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ABSTRACT  

 

SQANTI-reads leverages SQANTI3, a tool for the analysis of the quality of transcript models, to 

develop a quality control protocol for replicated long-read RNA-seq experiments. The 

number/distribution of reads, as well as the number/distribution of unique junction chains 

(transcript splicing patterns), in SQANTI3 structural categories are compiled. Multi-sample 

visualizations of QC metrics can also be separated by experimental design factors.  We 

introduce new metrics for 1) the identification of potentially under-annotated genes and 

putative novel transcripts and 2) variation in junction donors and acceptors.  All scripts are 

open source and customizable.  Using two different datasets, one from Drosophila and one 

benchmark dataset from the LRGASP project, we demonstrate how low coverage does not 

automatically indicate low quality and how strong/weak splicing sites can be readily identified 

genome wide. SQANTI-reads is open source and available for download at GitHub. 
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INTRODUCTION 

Short-read RNA sequencing (srRNA-seq) is the most common and cost-effective approach for 

studying the transcriptome. However, in srRNA-seq, transcripts must be inferred 

computationally, which can lead to inaccuracies in transcript identification (Liu et al. 2016; 

Newman et al. 2018). Recent advances in single-molecule long-read sequencing technologies 

have opened new avenues for transcriptome analysis (reviewed in (Marx 2023; van Dijk et al. 

2023)). In long-read RNA sequencing (lrRNA-seq), full-length transcripts can be observed as 

single sequencing reads, allowing for direct transcript detection without the need for an 

assembly step. However, like any technology, lrRNA-seq is not without errors, and factors such 

as mRNA degradation, library preparation failures, and sequencing errors can introduce biases 

into the data. 

 

A database tracking bioinformatic tools for long-read sequencing (Amarasinghe et al. 2021) 

identifies numerous tools for the initial processing of lrRNA-seq data to assess the accuracy of 

base-calling and the length of the reads (e.g., pycoQC (Leger and Leonardi 2019), longQC 

(Fukasawa et al. 2020), nanoQC (De Coster et al. 2018)), critical first steps in evaluating lrRNA-

seq read quality. Other tools, such as SQANTI3 (Pardo-Palacios et al. 2024a), TALON (Wyman et 

al. 2020), FLAME (Holmqvist et al. 2021), IsoSeq (https://isoseq.how/), and IsoTools (Lienhard 

et al. 2023), focus on evaluating consensus transcript models inferred from the data. However, 

most current tools for lrRNA-seq read quality control were developed during the early stages of 

these technologies and are generally limited in the number of evaluated features and/or 

samples. As long-read sequencing technologies rapidly evolve, improving both in quality and 

experimental scope, the need for comprehensive and comparative read quality assessment 

becomes increasingly critical. 

 

The rapid decline in costs implies that the use of lrRNA-seq will continue to expand, with 

experimental designs involving multiple samples becoming more common (e.g. (Glinos et al. 
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2022; Joglekar et al. 2024; Mahmoud et al. 2024; Patowary et al. 2024)). From a quality control 

perspective, this necessitates that datasets be homogeneous, without biases associated with 

experimental groups, and free of outliers. Moreover, the generated data must be sufficient to 

address the research questions that motivated the experiment. The increase in throughput now 

makes it possible to design experiments that include barcoding and multiplexing to balance 

library preparation and sequencing across experimental groups (Auer and Doerge 2010). This 

approach helps avoid confounding technical variation with the treatments of interest and 

facilitates the identification of failed technical replicates versus failed samples. Finally, 

technological advancements such as more accurate basecallers 

(https://github.com/nanoporetech/dorado) and novel library preparation methods (e.g. MAS-

Iso-Seq (Al’Khafaji et al. 2024), CapTrap(Carbonell-Sala et al. 2024), and R2C2(Volden et al. 

2018), Nano3P-seq (Begik et al. 2023) FLAM-seq(Legnini et al. 2019)) require tools that can 

easily evaluate how these improvements impact various aspects of data quality. 

 

In this context, we present SQANTI-reads, an extension of SQANTI3 (Pardo-Palacios et al. 

2024a), a tool originally designed for transcript model quality control, to jointly provide quality 

control metrics for long read data and to analyze multiple samples for consistency and bias. We 

demonstrate that SQANTI3's structural categories and other quality control metrics, repurposed 

in SQANTI-reads, are highly effective for assessing the consistency of a lrRNA-seq multi-sample 

experiment, identifying read quality control failures, and detecting outliers. Additionally, we 

have developed new metrics that provide insights into the potential utility and discovery power 

of the data, including variation at donor/acceptor sites and identification of potentially under-

annotated genes and mis-annotated transcripts. SQANTI-reads offers an extensive array of 

summary output tables, is customizable to accommodate any experimental design, and is 

available as an open-source, freely accessible tool. 
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METHODS 

SQANTI-reads basics 

SQANTI-reads is an adaptation of SQANTI3 designed to evaluate individual reads rather than 

transcript models. It allows for the comparison of multiple samples, providing quality control 

results across the entire experiment. Several new features have been introduced to address the 

specific needs of QC in multi-sample experiments, while some functionalities of SQANTI3 have 

been removed as they are not applicable to read-level processing. Table 1 highlights the major 

differences between SQANTI3 and SQANTI-reads, emphasizing the new features of SQANTI-

reads, while Table 2 lists the names and descriptions of the output files. 

 

 

Table 1. Comparison between SQANTI3 and SQANTI-reads 

Feature SQANTI3 SQANTI-reads 

Sequences analyzed transcript models reads 

Annotation with SQANTI3 categories yes, for transcript 

models 

yes, for reads 

and UJCs 

Computation of SQANTI3 quality metrics yes yes 

Samples processed One  Multiple 

Visualizations across samples no yes  

PCA analysis between samples no yes 

Summary of read counts (per gene, per UJC) no yes 

Donor/acceptor variation metrics no yes 

Identification of putative under annotated genes no yes 

Identification of putative novel transcripts no yes 

Machine learning validation of transcript models yes no 

IsoAnnot annotation yes no 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2024. ; https://doi.org/10.1101/2024.08.23.609463doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609463
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. SQANTI-reads specific output files 
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Output file Description Default output Multiple 

Samples/ 

summary file 

gene_counts.csv Provides the number of reads in 

each structural category, per gene 

and per sample 

Yes Multiple 

samples 

ujc_counts.csv Provides a list of junction hashes in 

each sample and the number of 

reads in each sample associated 

with each junction string 

Flags the most expressed UJC per 

gene 

Yes Multiple 

samples 

length_summary.cs

v 

Provides the number and 

percentage of reads in length 

categories per sample 

Yes Multiple 

samples 

cv.csv Provides metrics on the coefficient 

of variance of reference junctions 

for each sample 

Yes Multiple 

samples 

jxn_counts.csv Provides the number of known 

canonical, novel canonical, known 

non-canonical, and novel non-

canonical junctions in reads of each 

sample 

 - - all-tables Multiple 

samples 

cv_acc_counts.csv 

cv_don_counts.csv 

Provides the number of detected 

annotated donors and acceptors in 

each junction variation category 

 - - all-tables Multiple 

samples 

FSM_counts.csv 

ISM_counts.csv 

NIC_NNC_counts.cs

v 

 

Provides the number of reads in 

each subcategory for FSMs, ISMs, 

NICs, and NNCs 

 - - all-tables Multiple 

samples 

err_counts.csv Provides the number and 

percentage of reads with evidence 

of intrapriming, RT-switching, and 

non-canonical junctions per 

samples 

- - all-tables Multiple 

samples 
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The input files for SQANTI-reads include: 1) a GTF file of read alignments, 2) a reference 

genome FASTA file, 3) a GTF file of the reference transcript model annotation, and 4) a design 

file containing metadata for multiple samples. The first step of SQANTI-reads involves using the 

SQANTI3-QC module to generate SQANTI3-like classification and junction files, with the 

classification file containing one row for each mapped read. Reads are classified according to 

the SQANTI categories (Tardaguila et al. 2018) as full-splice match (FSM), incomplete-splice 

match (ISM), novel-in-catalog (NIC), novel-not-in-catalog (NNC), antisense, fusion, genic 

genomic, and intergenic. SQANTI3 subcategories are also included, based on 5' and 3' end 

positions relative to the annotated transcription start sites (TSS) and transcription termination 

sites (TTS) (Pardo-Palacios et al. 2024a). Additionally, the reverse transcriptase (RT) switching 

algorithm of SQANTI3-QC identifies reads with evidence of RT switching events, while reads 

with more than 60% adenines in the 20 bp downstream of the reported TTS at the genomic 

level are flagged as potential intrapriming events. The length of each read and the number of 

exons in each read are also recorded in the classification file. 

 

Junction Metrics 

The SQANTI-reads junction file follows the same format as the SQANTI3 junction file, with each 

row representing a junction in a read, including the start and end positions of the junction. The 

pca_loadings.csv Gives loadings of PC1 and PC2 for 

the PCA analysis 

–pca-tables  Summary 

pca_variance.csv Gives the variance explained by 

each PC 

–pca-tables Summary 

gene_classification.

csv 

For genes with coverage meeting a 

user-defined threshold, provides 

the annotation category of each 

gene 

Yes Summary 

putative_underann

otation.csv 

Provides metrics on NIC and NNC 

UJCs and flags putative novel 

transcripts 

Yes Summary 
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distance from the junction start and end to the nearest annotated junction start and end in the 

reference GTF is calculated. It's important to note that the nearest annotated start and end 

positions may not belong to the same annotated junction. SQANTI classifies  junctions as known 

or novel, and as canonical or non-canonical, based on the dinucleotide pairs at the junction's 

start and end. By default, dinucleotide combinations of GT-AG, GC-AG, and AT-AC are 

considered canonical, while any other combinations are classified as non-canonical, although 

the user can specify additional canonical sites. 

 

SQANTI-reads introduces new metrics to evaluate the relationship between the junctions in 

mapped reads and the annotated donors and acceptors. In the SQANTI3-QC junction file, the 

distance from each donor/acceptor in each read to the nearest annotated donor/acceptor is 

recorded. In SQANTI-reads, the mean absolute distance in nucleotides from the annotated 

donor/acceptor site, the standard deviation, and the coefficient of variation (CV = standard 

deviation/mean) are calculated and included in the cv.csv file. Each detected junction is 

classified as 1) Reference Match junction if the mean distance and the standard deviation to an 

annotated junction are both equal to 0; 2) CV = 0 Junction when the mean distance is greater 

than 0 and the standard deviation equals 0, and 3) CV > 0 Junction when the CV is greater than 

0. 

 

Unique Junction Chain and gene-level information 

SQANTI-reads groups mapped reads based on their junctions, referred to as Unique Junction 

Chains (UJCs). Each UJC is labeled with a string that includes the chromosome and junction 

coordinates (Nanni et al. 2024). To enhance computational efficiency, UJC strings are encoded 

as an index in a hash table (JxnHash). The read count for each JxnHash is calculated and 

included in the ujc_counts.csv file. Additionally, the number of known canonical, known non-

canonical, novel canonical, and novel non-canonical junctions within each UJC is annotated, 

along with the SQANTI structural category of the UJC. The number of reads within each 

structural category for each gene, as well as the total number of reads per gene, is stored in the 

summary file gene_counts.csv. 
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Identifying genes that may be under-annotated and transcripts that may be mis-annotated 

For expressed genes, a high proportion of reads from a UJC classified as NIC/NNC may indicate 

the presence of a potentially novel transcript. SQANTI-reads includes a customizable pipeline to 

identify genes with such potential under-annotation events. The procedure identifies NIC/NNC 

UJCs that meet a minimum number (R) and proportion (P) of reads, with default values set at 

100 reads and 20%, respectively. To mitigate the risk that the NIC/NNC UJC is merely a 

degradation product, an additional condition is applied: the candidate UJC must include at least 

80% of the gene's junctions (Q) (Figure 3A). The R, P, and Q thresholds are pipeline parameters 

that can be adjusted by the user. Furthermore, SQANTI-reads allows for the evaluation of 

under-annotated genes and novel transcripts within a specific subset of samples associated 

with a particular experimental factor (e.g., developmental stage or technology) using the --

factor-level option. 

 

Multisample processing 

SQANTI-reads processes multiple samples to generate classification and junction files when a 

design file (Supplementary file 1) is provided to the sqanti-reads.py command. If individual 

samples have already been pre-processed with SQANTI3-QC, SQANTI-reads can be run in --fast 

mode, where the design file links the individual classification and junction files to sample IDs for 

the calculation of SQANTI-reads metrics, summaries, and a series of visualizations. If pre-

processing has not been done, SQANTI-reads is run in --simple mode where SQANTI3 is run on 

each sample, followed by the calculation of SQANTI3 metrics and summaries. The output also 

includes a summary for each sample, reporting the mean, median, upper quartile, and lower 

quartile of mapped read length, as well as the number and proportion of reads that are shorter 

than 1 kb, between 1 and 2 kb, between 2 and 3 kb, and greater than 3 kb in length, all of which 

are included in the length_summary.csv file. 

 

Drosophila melanogaster data 

A total of 24 samples corresponding to 2 developmental stages (0-1 hours and 3-8 hours post-

hatching) and four genotypes (dmel 11037, 11255, 12272 and 12279) (3 samples per 
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experimental condition) were sequenced using Oxford Nanopore Technology (ONT). One 

barcoded cDNA library was built per sample, the 12 samples from the 0-1 hour and the 12 

samples from the 3-8 day stages were pooled and sequenced on a MinION. Data were 

evaluated with PycoQC (Leger and Leonardi 2019) which focuses on read length and base 

quality. All samples passed this basic QC, libraries were re-pooled and run on the PromethION. 

Detailed metadata for these samples are provided in Supplementary Table 1. Raw electrical 

data were processed by default basecallers on the machines during the run (Guppy). Samples 

were stored in .fast5 format and as .fastq files. The .fast5 files were converted to the Dorado 

compatible .pod5 format using pod5 (v 0.3.6) and then processed in Dorado (v 0.5.2) 

(https://github.com/nanoporetech/dorado) using options --recursive --device "cuda:0,1" --kit-

name SQK-PCB109 --trim none. Reads were demultiplexed using the demux mode of Dorado (v 

0.5.2) with options --no-classify --emit-fastq resulting in separate Dorado fastq files for each 

sample. The fastq files generated by Guppy/Dorado were both processed using pychopper (v 

2.7.1), the oriented fastq files were aligned to D. melanogaster 6.50 and the resulting sam files 

were converted to gtf using samtools (v 1.10) (Li et al. 2009) and bedtools (v 2.29.2) (Quinlan 

and Hall 2010). The resulting gtf files (67 technical replicates from 24 samples), the D. 

melanogaster 6.50 fasta reference file 

(https://ftp.flybase.net/releases/FB2023_01/dmel_r6.50/  (Öztürk-Çolak et al. 2024)), and a 

design file (Supplementary File 2) were used as input to SQANTI-reads. The Drosophila dataset 

includes, therefore, two experimental conditions (time and genotype) and two technical 

conditions (sequencing platform and base caller) with the experimental samples multiplexed 

and evaluated with both technical conditions. The SQANTI-reads output for this dataset is 

provided in Supplementary File 3. 

 

Human Cell line WTC11  

We used publicly available lrRNA-seq data from the Long-read RNA-seq Genome Annotation 

Assessment Project (Pardo-Palacios et al. 2024b) to illustrate the utility of SQANTI-reads. 

Specifically, we used triplicate measurements of the transcriptome of the WTC11 human cell 

line that were profiled by cDNA PacBio Sequel II, cDNA Oxford Nanopore Minion, and direct 
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RNA Oxford Nanopore Minion long reads methods. Data were downloaded from the ENCODE 

website (https://www.encodeproject.org/search/?type=Experiment&internal_tags=LRGASP). 

Accession numbers for these samples are provided in Supplementary Table 2. The fastq files 

were pre-processed by LRGASP researchers as described in (Pardo-Palacios et al. 2024b). We 

used the gtf files of read alignments, GENCODE’s GRCh38.p13 reference genome gtf and fasta 

for release 38 (https://www.gencodegenes.org/human/release_38.html ), and a design file 

(Supplementary file 4) to run SQANTI-reads on the WTC11 samples. The SQANTI-reads output is 

provided in Supplementary File 5. 

 

 

RESULTS 

 

SQANTI-reads can be used to evaluate technology for a common set of libraries 

Our Drosophila experimental design serves as an excellent example to evaluate the 

technological aspects of long-read methods using SQANTI-reads. One of the notable 

advancements in Oxford Nanopore Technology (ONT) is the introduction of the new basecaller, 

Dorado (https://github.com/nanoporetech/dorado), which claimed to significantly improve 

base call accuracy. A robust long-read QC tool should be able to clearly identify improvements 

in technology. Therefore, we first compared the Guppy and Dorado basecallers using SQANTI-

reads. As anticipated, Dorado resulted in more reads with assignable barcodes, a higher 

number of mapped reads, more reads aligning to annotated genes, and more reads aligning to 

annotated transcripts, without an increase in the proportion of reads with technical artifacts 

(Supplementary Figure 1, Supplementary file 2). This confirms that Dorado improves base-

calling accuracy without introducing unwanted biases. Based on these SQANTI-reads QC results 

we chose  to move forward with Dorado basecalled reads. 

 

In the Drosophila experiment, libraries were barcoded, pooled, and multiplexed across different 

MinION and PromethION runs, with a re-pooling step between the two machines. We used 

SQANTI-reads to compare the quality of the MinION and the PromethION runs, and to evaluate 

the consistency of the PromethION technology across technical replicates. The first MinION run 
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(TR1) had higher percentages of reads with NIC/NNC and with non-canonical junctions 

compared to the second and third technical MinION runs (TR2,TR3) and compared to the 

PromethION runs for the same libraries (Supplementary Figure 2). The other MinION runs (TR2, 

TR3) were similar in their quality metrics (described below) to the PromethION run of the same 

samples, and the technical replicates of the 3-8 day libraries on the PromethION were similar. 

These results indicate that the technology performs consistently across instruments and runs. 

Based on these SQANTI-reads QC results we aggregated data across technical replicates to 

further evaluate the quality of the lrRNA-seq experiment. 

 

SQANTI-reads metrics can be used to evaluate the global quality of the lrRNA-seq experiment 

In a multi-sample lrRNAseq experiment, all samples should be of similar quality. SQANTI3 uses 

the FSM structural category to identify long-read sequences whose junctions are consistent 

with an annotated transcript model. However, for a lrRNA-seq experiment to accurately reflect 

the analyzed transcriptome, the reads should ideally also capture the distribution of transcript 

lengths of the expressed transcriptome. The distribution of transcript lengths depends on the 

species with Drosophila having overall less complex and shorter transcripts than human 

(Supplementary Figure 3). A dataset with reads substantially shorter than the targeted 

transcriptome but with still a high number of FSM indicates capture of short transcripts, while 

combining shorter than expected reads with a high proportion of ISM may indicate RNA 

degradation. We looked at these values for an initial assessment of the quality of the 

Drosophila experiment. 

 

First, we compared the number of reads and length distributions for all samples. The difference 

in sequencing depth between the two developmental stages was evident (Figure 1A). For all 

samples, most reads were shorter than 1kb with less than 20% of them above the 1 kb 

threshold (Figure 1B, Supplementary Figure 4A). While between 53% and 67% of the reads 

across samples were classified as FSM, 20% to 38% were labeled as ISM, and NIC/NNC were 

under 10% of the reads (Figure 1C). For the reads greater than 1 kb, between 73% and 82% of 

the reads were FSM while 10% and 18% were ISM (Figure 1D). 
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To further understand how read quality affects gene and transcript quantification, we 

examined these metrics aggregated by gene and UJC. We found that, despite the large 

sequencing depth differences between developmental stages, the number of detected genes 

was only slightly lower in the 0-1 h samples (Figure 1E). However, these genes were quantified 

with fewer reads (80% genes with < 50 reads) than the 38 d samples, which had between 30% 

and 50% of genes with more than 100 reads(Figure 1E). Interestingly, when evaluating UJC we 

found that, while the number of UJC mirrored the sequencing depth pattern (Figure 1F), with 3-

8 d samples showing five times more UJC than 1 h samples, and a larger number of FSM and 

ISM UJC, there were many additional UJC detected by fewer than 10 reads, and usually by a 

single read (Figure 1F & 1G) and these UJC were most frequently NIC/NNC (Supplementary 

Figure 4B & 4C). Downstream analyses would therefore need to address whether this 

represents novel low-expressed transcripts or technology errors. In contrast, the percentage of 

FSM reads between the two time points differed by less than 1x in all replicates (Figure 1H). 

These results indicate that the higher sequencing depth of the 3-8 d samples does not change 

the number of detected genes or annotated transcripts (FSM). The higher read depth per gene/ 

UJC suggests that more genes and transcripts will be able to be quantitatively evaluated in the 

3-8 day samples compared to the 0-1 hour samples.  

 

In the Drosophila data, we noticed two samples (RIL 12279 rep 1 0-1 hour- orange arrow; RIL 

11255 3-8 day rep 3 - teal arrow) that had the lowest percentage of FSM and highest 

percentage of ISM in the 0-1 hour and 3-8 day groups respectively (Figure 1C). To determine 

whether these two samples were of overall lower quality than the rest, we examined the 

SQANTI-reads metrics for these two samples. We found that RIL 12279 rep 1 had a lower 

proportion of FSM across all genes (Figure 1H) and a higher proportion of genes quantified with 

only one gene (Figure 1F), while RIL 11255 rep 3 had a similar gene (Figure 1H), UJC (Figure 1G) 

and % FSM in genes (Figure 1H) than other 3-8 day samples. We concluded that RIL 12279 rep 1 

0-1 hour is a low-quality sample.  
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Altogether, this example shows that SQANTI-reads metrics can be used to compare samples

and experimental conditions in a multi-sample experiment, detect outliers, and suggest points

of attention for downstream data processing. 

 
Figure 1: SQANTI-reads analysis of Drosophila samples. A) Number of mapped reads by experimental group

labeled with read length. B) Percentage of mapped reads >1kb vs percentage of reads that are FSM. Dots represent

early stage (0-1 hours after enclosure) and crosses indicate adult stage (3 to 8 days old). The four genotypes are

indicated with four different colors. C) Percentage of reads mapping to genes in each SQANTI3 structural category

D) Percentage of reads mapping to genes in each SQANTI3-QC structural category for reads >1kb E) Number of

genes detected with breakdown by the number of reads mapped to each gene. F) Number of UJCs detected with

breakdown by the number of reads associated with each UJC. G) Proportion of UJCs detected with breakdown by

the number of reads associated with each UJC. H) Distribution of the percentage of FSM reads by gene across

samples.  
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SQANTI-reads metrics can be used to identify systematic differences among samples 

The previous example demonstrated that SQANTI-reads metrics are effective in assessing 

dataset consistency. However, SQANTI-reads evaluates over 35 quality metrics, making it 

challenging to determine which features contribute to potential differences among samples. 

We include Principal Component Analysis (PCA) analysis to identify which metrics are the most 

relevant for quality variability when there are differences among samples or between groups. 

The percentage of reads and UJCs in each structural category, percentage of artifact reads (RT-

switching, non-canonical junctions and intrapriming), percentage of junctions in each category, 

as well as length metrics, are included in the PCA. 

 

We applied SQANTI-reads PCA analysis of quality features to investigate differences in read 

quality among various long-read sequencing methods used in the LRGASP challenge (Pardo-

Palacios et al. 2024b), focusing on the WTC11 dataset. The analysis revealed that WTC11 

samples clustered based on the long-read technology applied (Figure 2A). Specifically, PC1, 

which explains 56% of the variance, distinguished cDNA ONT samples from those generated by 

the other two technologies, while PC2, accounting for 35% of the variance, highlighted 

differences between dRNA ONT and cDNA PacBio. To further explore these differences, we 

examined the loadings for each principal component. Quality features with the highest positive 

loadings in PC1 included the number of reads, the percentage of reads and the proportion of 

UJCs in the NNC category, while features with high negative loadings included Intergenic and 

Genic Genomic reads. Several junction-related variables also exhibited high absolute loadings 

on PC1 (Figure 2B). SQANTI-reads plots confirmed these structural category differences 

between cDNA ONT samples and other library preparations. cDNA ONT had both the highest 

proportion of NNC reads and UJCs, (Figure 2C and 2D) and also had the lowest proportion of 

intergenic reads (Figure 2C). Other differences in sequencing throughput and junction 

characteristics were also confirmed (Supplementary Figure 5). 

 

Upon examining the feature loadings for PC2, we found that variables with high contributions 

included several metrics related to read length (Figure 2B). Consequently, we evaluated the 
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SQANTI-reads “Lengths of All Mapped Reads” plot for this experiment. Indeed, we observed

that the cDNA PacBio method produced a significantly higher proportion of reads between 1-2

kb, 2-3 kb, and greater than 3 kb, as suggested by their negative loadings, compared to the

dDNA ONT method, which predominantly generated reads shorter than 1 kb (Figure 2E)

Similarly, percentage of reads assigned as ISM with high positive values was higher in dRNA

ONT samples (Figure 2 C). 

 

In conclusion, the SQANTI-reads PCA analysis is an effective tool for uncovering significant read

quality differences between long-read sequencing methods and for revealing unexpected

technology biases. 
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Figure 2: SQANTI-reads PCA analysis of LRGASP WTC11 samples A) PCA using SQANTI-reads quality features. B) 

Top 10 Loadings for PC1 and PC2. C) Distribution of reads in SQANTI structural categories. D) Distribution of UJCs in 

structural categories E) Distribution of read lengths for all mapped reads. 
 
 

 

 

SQANTI-reads identifies potentially under annotated genes.  

Long-read data often reveal a large number of sequences that cannot be exactly matched to 

existing annotations. In many cases, these UJC belong to annotated genes and are identified by 

only a few reads, as illustrated by the SQANTI-reads analysis in Figures 1 and 2. This suggests 

they could be either low-expressed transcripts or technological artifacts. However, in some 

instances, a high proportion of reads in a gene may correspond to the same UJC, indicating the 

possibility of a novel previously unannotated transcript that warrants closer examination. 

SQANTI-reads includes a customizable decision tree to identify such cases (see Methods, Figure 

3A). We applied this approach to the WTC11 PacBio data and identified 8556 well annotated 

genes, 88% of which have an annotated transcript with high coverage (>20% of total gene 

coverage) (Figure 3B). We also identified 101 underannotated genes, 54% of which have a 

candidate unannotated transcript. The annotation category for all genes evaluated (default: R > 

100) are provided in the gene_classification.csv file. We also found 424 putative novel 

transcripts (Figure 3C). Of these, 316 were NIC and 108 were NNC transcripts. The SQANTI-

reads output for putative novel transcripts flagged based on their length and read count are 

output in the putative_underannotation.csv file (Table 2).  

 

For genes with at least one putative novel transcript (R=100, P=20, Q=80) and an annotated 

transcript (FSM) we selected the FSM with the highest proportion of reads. We then compared 

the structure of the putative novel transcripts to the most expressed annotated transcript using 

TranD (Nanni et al. 2024). For genes with an annotated transcript that is relatively highly 

expressed (>20% of the reads for that gene),  103 putative candidate transcripts differed from 

the annotated transcript by donor/acceptor variation, suggesting a possible alternative splice 

site. In addition, 10 putative candidate transcripts had an extra exon; 15 a skipped exon and 9 

with both missing and skipped exons relative to the most expressed annotated UJC (Figure 3D). 
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For the genes where the annotated transcript represented less than 20% of the reads in that 

gene, the putative novel transcript differed from the annotated transcript by an alternative 

exon in 147 cases (33 extra exons, 86 skipped exons, and 43 with both an extra and skipped 

exon) (Figure 3E). Details and scripts for this analysis are provided in the Supplementary 

Methods. 

 

This analysis demonstrates that SQANTI-reads is effective in classifying genes as well annotated 

or underannotated and flagging putative novel transcript annotations that contain realistic 

alternative exonic patterns. 
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Figure 3: Evaluation of WTC11 PacBio samples for under-annotated genes. A) Decision tree for

classifying genes as well annotated or under-annotated and classifying transcripts as putative 

novel candidate transcripts. B) Number of well-annotated and under-annotated genes 

according to the decision tree in A. C) The coverage (percent of total reads) vs length 

(percentage of maximum junctions)  for all UJCs in underannotated genes with well covered 

candidate transcripts. UJCs that meet the thresholds for putative novel transcripts are coloured 

in green. D&E) Comparison of putative candidate novel transcripts with the most expressed 

r 
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annotated transcript in that gene for well-annotated genes with well-covered FSMs (D) and 

with an FSM detected but without < 20% of the total reads  in the gene(E). 

 

Figure 4. Variation in donors/acceptors. Metrics are only calculated for annotated donor/acceptors with a

minimum threshold of reads (10 by default). A) Metrics for the classification of donor/acceptor variation. When al

reads align to the annotated donor/acceptor this is classified as a reference match (Ref Match). When all reads

align to the same donor/acceptor location, but this is not the annotated position this is classified as CV = 0. When

reads align in multiple positions in proximity to an annotated donor/acceptor this is classified as CV > 0. B)

Classification of the number (left) and proportion (right) of detected acceptors faceted by technology. C

Classification of the number (left) and proportion (right) of detected donors faceted by technology.  
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SQANTI-reads metrics for donors/acceptors identify noisy splicing and potentially novel 

splice-sites 

SQANTI-reads calculates the mean, standard deviation and coefficient of variation (CV) for all 

expressed annotated donors/acceptors (Figure 4A). A value CV > 0 indicates variability in the 

donor/acceptor, with higher CV values indicating more variability. Variability around a splice-

junction may be due to weak splicing (Wang and Marín 2006) or to technology errors and 

mapping accuracy, for example due to junction ambiguity (Li 2018). We evaluated these metrics 

on the WTC11 dataset for reference junctions with at least 10 reads. We found similar patterns 

in the variability (CV > 0) in donors and acceptors (Figure 4B).  All three technologies identify 

donors and acceptors with variability around the splice site (CV > 0). Donors/acceptors with CV 

> 0 consistently across the three technologies, are highly suspicious of ‘noisy’ splicing or a weak 

splice site and may be worth follow up (Supplementary Figure 6A and 6B). The SQANTI-reads 

output file cv.csv identifies the donors/acceptors with CV > 0 making it straightforward to 

follow up on particular locations with tools such as Integrative Genomics Viewer (IGV) 

(Robinson et al. 2011). 

 

A reference match indicates that the splice signal is strong (Wang and Marín 2006; Dent et al. 

2021). Results for cDNA PacBio and dRNA-seq were similar, with both showing a higher number 

and proportion of reference match donors/acceptors compared to cDNA ONT (Figure 4B and C) 

despite these technologies detecting similar numbers of FSM UJCs (Figure 2D). We compared 

the FSM UJCs identified by the three technologies (Supplementary Figure 7A). Most of the FSM 

UJCs are detected by all three technologies (n = 19690), with a similar number detected by 

cDNA PacBio only (n = 8110) and cDNA ONT (n = 9360) only. We hypothesized that the 

difference in the number of reference match donors/acceptors was potentially due to longer 

transcripts with more junctions being detected in cDNA PacBio compared to shorter transcripts 

with fewer junctions in dRNA ONT and cDNA ONT. For the FSMs detected only in one 

technology we plotted the distribution of the number of junctions and confirmed that the cDNA 
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PacBio FSM transcripts had a larger number of junctions compared to dRNA ONT and cDNA 

ONT (Supplementary Figure 8). This is not surprising given that cDNA PacBio had longer reads 

than both ONT technologies (Figure 2E).  

 

Donor/acceptor sites may differ from annotated sites due to the presence of novel 

donors/acceptors. The category CV = 0 identifies donor/acceptors with no variability, that differ 

from the annotated donor/acceptor. We evaluated the donors and acceptors with CV = 0 in all 

the technologies (Supplementary Figure 6E and 6F). Of the 5562 donors and 4474 acceptors 

with CV = 0 across all technologies, there were 47 donors and 35 acceptors with CV = 0 

detected in all three technologies. These had a median distance from the annotated donor or 

acceptor of 4 nucleotides and 5 nucleotides respectively (Supplementary figure 9). These 

indicate potential robust detection of alternative splice sites.  

 

 

DISCUSSION/CONCLUSION 

 

SQANTI-reads compares multiple samples using summaries and visualizations of SQANTI3 

categories and sub-categories that enable the researcher to evaluate the experiment for 

consistency, and identify any systematic differences between sample groups. The meta-data in 

the design file determines the sample groupings, and once the initial classification and junction 

files are created, SQANTI-reads can be invoked multiple times to compare different aspects of 

the experimental design.  

 

 

In Oxford Nanopore Technology (ONT) the existence of multiple platforms at different price 

points for different numbers of pores (Flongle, MinION, GridION, PromethION) but with the 

same library protocols means that in a large experiment, samples can be initially evaluated at 

low cost on one of the lower throughput platforms (Flongle MinION) and if samples are of 

sufficient quality, then can be run on higher throughput platforms (GridION, PromethION). 
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Sample multiplexing and running on multiple ‘lanes’ is also good experimental design practice 

(Auer and Doerge 2010). 

 

SQANTI-reads introduces new metrics for identifying variation in donors/acceptors; under 

annotated genes; and putative novel transcripts for further evaluation. As the examples 

presented demonstrate, SQANTI-reads is flexible and can be customized to examine the impact 

of different aspects of the sample meta-data on the metrics for donor/acceptor variation and 

novel transcript identification. The output of SQANTI-reads can be easily mined for additional 

insights and can be used to direct attention and resources to interesting and novel features of 

lrRNAseq experiments. We expect SQANTI-reads to become an essential tool for the QC of 

multi-sample lrRNA-seq datasets.  
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