetative (Veg) cells (0.54%;
436,276 sites) (Table 1) (12). 6mA density was evenly reduced across 180 non-rDNA
chromosomes in starved cells relative to vegetative cells (Fig. 2A). Intriguingly, there
was a negative correlation between 6mA density and chromosomal length (Fig. 2A).
From the longest to the shortest chromosomes, 6mA density ranged from 0.18% to
1.45% in vegetative cells and from 0.12% to 0.93% in starved cells.

Together, these results demonstrated that 6mA level is globally reduced in
Tetrahymena upon starvation.

The percentage of highly methylated asymmetric 6mA was increased in
starved cells. Both the number and the percentage of symmetric 6mA and non-ApT
6mA were dramatically reduced in starved cells (Table 1; Fig. 2B, left). Despite the
global reduction of 6mA level, the number (from 116,465 to 137,926) and the percent-
age (from 26.7% to 44.0%) of asymmetric 6mA were increased (Table 1; Fig. 2B). This
phenomenon was illustrated in both the longest and shortest chromosomes, although
there was a huge difference in the 6mA densities of these two chromosomes (Fig. 2C).
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FIG 1 DNA 6mA level was dramatically reduced during starvation. (A) IF staining of DNA 6mA in
logarithmically vegetative (Veg) and starved cells. S3 to S72 represent 3 to 72h after starvation. (B) Statistical
analysis of 6mA IF signal intensity in panel A. Cell images were processed by Imagel (Veg, n=112; S3, n=111;
S6, n=111; S12, n=105; S24, n=112; S48, n=105; S72, n=109). Data are presented as box plots (from top to
bottom: maximum, first quartile, median, third quartile, and minimum). Student's t test was performed (***,
P <0.001; **, P<0.01). Note that there was no significant difference in cells starved for 12 to 72 h.
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To further explore this dynamic change, we traced the overall behavior of individual
sites. It is clear that a large proportion of symmetric 6mA in vegetative cells was con-
verted into asymmetric 6mA in starved cells (110,432 sites; 21.8% of vegetative sym-
metric 6mA), obviously exceeding the opposite trend (19,738 sites; 12.6% of S24 sym-
metric 6mA) (Fig. 2D). In addition, some symmetric 6mA in vegetative cells (97,836
sites; 36.7%) was unmethylated after starvation (Fig. 2D); this was independently veri-
fied by quantitative PCR (qPCR) analysis using Dpnl- and Dpnll-digested genomic DNA
as templates (Fig. 2E). 6mA was further enriched at the sequence 5’-ApT-3’ in starved
cells (ApT, 94.4%; non-ApT, 5.6%) compared to vegetative cells (ApT, 87.8%; non-ApT,
12.2%) (Table 1). Indeed, 6mA of starved cells showed higher preference for thymine
(T) at the +1 position (Fig. 2F). This was largely due to the overcompensation between
increased asymmetric 6mA and reduced symmetric 6mA.

In the polyploid MAC, methylation levels varied almost continuously from 0 to 100
at different 6mA positions (8, 32-34). Thus, we divided the 6mA methylation level into
five categories: L1 (0 to 20%), L2 (20 to 40%), L3 (40 to 60%), L4 (60 to 80%), and L5 (80
to 100%). 6mA number was increased only in the L5 category, while it was reduced in
the other four categories (Table 1; Fig. 3A). To trace the contributors of the 6mA
dynamic change, the distribution of methylated ApT sites was plotted against methyla-
tion levels. The peak corresponding to symmetric 6mA distribution was narrowed,
reflecting the reduction of symmetric 6mA, and the asymmetric 6mA peaks shifted to-
ward the terminal point, reflecting increased methylation levels (Fig. 3B). Consistent
with this, we found that asymmetric 6mA is more closely linked with highly methylated
6mA in starved cells than in vegetative cells (22.1% versus 7.5% of total 6mA) (Fig. 3C),

TABLE 1 Comparison of 6mA in vegetative and starved cells

Veg S24
6mA No. of sites % No. of sites %
6mA density (6mA/A) 0.54 0.39
Methylated adenines 436,276 312,521
Symmetric 133,199 x 2 61.1 78,507 x 2 50.3
Asymmetric 116,465 26.7 137,926 44.0
Non-ApT 53,413 12.2 17,581 5.6
L1 (0-20%) 1,214 0.3 359 0.1
L2 (20-84%) 14,649 34 2,459 0.8
L3 (40-60%) 66,749 15.3 19,300 6.2
L4 (60-80%) 191,161 43.8 116,167 37.2
L5 (80-100%) 162,503 37.2 174,236 55.8
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FIG 2 The genome-wide distribution of 6mA was affected in starved cells. (A) 6mA density (6mA/A) is dramatically reduced in starved cells (orange) compared
to vegetative cells (blue) across the 180 non-rDNA chromosomes. Chromosomes are arranged by length, from shortest to longest. (B) Classification of 6mA sites
according to their sequence preference in vegetative (blue) and starved (orange) cells. The left and right panels represent 6mA site number and percentage (a
particular class of 6mA/all 6mA), respectively. See Table 1 for details. (C) 6mA distribution across the shortest (left) and longest (right) chromosomes. The height
of lines represents the 6mA density (percent). Note that the 6mA density of the shortest chromosome is much greater than that of the longest chromosome.
(D) Overall behaviors of individual 6mA sites in vegetative and starved cells, showing results from SMRT sequencing data. (E) The methylation status change of
selected conversion sites (C1 to C4; symmetric in Veg cells and unmethylated in S24 cells) and retain site (R1; symmetric in both Veg and S24 cells) was
confirmed by Dpnl/Dpnll digestion and qPCR analysis. The Ct value difference (Veg — S24) of conversion sites was larger than zero, while that of the retain site
was close to zero. (F) Sequence logos for 6mA (at position 0) in vegetative and starved cells.

strongly suggesting that asymmetric 6mA in starved cells was driven to high methyla-
tion levels. In particular, only the number of the L5 asymmetric 6mA doubled in starved
cells (Fig. 3D), being the main source for the increase of highly methylated sites.

Together, these results suggested that the proportion of asymmetric 6mA was
increased in starved cells, most of which were also highly methylated.

6mA may be involved in gene regulation during starvation. 6mA was mapped
to about 79.68% (20,923 genes; 377,600 sites) and 72.20% (18,960 genes; 275,956 sites)
of polymerase Il (Pol ll)-transcribed genes in vegetative and starved cells, respectively.
As reported previously (8, 12), 6mA was preferentially enriched at the 5’ end of the
gene body in both vegetative and starved cells, although it showed a reduction in the

latter (Fig. 4A).

We next explored whether the global reduction of 6mA affected gene expression,
which was evaluated by steady-state transcriptome sequencing (RNA-Seq) levels.
Indeed, a large number of differentially expressed genes (DEGs) were detected upon
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FIG 3 Methylation level of 6mA was dramatically changed in starved cells. (A) Classification of 6mA sites
according to their methylation level (L1, 0 to 20%; L2, 20 to 40%; L3, 40 to 60%; L4, 60 to 80%; L5, 80 to 100%)
in vegetative and starved cells. See Table 1 for details. (B) Density plots of 6mA distribution, according to
methylation levels on Watson (x axes) or Crick (y axes) strands in vegetative (top) and starved (bottom) cells.
Note that in starved cells, the highly methylated symmetric 6mA is decreased while the highly methylated
asymmetric 6mA is increased. (C) Venn diagram of highly methylated 6mA (L5) and asymmetric 6mA showing
that highly methylated asymmetric 6mA increased in starved cells, compared to vegetative cells. (D) Statistics
of methylation level of symmetric, asymmetric and non-ApT 6mA. Only the number of the L5 asymmetric 6mA
was doubled in starved cells compared to vegetative cells.

starvation (6,375 of 26,258 well-annotated genes), including 2,957 upregulated and
3,418 downregulated genes (P,q; < 0.05; log, fold change < —2 or > 2) (Fig. S2A). The
6mA amount change (524 — Veg) in the 1kb downstream of transcription start sites
(TSS) in highly upregulated and downregulated DEGs presented a positive correlation
with their expression level changes (log, fold change) (Fig. 4B). Notably, this weak yet
significant correlation was also detected in starvation-responding (induced and
repressed) genes (Fig. 4B). A GBrowse snapshot of two genes clearly showed that the
expression level of one gene, which had 6mA reduction, was significantly reduced in
starved cells, while that of the other gene, which had a minimal 6mA level change, was
not affected (Fig. 4C). These results suggested that 6mA plays a potential role in gene
expression regulation during starvation.

Gene ontology analysis of differentially expressed genes revealed many conserved
pathways affected by starvation, including phagosome, carbon metabolism, fatty acid
metabolism, and oxidative phosphorylation (Fig. S2B), consistent with the physiologi-
cal changes in starved cells (29, 35, 36). Intriguingly, several putative 6mA methyltrans-
ferases were also differentially expressed. While AMT1 and its possible partners AMT6/
AMT7 (5, 12) were downregulated during starvation, the opposite was true for two
other MT-A70 family members, i.e.,, AMT2 and AMT5 (12) (Fig. 4D and E; Table 2).

Nucleosome positioning degree is increased in starved cells. Despite a slight
global reduction, 6mA in starved cells was preferentially located in the linker DNA
region (~50bp) between adjacent nucleosomes, as in vegetative cells (Fig. 5A). 6mA
and nucleosomes displayed strong anticorrelation, showing two damped oscillations
in opposite phases with the same periodicity (~200bp) downstream of TSS in both
vegetative and starved cells (Fig. 5A). In starved cells, the amplitude (peak-to-trough
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qRT-PCR analysis.

distance) of nucleosome distribution was increased in spite of the reduced amplitude
of 6mA distribution (Fig. 5A). Further analysis revealed a global increase in the degree
of nucleosome positioning in starved cells, especially for +1, +2, and +3 nucleosomes
(Fig. 5B; Fig. S3). We also discovered that although 6mA sites with intermediate methyl-
ation level (40 to 80%) in linker DNA were largely reduced, more highly methylated
6mA sites (90 to 100%) were found there (Fig. 5C). To further elaborate the role of 6mA
in nucleosome positioning, we focused on genes that either gained or lost highly
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TABLE 2 Gene expression level change (Veg/S24) of methyltransferase genes

Log, fold change
Gene TTHERM no. RNA-Seq qRT-PCR
AMT1 00704040 —2.57 —-1.15
AMT2 00388490 0.20 0.68
AMT5 00136470 0.64 3.03
AMT6 01005150 —4.02 —2.68
AMT7 00301770 —1.24 0.08

methylated (L5) asymmetric 6mA during starvation. The degree of nucleosome posi-

tioning was increased in the gain-of-6émA group, especially for +1 nucleosomes
(Fig. 5D).

DISCUSSION

Increasing evidence indicates that DNA 6mA methylation could respond to environ-
mental stressors in multicellular eukaryotes (2-4). But as multicellular and unicellular
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the +1 to +5 nucleosomes. (C) 6mA distribution relative to the nucleosome dyad in vegetative (blue) and
starved cells (orange). The violin plots show the density of 6mA between neighboring nucleosome dyads,
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6mA are different in terms of methylation amount, genomic distribution, catalyzing
enzymes, and correlation with transcription (6, 8-10), how unicellular eukaryotes react
in response to environmental cues via 6mA methylation is currently unknown.

In this study, we showed that the unicellular eukaryote T. thermophila responded to
starvation by changing its 6mA methylation pattern: global 6mA level was largely
reduced, especially for symmetric 6mA, contrasting with a dramatic increased level of
6mA in humans, mice, and C. elegans (1-3). It should be noted that the global reduc-
tion of 6mA level in starved cells was moderate, as shown by the SMRT sequencing
data, while 6mA was almost undetectable after 3 h starvation, as shown by IF staining.
As SMRT sequencing cannot distinguish 6mA from 6hmA (NS-hydroxymethyladenine),
we suspected this discrepancy might be caused by 6mA conversion to 6hmA upon
starvation, as reported in mammals (37). Without available antibody for 6hmA, we
employed mass spectrometry analysis, in which 6hmA cannot be misinterpreted as
6mA due to their different molecular weights, to determine whether there is a peak
representing 6hmA next to the 6mA peak. No such peak was detected in either vegeta-
tive or starved cells. The discrepancy between SMRT and IF results could be partially
explained by the fact that starved cells undergo an increase in the size of condensed
chromatin bodies (38), which may interfere with the antibody binding capacity. We also
noticed that mass spectrometry analysis detected a minimal change of 6mA level in
starved cells (Fig. S4). This slight difference between mass spectrometry and SMRT results
may stem from different ways of processing data: mass spectrometry counted all
detected methylated sites, while SMRT applied a strict cutoff for 6mA calling (Qv > 30;
normalized coverage > 25x).

The 6mA pattern change in starved Tetrahymena cells could be attributed to a com-
bined effect of demethylation and methylation. The presence of active demethylation
was confirmed by both SMRT sequencing and enzyme digestion-based analyses, which
could contribute to the reduced 6mA level. Further identification and characterization of
demethylase(s) will allow us to decipher their roles in starvation. Meanwhile, the changed
activity of methyltransferases could fine-tune the 6mA composition. The starved cells can
be considered an AMTT partial-loss-of-function strain (Table S2), wherein the expression
levels of 6mA methyltransferase AMT1 and its potential partners AMT6/AMT?7, specifically
maintaining symmetric 6mA (5, 12), were downregulated. The impaired capability of
AMT1 to conduct methyl addition on newly replicated DNA strands may leave some sites
asymmetric after the completion of the last round of DNA replication before starvation. In
contrast, the total removal of AMT1 in AAMTT cells almost abolished symmetric 6mA (12)
(Table S2). Meanwhile, the expression level of another two MT-A70 family members, i.e,
AMT2 and AMT5 (12, 17), was increased in starved cells, coinciding with the increased per-
centage of asymmetric 6mA. AMT2 and AMT5 are distinguished by several ZZ-type zinc
fingers at the C terminus and grouped in the same subclade of eukaryotic MT-A70
MTases, distinct from AMT1 and its homologues. It is therefore tempting to hypothesize
that AMT2 and AMTS5 are specifically required for asymmetric methylation. Their func-
tional division of labor awaits further investigation. Notably, the expression levels of AMT2
and AMT5 were not affected in AAMTT cells (Table S3), partially explaining the reduced
site number of asymmetric 6mA (12) (Table S2).

In multicellular organisms, 6mA mainly distributes in intergenic regions and certain
transposons (2, 7, 9, 10). In contrast to this, 6mA in unicellular eukaryotes such as
Tetrahymena and Chlamydomonas is preferentially located in the 5’ region of protein-
coding genes, in particular between nucleosomes (6, 8). In starved Tetrahymena cells,
the degree of nucleosome positioning was increased. This could be partially explained
by the fact that upon starvation two major nucleosome-perturbing processes, i.e., DNA
replication and transcription, were (mostly) suspended (31) and highly reduced (39),
respectively. Meanwhile, we found that asymmetric 6mA with high methylation level
increased despite a global 6mA reduction in starved cells. It was previously reported in
Tetrahymena that nucleosomes became fuzzier after the depletion of flanking 6mA
(5, 12) and that 6mA dispersed outside linker DNA along with reduced nucleosome
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positioning (12), suggesting that 6mA and nucleosomes reinforce each other to estab-
lish the epigenetic landscape. Considering that Tetrahymena chromosomes were
inferred to be maintained at an average of ~45 copies (40), 6mA sites with high meth-
ylation levels indicated that more copies in this site are methylated among all 45 cop-
ies. These 6mAs would reinforce the nucleosome stacking along this site, stabilizing
the nucleosome and raising its proportion among all nucleosomes located in this
region. These assumptions were supported by the observation that the nucleosome
positioning degree was higher for gain-of-emA genes than loss-of-6mA genes. We
therefore posit that the increased highly methylated asymmetric 6mA, together with
the suspension of replication and reduction of transcription, accounts for the stronger
nucleosome positioning in starved cells.

A large number of DEGs involved in metabolic adjustment (41), autophagic vacuole
formation (36), the changed phosphorylation state of histone H1 (29), and the
enhanced carbon and fatty acid metabolism to increase hormone levels (35) were
detected. For these DEGs and starvation-responding genes, the 6mA amount change
was positively associated, although weakly, with changes in their expression level,
thereby linking 6mA with global transcription, which in turn accounts for the drastic
phenotypic changes in starved cells. Other epigenetic factors, except for 6mA methyla-
tion, may also be involved in gene regulation during starvation.

Together, our results provide insights into how Tetrahymena fine-tunes its 6mA
level and composition upon starvation, suggesting that a regulated 6mA response to
environmental cues is evolutionarily conserved in eukaryotes.

MATERIALS AND METHODS

Cell culture. Tetrahymena thermophila wild-type strain (SB210) was obtained from the Tetrahymena
Stock Center (http://tetrahymena.vet.cornell.edu) and grown in super proteose peptone (SPP) medium
at 30°C (42, 58). Cells at log phase (~2 x 10° cells/ml) were collected, washed, and starved in 10 mM Tris
(pH 7.4). Cells were collected at 0, 3, 6, 12, 24, 48, and 72 h after the initiation of starvation (referred to as
vegetative, S3, S6, S12, S24, S48, and S72).

Immunofluorescence staining and imaging. Vegetative and starved (53, S6, S12, 524, 548, and S72)
cells were collected for IF staining and imaging, which followed previously described procedures (8, 12).

Preparation of Tetrahymena DNA and RNA samples. Genomic DNA was extracted from the starved
Tetrahymena cells (S24) (~2 x 10° cells/ml) using a Wizard genomic DNA purification kit (Promega;
A1120). RNA samples were extracted from vegetative and starved cells (~2 x 10° cells/ml) with an
RNeasy Plus minikit (Qiagen; 74134) (43). The quality and concentration of DNA and RNA samples were
analyzed by agarose gel electrophoresis using a Qubit 3.0 fluorometer (Thermo Fisher Scientific).

qRT-PCR. Total RNA after DNase treatment (Invitrogen, AM1907) was reverse transcribed using an
oligo(dT) primer and Moloney murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen;
28025013) (44). For quantitative reverse transcription-PCR (qRT-PCR) analysis of gene expression levels
in vegetative and starved cells, SOR3 (TTHERM_00467390) was used for loading control and normaliza-
tion. All PCR primers used in this study are listed in Table S4.

Dpnl/Dpnll digestion and qPCR analysis. The Dpnl/Dpnll digestion experiment followed previously
described procedures (8). Dpnl/Dpnll-digested and nondigested DNAs (4 ng) were loaded into the gPCR
analyzer using EvaGreen Express 2x qPCR master mix (low ROX) (ABM; MasterMix-LR). Primers flanking
selected GATC sites are listed in Table S4. Primers in SOR3 (TTHERM_00467390) were used as internal con-
trols. Conversion sites are sites that were symmetric in vegetative cells but unmethylated in starved cells.
The selected “retain site” is symmetrical in both vegetative and starved cells. The methylation status is
reflected by fold difference between Dpnl- and Dpnll-digested samples in vegetative and starved cells
(AACt = ACty,, — ACtp,,). ACty,, and ACty,,, were normalized between digested and undigested sam-
ples, respectively (ACty,, = Ctppn = Clyngigested aNd ACtopny = Clpgu = Clindigested)- The methylation status
change was calculated as AAACt = AACt,,, — AACK,,. As Dpnl and Dpnll cut methylated and unmethy-
lated GATC sequences, respectively (45, 46), the fold difference in conversion sites between vegetative and
starved cells should be larger than zero, while that of the retain site should be close to zero.

UHPLC-QQQ-MS/MS analysis. Vegetative and starved Tetrahymena cells were collected for ultra-
high-performance liquid chromatography-triple-quadrupole tandem mass spectrometry (UHPLC-QQQ-
MS/MS) analysis, which followed previously described procedures (8, 12).

SMRT data analysis. Genomic DNA prepared for SMRT sequencing library was extracted from
starved cells (524) (SB210) using a Wizard genomic DNA purification kit (Promega; A1120), and sequenc-
ing was carried out by Novogene Co. Ltd. (Beijing, China). Even though SMRT sequencing does not dis-
criminate 6mA versus TmA, we could call 6mA with confidence from SMRT sequencing results, as TmA
was not previously detected in the Tetrahymena genome by mass spectrometry (12).

The latest SB210 MAC genome downloaded from the Tetrahymena genome database (TGD) (http://
ciliate.org) (47) was used as the reference for read mapping. 6mA was identified using the Base
Modification and Motif Analysis protocol with default parameters in SMRT Link v5.10 (Pacific
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Biosciences). Considering the different sequencing depths between vegetative and starved cells, all data
were normalized to 100x while using a strict cutoff (Qv > 30 and coverage > 25x) to filter out unau-
thentic modifications.

To calculate 6mA density across chromosomes, smooth curves were plotted by ggplot2 in R (48). For
composite analysis and motif identification, 6mA was divided into groups based on their methylation
level (L1, 0 to 20%; L2, 20 to 40%; L3, 40 to 60%; L4, 60 to 80%; L5, 80 to 100%) or motifs (symmetric/
asymmetric/non-AT). The number and percentage of sites of different 6mA groups were calculated by
customized Perl scripts and plotted using GraphPad Prism 6 (49).

The genome-wide distribution of 6mA groups on chromosomes was counted by customized Perl
scripts. The 6mA density was calculated as the number of methylated adenine sites divided by the total
number of adenine sites (6mA/A) in each bin (bin size = 1 kb).

For analysis of 6mA distribution among genes, 18,914 long (>1 kb) genes were selected. The gene
body length was scaled to 1 unit, and length was extended by 1 unit on each side. Customized Perl
scripts were used for locus statistics (bin size =0.05). To calculate the distribution of 6mA around the
TSS, the number of 6mA sites was accumulated in every base from 1,000 nucleotides (nt) upstream to
2,000 nt downstream of the TSS. The 6mA amount was defined as the number of methylated adenine
sites combined with their methylation level.

To identify conserved motifs around the methylated adenines, sequences between 20 nt upstream
and 20 nt downstream of 6mA sites were extracted. Local motifs nearby 6mA were illustrated by
WebLogo3 (50) and GraphPad Prism 6.

To determine the correlation between 6mA amount change (524 — Veg) in the 1 kb downstream of
TSS and their expression level change (log, fold change) in genes, Pearson correlation analysis was car-
ried out by SPSS v. 22.0. (51). Raw values of the 6mA amount change and gene expression level change
were used in this analysis. The positive correlation between 6mA amount change and gene expression
level change suggested that genes with increased 6mA level (6mA amount change increase) tend to be
upregulated (log, fold change increase) upon starvation. Starvation-responding genes included starva-
tion-induced genes (total counts: Veg < 300, S24 > 1,500) and starvation-repressed genes (total counts:
Veg > 1,500, $24 < 300), which were defined according to their numbers of reads in vegetative and
starved cells. Highly regulated genes were defined as the top 10% genes with different expression levels
in vegetative and starved cells.

RNA sequencing and data analysis. A total of six RNA samples of T. thermophila were sequenced,
three replicates each for vegetative (Veg) and starved cells (S24), respectively. After trimming of
sequencing adapters and filtering of low-quality reads according to Trimmomatic (52) (TruSeq3-PE.fa,
2,30,10; leading, 3; trailing, 3; sliding window, 4,15; minlen, 80), the numbers of reads mapped to the ge-
nome were determined using HISAT2 software (53). FeatureCounts (54) was implemented for counting
reads to genomic features with the assembled transcripts as a reference. Effective expression levels
(number of fragments per kilobase per million reads [FPKM] > 1) were calculated with DEseq2 based on
RNA-Seq coverage of these strains for counting the Pearson'’s correlation coefficients of gene expression
(55). DEGs were also identified by DEsq2 (log, fold change > 2 or < —2; P < 0.05). Pathway analysis of
DEGs was carried out on the KEGG web server (https://www.genome.jp/kegg/pathway.html) (56).

Nucleus purification and MNase sequencing analysis. Nucleus purification was carried out follow-
ing established protocols (57). Approximately 5 x 107 purified MACs from vegetative and starved cells
(S24) were digested with micrococcal nuclease (MNase; 400 U/ml; New England Biolabs [NEB]; M0247S)
at 25°C for 15min. Mononucleosome-sized DNA was collected by phenol-chloroform extraction for
sequencing.

Sequencing reads were mapped to the latest MAC genome assembly in TGD (http://ciliate.org) (47)
and analyzed following procedures described before (12).

Data availability. All sequencing data have been deposited in the NCBI database under accession
number PRINA545568.
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