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ABSTRACT

Gene regulatory network perturbations contribute to
the development and progression of cancer, how-
ever, molecular determinants that mediate transcrip-
tional perturbations remain a fundamental challenge
for cancer biology. We show that transcriptional per-
turbations are widely mediated by long noncoding
RNAs (lncRNAs) via integration of genome-wide tran-
scriptional regulation with paired lncRNA and gene
expression profiles. Systematic construction of an
LncRNA Modulator Atlas in Pan-cancer (LncMAP) re-
veals distinct types of lncRNA regulatory molecules,
which are expressed in multiple tissues, exhibit
higher conservation. Strikingly, cancers with sim-
ilar tissue origin share lncRNA modulators which
perturb the regulation of cell cycle and immune
response-related functions. Furthermore, we iden-
tified a large number of pan-cancer lncRNA modu-
lators with potential clinical significance, which are
differentially expressed in cancer or are strongly
correlated with drug sensitivity across cell lines.
Further stratification of cancer patients based on
lncRNA-mediated transcriptional perturbations iden-
tifies subtypes with distinct survival rates. Finally,
we made a user-friendly web interface available for
exploring lncRNA-mediated transcriptional perturba-
tions across cancer types. Our study provides a
systems-level dissection of lncRNA-mediated regu-
latory perturbations in cancer, and also presents a
valuable tool and resource for investigating the func-
tion of lncRNAs in cancer.

INTRODUCTION

Human cancers are complex diseases involving multiple ge-
netic and epigenetic changes in the genome (1,2). With the
development of high-throughput sequencing, a number of
studies have provided an ever-expanding survey of genetic
aberrations in cancer (3,4). Multiple new cancer-related
genes have been identified, and these genes formed gene reg-
ulatory network to play critical roles in cancer. Gene reg-
ulatory network perturbations have been demonstrated to
contribute to the development and progression of cancer,
however, the molecular determinants of the gene regulatory
network perturbations remains a fundamental challenge in
cancer.

In addition, emerging evidence has indicated that long
noncoding RNAs (lncRNAs) play key roles in a wide range
of biological processes (5), and their expressions are strik-
ingly cell-type and tissue-specific (6). Given that lncRNAs
are key regulators of gene expression, recent studies sug-
gested that lncRNAs are involved in the tumor initiation
and progression through diverse mechanisms (7–9). Al-
though a considerable portion of human genome is tran-
scribed as lncRNAs, the vast majority are functionally un-
characterized. Therefore, it is another challenge for identi-
fication of lncRNAs involved in carcinogenesis and charac-
terization of their functions in specific cancer context.

Gene transcription is often regulated by transcription
factors (TFs) that bind to cis-regulatory elements in a
sequence-specific fashion (10,11). While TFs are proved to
be the primary engines, emerging evidence have demon-
strated that the regulation of TF to its targets are also mod-
ulated by lncRNAs. For instance, lncRNA GAS5 has been
found to bind to the DNA binding domain of the TFs by
acting as a decoy, thus competes with DNA for binding
to the TFs (12). In addition, Yolanda et al. have demon-
strated that two lncRNA targets of P53 can affect the bind-
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ing of this TF to other targets, and thus modulate the P53
transcriptional network in cancers (13). Another study has
shown that lncRNA CASC11 can interact with hnRNP-
K and activates the WNT/�-catenin pathway to promote
growth and metastasis in colorectal cancer (14). A recent
study has suggested that MALAT1 can regulate E2F1 activ-
ity (15), which is a crucial determinant of cell cycle progres-
sion. Moreover, cancer associated lncRNA-p21 is associ-
ated with hnRNP-K and represses P53-dependent transcrip-
tional responses (16). The lncRNA CCAT1-L also plays key
roles in regulating the activity of MYC (17). These findings
suggest that lncRNAs are emerging as important regulators
of TF functions in cancer. However, systematical identifica-
tion of lncRNA modulators in cancer are urgently needed.

Thus, we recently developed a computational approach
LncMod to comprehensively identify perturbed lncRNA–
TF–gene triplets by combining both lncRNA and gene
expression profiles with TF–target relationships (18). Ap-
plying this method to glioblastoma, we identify cancer-
related lncRNA–TF–gene triplets, such as HOTAIR-
MXI1-CD58/PRKCE and HOTAIR-ATF5-NCAM1. The
integration of lncRNA modulators into transcriptional reg-
ulatory networks is expected to lay the foundation for de-
velopment of novel lncRNA biomarkers and therapeutic
agents. However, many questions about the common or spe-
cific lncRNA-mediated TF regulatory perturbation mech-
anism in different types of cancer have not been fully ad-
dressed, such as which lncRNAs mediate transcriptional
dysregulation across tumor types (pan-cancer modulators)
or in a specific cancer (cancer-specific modulators)? What
about the potential functions, regulatory roles and biolog-
ical insights of the pan-cancer lncRNA modulators? Thus,
systematic analysis of the lncRNA-mediated transcription
perturbation and their clinical applications is urgent and
necessary.

Recent RNA-Seq datasets over large cancer patient co-
horts, such as The Cancer Genome Atlas (TCGA) provide
us an unprecedented opportunity for identifying lncRNA-
medicated gene regulatory network perturbations across
cancer types in a systematic way (Figure 1A). Here, we
performed an integrative analysis of paired lncRNA and
mRNA expression profiles, genome-wide transcriptional
regulatory networks as well as functional datasets to in-
vestigate the functional regulation of lncRNAs. Based on
the proposed computational method LncMod (Figure 1B),
we identified the widespread lncRNA mediated transcrip-
tional regulatory perturbations in 20 types of cancer. Pan-
cancer modulators were with distinct features, including tis-
sue specificity and conservation. Moreover, we also identi-
fied several lncRNA modulators were associated with drug
activity and survival time of patients. Overall, our genome-
wide analyses identified a comprehensive set of candidate
noncoding biomarkers with pan-cancer potential, and pro-
vided novel insights into the functions of lncRNA in cancer.

MATERIALS AND METHODS

The lncRNA and mRNA transcriptome landscape across tu-
mor types

The genome-wide lncRNA expression across 20 types of
cancer were directly obtained from ‘The Atlas of Noncod-

Figure 1. An integrative framework identifies widespread lncRNA-
mediated transcriptional network perturbations in pan-cancer. (A) Global
transcriptional network perturbations were observed across cancer types.
Global lncRNA modulators that mediated the network perturbations were
analyzed based on proposed LncMod method. The identified modula-
tors were analyzed for different functional characteristics, including cancer
specificity, differential expression, cancer hallmark, drug activity and clini-
cal association. (B) The framework to identify lncRNA modulators across
cancer types. Firstly, TF–gene regulation were identified based on ChIP-
Seq datasets. Second, regression analysis was used to identify context-
specific regulation based on gene expression. Next, lncRNA mediated tran-
scriptional network perturbations in each cancer type were discovered by
the modified LncMod method and further classified as six regulatory pat-
terns.

ing RNAs in Cancer’ (TANRIC) (19). In total, 12 727 lncR-
NAs were quantified for the expression levels as reads per
kilo base per million mapped reads (RPKM). To ensure de-
tection reliability and reduce noise, we applied two filters
used in one previous study in each cancer type to iden-
tify the expressed lncRNAs (20). First, lncRNAs whose
10th-percentile RPKM value is equal to 0 were eliminated
and the second, we selected only lncRNAs whose 90th-
percentile RPKM value is greater than 0.1 for further anal-
ysis. The expression value of each lncRNA was log2(RPKM
+ 0.05)-transformed.

We obtained the corresponding gene expression profiles
of these cancer samples from TCGA. Only samples with
paired lncRNA and mRNA expression profiles were used
in this study (Supplementary Table S1), that is the samples
were with both lncRNA and mRNA expression profiles. In
total, the expression of 18 999 protein coding genes were
measured. The expression values were also log2(RPKM +
0.05) transformed.

Identifying the TF–gene regulatory interactions across can-
cers

To identify the TF–gene regulation in each cancer type,
we firstly downloaded the TF–gene regulation from ChIP-
Base (21), which is an integrated resource for decoding TF
binding maps from ChIP-Seq data. In total, we obtained
504 522 regulatory interactions among 107 TFs and 16 417
genes. As the TF–gene regulation in each cancer is context-
dependent, we used linear regression to evaluate the pair-
wise TF–gene expression association. In this model, mRNA
i expression (log2), y, changes as a linear function of TF μ
expression (log2), xμ, in the n tumor samples of a given can-
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cer type:

yi = β0 + βμxμ,i + εi , i = 1, . . . , n

in this model, β0 is the intercept, βμ is the regression co-
efficients for TF expression variable. We used the ordinary
least squares method to obtain an estimate for the TF coef-
ficient and test the null hypothesis that the expression level
of TF is not associated with change in expression of gene.
The TF–gene regulation with Bonferroni adjusted P-value
<0.01 were selected for further analysis.

Identification of lncRNA modulators across cancers

Here, we proposed a framework to identify the lncRNA
modulators. First, lncRNAs, TFs, and target genes were
filtered based on the expression variation across samples
(‘range constraint’). Individual TFs (gTF) and target genes
(gt) were selected for further analysis based on their vari-
ation across samples (log2 IQR>0.58). For each lncRNA
modulator gm, we sorted the cancer samples based on the
expression of gm. Then the top and bottom 25% of samples
in terms of lncRNA expression were contrasted, which were
defined as H-group and L-group. Downstream analysis was
only performed on TFs that were not differentially ex-
pressed between H-group and L-group. Target genes are re-
quired to differentially express between two conditions (P-
adjusted < 0.01 and fold change > 1.5). Next, each possible
lncRNA–TF–gene triplet was tested to determine whether
lncRNA altered the TF–gene regulation. The Spearman
correlation coefficient between TF and gene was used to
measure the TF–gene regulation in H-group (Rhigh) and
L-group (Rlow) separately. To guarantee that TF regulated
gene in at least one condition, we required that the abso-
lute value of either Rhigh or Rlowwas >0.4. In addition, only
TF–gene pairs with the absolute value of difference between
Rhigh and Rlow >0.45 were further analyzed. Then, we used
Fisher’s test of difference between two correlation coeffi-
cients as previous studies (22). Firstly, these correlations be-
tween TFs and genes were transformed by Fisher transfor-
mation as follow:

F (R) = 1
2

ln
1 + R
1 − R

Next, we defined the rewiring score,rewireTF−gene, which
ranges between 0 and 1, with larger value indicating more
rewiring effect between TF and gene.

rewireTF−gene

= P

⎛
⎝|X| ≤

∣∣∣∣∣∣
F

(
Rhigh

) − F (Rlow)√
1.06

nhigh−3 + 1.06
nlow−3

∣∣∣∣∣∣

⎞
⎠ , X ∼ N (0, 1)

where nhigh and nlow are the number of samples in H-
group and L-group, separately. To determine whether the
difference between H-group and L-group is significantly
high. The samples were randomly sorted and we recalcu-
lated the rewire score, this process was repeated 100 times.
The P value is the fraction of rewire score in random con-
ditions that was larger than that in the real conditions;
P-values were Bonferroni-corrected for the total number

of candidate lncRNA–TF–gene triplets. All lncRNA–TF–
gene triplets with P-adjusted <0.01 were regarded as signif-
icant. In addition, all the triplets were classified as six pat-
terns based on the correlation coefficient and the changes
of rewiring scores (Supplementary Table S2) (18).

Tissue specificity and conservation analysis of lncRNA mod-
ulators

To evaluate the tissue specificity of an lncRNA modula-
tor, we relied on Cabili et al. (23) and used an entropy-
based measure. Here, we assembled a consensus lncRNA
transcriptome by curating hundreds of RNA-Seq datasets
across normal human tissues from 16 independent studies
(24). The tissue specificity score of cancer specific lncRNA
modulators, moderate lncRNA modulators and pan-cancer
modulators were compared with Wilcox rank sum test.
PhastCons scores were used for measure the conserva-
tion of lncRNA modulators. The PhastCons scores for
100 genomes were downloaded from UCSC Table Browser
(25). The average PhastCons score for each nt position of
lncRNA was computed as conservation.

Identification of differentially expressed lncRNAs in cancer

To identify differentially expressed lncRNAs in each can-
cer type, we used two methods. Firstly, the lncRNAs with
expression level 0 in <30% samples in both normal and tu-
mor samples were subjected to t-test. LncRNAs with fold
change greater than twice and FDR <0.01 were identified
as differentially expressed. If the expression levels of the
lncRNAs were 0 in >30% tumor or normal samples, we
used on/off analysis. For each lncRNA, we determined its
expression in binary fashion: On (expressed, RPKM > 0),
OFF (not detected, RPKM = 0). We next calculated the fre-
quency of expression in normal and cancer samples. LncR-
NAs expressed twice more frequently in cancer than that
in normal samples were selected as ‘On in cancer’, whereas
lncRNAs not expressed twice more often were identified as
‘OFF in cancer’. The significance of the contingency be-
tween ON/OFF and cancer/normal status was tested by
Fisher’s exact test. The threshold of FDR <0.01 was used.

Drug–lncRNA associations across cancer cell lines

To evaluate the effects of drug on lncRNA expression, we
downloaded the lncRNA expression profiles in cancer cell
lines from TANRIC. These cancer cell lines were obtained
from Cancer Cell Line Encyclopedia (CCLE) (26). In ad-
dition, we also downloaded the drug screening data from
CCLE, and calculated the correlations between lncRNA ex-
pression levels and IC50 values of 24 drugs across cell lines.
We used the Spearman rank correlations to detect signifi-
cant drug–lncRNA correlations with a coefficient (absolute
value) cutoff of 0.3 and FDR <0.01.

Functional analysis of lncRNA modulators

Although a number of methods had been proposed to pre-
dict the functions of lncRNAs, such as co-expression, co-
localization. Here, we proposed that investigating the func-
tions of these target genes in lncRNA–TF–gene triplets



1116 Nucleic Acids Research, 2018, Vol. 46, No. 3

might provide new insights of the functions of these lncR-
NAs. Thus, the function enrichment analysis was carried
out via the targets of triplets to determine the functions
of lncRNAs by hypergeometric test. Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways with adjusted P values <0.01 and in-
cluding at least two interesting genes were considered.
Moreover, we used Gene Set Enrichment Analysis (GSEA)
to identify the functions of genes regulated by multiple
lncRNA modulators. Firstly, genes were ranked by the num-
ber of lncRNA modulators that regulated them in each
cancer type. Next, we computed the average rank for each
gene in 20 types of cancer. The ranked gene list was subject
to GSEA analysis and functions with P-value <0.05 were
identified.

Identification of survival-related lncRNA–TF–gene triplets

To identify the lncRNA–TF–gene triplets that are related
with cancer patient survival, we randomly divided the tu-
mor samples into discovery and validation datasets without
age and sex difference. Two subsets had the similar number
of patients. We then used univariate Cox regression analysis
to evaluate the association between survival time and the ex-
pression level of each lncRNA, TF, or gene. The regression
coefficients with a plus sign indicated that increased expres-
sion of this element was associated with decreased survival
(risky factors), and, conversely, a minus sign indicated that
increased expression of the element was associated with in-
creased survival (protective factors). We then constructed a
mathematical formula for survival prediction, taking into
account both the strength and direction for each factor in
the triplet with respect to survival. As in one of our previous
studies (18), the risk score for each patient i was calculated
as follows:

Risk score(i )

= α ∗ exp (lncRNA)i + β ∗ exp (TF)i + γ ∗ exp(Gene)i

α, β, γ $ were the regression coefficient of lncRNA, TF
and gene, respectively. All tumor samples in the discov-
ery dataset were thus assigned to high-risk and low-risk
groups using the median risk score as the cut-off. The coef-
ficient and cut-off derived from the discovery dataset were
directly applied to expression data of the corresponding val-
idation dataset to divide the tumor samples in the validation
dataset into high-risk and low-risk groups. The Kaplan–
Meier method was used to estimate the overall survival time
for the two subgroups, and differences in survival time were
analyzed using the log rank test. Moreover, we linked the
triplets that share at least two elements and constructed the
triplets’ network. Network cliques were identified and then
these cliques were also subjected to the survival analysis.
Samples were divided into two groups based on the expres-
sion of elements in cliques, and log-rank test was used to test
the survival difference. For the independent dataset valida-
tion, the expression of lncRNA, TF and gene were firstly
Z-score transformed. Next, we clustered the tumor sam-
ples based on the expression profile of lncRNA, TF and
gene. Tumor samples were clustered into two groups, and

Figure 2. Widespread lncRNA-mediated transcriptional regulation per-
turbations in 20 types of cancer. (A) The paired gene and lncRNA expres-
sion profiles and number of samples for each cancer type. The numbers
1–20 indicate different types of cancer and cancer types are ordered by
their tissue origin. (B) The proportion of TF–gene regulatory interactions
in each cancer type. (C) The pie chart shows the proportion of TF–gene
regulatory interactions occurring in different number of cancer types. (D)
The proportion of lncRNA–TF–gene triplets in each cancer type. (E) The
proportion of lncRNA–TF–gene triplets of different regulatory patterns
in each cancer type. Different color lines indicate distinct regulatory pat-
terns, including inverts inhibition, inverts activation, attenuates activation,
attenuates inhibition, enhances activation and enhances inhibition.

log-rank test was used to estimate the difference in survival
time.

RESULTS

Widespread lncRNA-mediated transcriptional perturbations
across 20 cancer types

Integration of genome-wide TF–gene regulation and paired
lncRNA–mRNA expression profiles across 20 types of can-
cer (Supplementary Table S1), we investigated the landscape
of lncRNA mediated transcriptional perturbations in can-
cer. This process mainly involved five steps (Figure 1B).
Firstly, based on high-through ChIP-Seq datasets, TF–gene
bindings were obtained. As transcriptional regulation had
been demonstrated to be context specific (27–29), we thus
incorporated gene expression to identify the active TF–gene
regulation and constructed transcriptional network in each
cancer type. Next, the modified LncMod method was used
to identify lncRNA modulators in each cancer type (see de-
tails in methods). Finally, the identified lncRNA–TF–gene
triplets were classified into six patterns based on their activ-
ity changes. In total, about 6234 samples across 20 types of
cancer were analyzed in our study (Figure 2A). These can-
cer types were primarily involved in eight classes, includ-
ing brain (brain lower grade glioma, LGG; glioblastoma
multiforme, GBM), genitourinary (kidney chromophobe,
KICH; kidney renal clear cell carcinoma, KIRC; kidney re-
nal papillary cell carcinoma, KIRP; bladder urothelial car-
cinoma, BLCA; prostate adenocarcinoma, PRAD), Tho-
racic (lung squamous cell carcinoma, LUSC; lung adeno-
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carcinoma, LUAD), gastrointestinal (rectum adenocarci-
noma, READ; colon adenocarcinoma, COAD; stomach
adenocarcinoma, STAD; liver hepatocellular carcinoma,
LIHC), gynecologic system (cervical squamous cell carci-
noma and endocervical adenocarcinoma, CESC; ovarian
serous cystadeno carcinoma, OV; uterine corpus endome-
trial carcinoma, UCEC), breast cancer (BRCA), skin can-
cer (skin cutaneous melanoma, SKCM), and head and neck
cancer types (head and neck squamous carcinoma, HNSC;
thyroid carcinoma, THCA).

Based on genome-wide expression correlation analysis,
we identified cancer context-specific TF–gene regulatory in-
teraction. As a result, we observed that only a small pro-
portion (range from 1.14% to 35.15%) of transcriptional
regulation were active in a specific cancer context (Fig-
ure 2B). In addition, ∼30.51% (101 117/331 399) of these
TF–gene regulation were observed only in one cancer type;
just 0.66% (2219/331 399) regulation were active in >16
cancer types (Figure 2C). These results highlight the tran-
scriptional regulation specificity across cancer types. Next,
lncRNA modulators were identified in each cancer type.
However, we found that the majority of TF–gene regula-
tion remain stable and approximate 0.026% to 0.46% of all
possible lncRNA–TF–gene triplets were identified in these
cancer types (Supplementary Figure S1). Moreover, we ob-
served that although the proportion of TF–gene regula-
tion in SKCM is limited (Figure 2D), the proportion of
detected triplets in this cancer was higher than other can-
cers. This observation suggest that the widespread tran-
scriptional perturbations in this cancer type, which might
be caused by environmental stimulation. Next, we classified
the detected triplets in each cancer into six classes as one of
our previous studies (18). As shown in Figure 2E, the ma-
jority of lncRNAs regulated the TF activity in a fine man-
ner but not to alter the direction of TF regulation. Together,
the identified lncRNA–TF–gene triplet landscape provides
a valuable resource to investigate the functions of lncRNAs
across cancer types.

Conserved lncRNA modulators elucidate critical functions
across cancer types

The landscape of lncRNA-mediated transcriptional pertur-
bation allows us to investigate the distinct roles of lncRNA
across cancer types. We next investigated the extent to which
lncRNA mediated perturbation events contributed to can-
cer specificity. First, we computed the number of cancer
types that lncRNA modulators occurred. We found that
the distribution of this number follows a bimodal distri-
bution, indicating that there are distinct types of lncRNA
modulators (Figure 3A). LncRNA modulators tended to be
highly cancer type-specific, as 17% of the lncRNA modu-
lators were detected in only one cancer type (Figure 3A).
In addition, we found that the majority of these cancer
specific modulators were observed in LGG (24.26%) and
STAD (15.15%) (Supplementary Figure S2A). In contrast,
our analysis also revealed a small subset of lncRNA modu-
lators (n = 1580) that were detected across multiple cancer
types (>15 cancer types). Thus, we divided the modulators
into three groups based on the number of cancer types de-

Figure 3. Different types of lncRNA modulators and regulatory similarity
of cancer types with similar tissue origin. (A)The number of lncRNA mod-
ulators that occur in different number of cancer types. LncRNA modula-
tors are classified into three types: cancer specific modulators (occurring
in only one cancer type), moderate modulators (occurring in 2–15 can-
cer types) and pan-cancer modulators (occurring in more than 16 cancer
types). (B) The degree distribution of pan-cancer modulators and other
modulators across 20 types of cancer. Each cancer type is represented by
two boxes, while the below box is the degree distribution for pan-cancer
modulators and the above one is the distribution for other modulators.
***P < 0.001 and **P < 0.05, Wilcox rank sum test. (C) Tissue-specific
score distribution for different types of lncRNA modulators. (D) Conser-
vation score distribution for different types of lncRNA modulators. (E and
F) The biological processes enriched by genes in the common triplets iden-
tified in cancer types with similar tissue origin: LGG and GBM in (E), and
COAD and READ in (F).

tected: specific modulators, moderate modulators and pan-
cancer modulators (Figure 3A).

To determine their roles in cancer, we first compared
degree of these three types of modulators, which was de-
fined as the number of transcriptional regulation pertur-
bations they mediated. We found that pan-cancer modula-
tors were with significantly higher degree than other mod-
ulators (Figure 3B, P-value <0.05 for 18/20 cancer types,
Wilcox rank sum test), indicating that pan-cancer modula-
tors were likely to play pivot roles in cancer. Tissue specific
expression might contribute to the roles of lncRNA modu-
lators in cancer (30), we thus computed the tissue specific
index for lncRNA modulators based on expression in 20
tissues (see details in methods). We found that pan-cancer
modulators exhibited significantly lower tissue specific in-
dex (Figure 3C, P-values <0.05, Wilcox rank sum tests),
suggesting they were widely expressed across tissues. More-
over, we found that pan-cancer modulators were with higher
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conservation than moderate and specific modulators (Fig-
ure 3D, P-values <0.05, Wilcox rank sum tests). Taken to-
gether, these specific features of pan-cancer modulators fur-
ther highlight their critical roles in cancer.

Cancer types with similar tissue origins share lncRNA-
mediated transcriptional perturbation patterns

Lines of evidence have indicated that cancer types with sim-
ilar tissue origins share multiple molecular features, such
as protein coding gene expression, miRNA expression and
lncRNA expression (31–33). However, whether cancer types
with similar tissue origins exhibit similar lncRNA regula-
tory patterns is unknown. To address this question, we com-
puted a paired similarity score based on lncRNA mediated
transcriptional dysregulation events in each cancer. This
analysis indicated that cancer types with similar tissue ori-
gins showed similar lncRNA mediated transcriptional dys-
regulation patterns, such as LGG and GBM, COAD and
READ (Figure 3E and F, P < 1.0e–32, hypergeometric test).
These observations suggest that related mechanisms might
operate in cancer types with similar tissue origins.

To explore the conserved function of lncRNA modula-
tors in similar cancer types, we performed the functional
enrichment analysis based on the target genes of lncRNA
modulators mediated that were detected commonly. In to-
tal, 441 and 771 lncRNA–TF–gene triplets were identified
as common in these two types of cancer (Figure 3E and F,
up-panel). Functional analysis indicated that these lncRNA
modulators primarily play roles in cell cycle and immune
response pathways (Figure 3E–F and Supplementary Fig-
ure S2). These results indicate that lncRNA-mediated tran-
scriptional perturbation in cancer provides a predictor of
cytotoxic immune cell infiltration and cell cycle. Further-
more, lncRNA mediated transcriptional perturbation pro-
filing may help identify cancer patients most likely to re-
spond to immunotherapy.

LncRNA modulators with potential biomedical significance
across cancer types

Based on the genome-wide lncRNA expression profiles
across cancer types, we performed a comprehensive sur-
vey to assess the potential biomedical significance of lncR-
NAs. For 14 TCGA cancer types with available normal
samples, we found that large numbers of lncRNAs exhib-
ited significant differential expression between tumor and
normal samples (Figure 4A, FDR < 0.01, Student’s t-test).
Moreover, ∼7515 lncRNAs switched their expression pro-
files between tumor and normal samples were observed
(FDR < 0.01, Fisher’s exact test), extending the candidate
list for functional validation. In addition, we also randomly
perturbed the labels of the samples and recalculated the
Fisher’s exact test P-values, we found that all of those dif-
ferential expressed lncRNAs we identified were all with P-
values <0.05. However, we found that the majority (86.7–
98.3%) of the differentially expressed lncRNA modulators
were identified based on t-test. LncRNAs had been demon-
strated to have strong tissue specific expression patterns, we
next investigated the distribution of the differentially ex-
pressed lncRNAs across cancer types. This analysis revealed

Figure 4. Landscape of differentially expressed lncRNAs across cancer
types. (A)The proportion of differentially expressed lncRNAs in each type
of cancer. There are three bars for each cancer type, the first one shows
the proportion of lncRNAs with expression shift, the second one shows
the proportion of lncRNAs with expression switch on/off, and the third
one shows the union of the first and second ones. Purple, upregulated or
switch on; blue, down-regulated or switch off. (B) Pie charts show the pro-
portion of differentially expressed lncRNAs identified in different numbers
of cancer types. LncRNAs identified in more than 7 cancer types are re-
current lncRNAs. (C) Overlap of pan-cancer modulators and the recurrent
differentially expressed lncRNAs. P < 2.2e–16, hypergeometric test. (D)
The cancer hallmarks enriched by recurrent differentially expressed pan-
cancer lncRNA modulators. Each row represents an lncRNA and each col-
umn represents a Gene Ontology term. The size of the circles correspond
to different P-values (hypergeometric test). GO terms belong to the same
hallmarks are indicated by the green bars. (E) LncRNA PVT1 mediated
transcriptional regulation perturbations in cancer. White nodes represent
TFs, genes in different hallmarks are marked with different colors. (F) The
expression of PVT1 in normal and cancer samples across cancer types. (G)
LncRNA modulator CDKN2B-AS1 mediated transcriptional regulation
perturbations. (H) The expression of CDKN2B-AS1 in normal and cancer
samples. ***P < 0.001 and **P < 0.05, t-test.

that either the switched lncRNAs or differentially expressed
lncRNAs were cancer specific, 199 lncRNAs showed recur-
rent differentially expression in more than seven types of
cancer (Figure 4B).

Furthermore, the recurrent differentially expressed lncR-
NAs were significantly enriched in pan-cancer modulators
(Figure 4C, P < 1.0e–32, hypergeometric test). These 88
differentially expressed pan-cancer modulators were mainly
identified based on the t-test method. To further explore the
roles these pan-cancer lncRNA modulators, we performed
functional enrichment analysis of their mediated genes for
cancer hallmarks (Figure 4D). This analysis revealed one
or more hallmarks were enriched across different lncRNA
modulators. One example is PVT1, a long non-coding RNA
encoded by the human PVT1 gene, which is located in
the well-known cancer-related region 8q24 (34). Multiple
molecular mechanisms of action of this lncRNA were re-
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vealed (35–37), including participating in DNA rearrange-
ments, encoding miRNAs, and interacting with MYC. We
found that this lncRNA might mediate the transcriptional
regulatory perturbation of MYC to its target genes (Fig-
ure 4E). Expression analysis also revealed that this lncRNA
was differentially expressed in the majority (85.7% or 12/14)
of cancer types (Figure 4F, FDR < 0.05). Another exam-
ple is the antisense transcript CDKN2B-AS1, which is lo-
cated within the CDKN2A/CDKN2B tumor suppressor lo-
cus. A number of studies had demonstrated the expres-
sion dysregulation of this lncRNA (38–40). Here, we found
that this lncRNA mediated transcriptional perturbation of
many tumor associated genes, such as WNT5A, ERBB3 and
PRKCB, thus involved in the tissue invasion and metas-
tasis, sustained angiogenesis and self-sufficiency in growth
signal hallmarks (Figure 4G). This lncRNA was differen-
tially expressed in 85.7% (12/14) of cancer types (Figure 4H,
FDR < 0.05). Moreover, we also found some other cancer-
related lncRNAs that were annotated in LncRNADisease
(41) and Lnc2Cancer (42) can mediate transcriptional per-
turbations (Supplementary Table S3), such as AP000330.8,
DLEU2 (43) and VPS9D1-AS1 (44) (Supplementary Fig-
ure S3). These results indicate that identification of lncRNA
mediated transcriptional perturbation increased our under-
standing of the role of lncRNAs in tumorigenesis.

Potential drug targeted lncRNA modulators across cancer
types

Previous studies and our above results have indicated that
lncRNAs may affect normal gene expression and disease
progression, making lncRNAs as a new class of targets for
drug discovery (45,46). However, their mechanisms of ac-
tions are unknown. To identify drug-related lncRNAs in
cancer, we thus explored the association of lncRNA ex-
pression and drug activity in hundreds of cancer cell lines.
We downloaded the drug screening data from Cancer Cell
Line Encyclopedia (CCLE) (https://portals.broadinstitute.
org/ccle/home) and calculated the Spearman correlation co-
efficient between lncRNA expression levels and the IC50
values of 24 drugs. At the cutoff (absolute value) of 0.3, we
obtained the drug–lncRNA associations (Figure 5A). Anal-
ysis of these drug–lncRNA associations, we observed that
most (58.47% or 466/797) of the lncRNAs were associated
with one drug, while the expression of RBPMS-AS1 was
associated with eight drugs (Figure 5B). In contrast, five
drugs’ activities were only associated with the expression of
one lncRNA while six drugs’ activities were associated with
more than 50 lncRNAs (Figure 5C), suggesting their wide
therapeutic effects.

Moreover, we also discovered some lncRNA modulators
could regulate the expression of known drug targets. Hi-
stone deacetylases (HDAC) have been identified as ther-
apeutic targets due to their functions in regulating DNA
structure and organization (49). Panobinostat (also known
as LBH589) which is a novel inhibitor of class I and II
HDACs, and can also target HDAC7 (50,51). We observed
that the pan-cancer lncRNA modulator RP3–402G11.28
can mediated the regulation between NFKB1 and HDAC7,
and lncRNA high expression can regulate the expression
of HDAC7 (Figure 5D). Another example is the target

Figure 5. Drug activity related lncRNAs across cancer types. (A) The as-
sociation of drug activity and lncRNA expression in cell lines. Each dot
represents a pair of drug–lncRNA, and two lines indicate the correlation
coefficients as 0.3 and –0.3. (B) The number of lncRNAs associated with
different numbers of drugs. (C) The number of drugs associated with dif-
ferent numbers of lncRNAs. (D–F) Examples of lncRNA–TF–gene triplets
with distinct regulatory patterns. The cartoons show the regulatory pattern
of each triplet. The drugs that target the genes were marked. The below
boxplots shows the expression of TFs and genes in lncRNA high expres-
sion group and low expression group. The dot-lines show the correlation
between TF–gene in two subgroups. Green, lncRNA low expression group;
purple, lncRNA high expression group.

of Irinotecan-TOP1, which controls and alters the topo-
logic states of DNA during transcription (52). We found
that pan-cancer lncRNA modulator TMEM191A could
also regulate the expression of the drug target (Figure 5E),
these results suggest that combining the lncRNA with the
Irinotecan might contribute to the therapy of multiple types
of cancer. Moreover, alterations of cell cycle regulators
have been implicated in human cancer, including CDK6
(53). Here, we found that pan-cancer lncRNA modula-
tor RP11–490M8.1 could regulate the expression of CDK6
(Figure 5F). PD0332991 had been demonstrated to be an
orally active, highly selective inhibitor of CDK6 by blocking
retinoblastoma (Rb) phosphorylation (54). These results in-
dicated that PD0332991 might regulate the expression of
CDK6 synergistically with lncRNA RP11–490M8.1. Some
other representative examples were also illustrated in Sup-
plementary Figure S4. Taken together, these results sug-
gest that investigating the lncRNA mediated transcriptional
dysregulation might reveal some lncRNA molecular syn-
ergistically with small molecular drugs to regulate the ex-
pression of target genes, these lncRNA modulators might
be candidate noncoding drugs for therapy of cancer.

https://portals.broadinstitute.org/ccle/home
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Figure 6. Clinically associated lncRNA–TF–gene triplets across cancer
types. (A–C) Functions enriched by the genes regulated by multiple num-
ber of lncRNAs in cancer. (A) Chromosome organization; (B) regulation
of immune response and (C) DNA repair. (D) The framework for iden-
tification of survival-related triplets in each cancer type. (E) The survival
landscape of lncRNA–TF–gene triplets. X-axis, –log(P-value) in discov-
ery set and Y-axis, –log(P) in the validation set. Each dot represents a
triplet in each cancer type. Dots are marked by the same color as the can-
cer types. Two lines indicated P-value less than 0.05. (F) The lncRNA–
TF–gene clique identified in GBM. (G) Kaplan–Meier plot of survival for
GBM samples with different risk scores. (left) Discovery set; (middle) vali-
dation set; (right) independent dataset. The survival difference among clus-
ters is calculated by log-rank test. Red line, high-risk group; blue, low-risk
group.

Clinical relevance of tumor subtypes revealed by lncRNA
modulators

Our above analysis indicated that we could infer the func-
tions of lncRNA modulators based on their regulated genes.
Evidence in regulatory network biology analysis had sug-
gested that genes regulated by multiple regulators were with
critical roles in cancer (47). Thus, we investigated the func-
tions of genes regulated by multiple lncRNA modulators
in various types of cancer. Genes were ranked by the num-
ber of lncRNA modulators that regulated them and then
we ranked the genes by the mean rank in 20 types of can-
cer. Gene set enrichment analysis (GSEA) analysis (48) in-
dicated that genes regulated by multiple modulators were
enriched in chromosome organization (Figure 6A, FDR =
0.003), regulation of immune response (Figure 6B, FDR
= 0.004) and DNA repair (Figure 6C, FDR = 0.010),
regulation of angiogenesis and cell migration (Supplemen-
tary Figure S5A–C). These results suggest widespread tran-
scriptional dysregulation of immune genes and DNA repair
genes.

Previous studies and our current results demonstrated
that lncRNA modulators are expressed in a tissue-specific
fashion and undergo expression changes during cancer de-
velopment or progression. These specific properties render
them valid candidates as prognostic biomarkers. We thus
integrated the clinical data to explore the prognostic asso-

ciated lncRNA–TF–gene triplets (Figure 6D). Tumor sam-
ples in each cancer type were randomly divided into discov-
ery and validation sets without age and sex difference. Next,
we trained a model in the discovery set and tumor samples
in the discovery set were classified as low-risk group and
high-risk group based on a risk score (see details in Materi-
als and Nethods). lncRNA–TF–gene triplets with log-rank
P-values <0.01 in both discovery and validation sets were
identified as clinical associated triplets. For all 20 cancer
types, we identified 7.68% clinical-associated triplets (Fig-
ure 6E) and the majority of triplets were discovered in LGG
(Supplementary Figure S5D, 75.8%) and KIRC (21.1%).

Interestingly, we identified TPTEP1-JUN-DDR2 triplet
was associated with patients’ survival in discovery (Supple-
mentary Figure S5E, P = 9.97e–5, log-rank test) and valida-
tion sets (P = 5.34e–4, log-rank test). TPTEP1 was identi-
fied as a pan-cancer modulator here, which is a pseudogene
and had been demonstrated to be differentially expressed in
cancer (49). In addition, DNA repair gene DDR2 had been
found to regulate several cellular functions including cell
adhesion and migration, and proliferation (50,51). Next, we
validated the prognostic effect of this triplet in another in-
dependent Chinese LGG dataset (52). We found that the ex-
pression of this triplet could also distinguish tumor samples
with different survival time (Supplementary Figure S5E, P
= 2.98e–12, log-rank test). Next, we constructed a network
by linking the survival-related triplets that share at least two
elements. Several triplet-cliques were identified in GBM.
For instance, one clique mainly mediated by LEF1-AS1
(Figure 6F) was identified to be associated with survival in
discovery (Figure 6G, P = 0.004, log-rank test) and valida-
tion set (Figure 6G, P = 0.005, log-rank test). It was also
validated in another Chinese dataset (52), which including
100 GBM tumor samples (Figure 6G, P = 0.001, log-rank
test). These transcriptional regulation were mainly involved
the transcription factor CEBPA, which had been found to
control genes of the mesenchymal signature of gliomas and
FBP1 physically interacts with p53, functions as a regula-
tor of p53-regulatory proteins (53). We also identified an-
other prognostic related triplet-clique which was mediated
by C20orf166-AS1 (Supplementary Figure S5F and G) in
GBM. Specifically, we found that the log-rank P-values for
the cliques were less than those of individual elements in
both discovery, testing and independent datasets. These re-
sults suggest the critical roles of these triplet-cliques in can-
cer and provide potential clinical usage of these biomarkers.

A user-friendly web interface for exploring the lncRNA-
mediated transcriptional perturbations across cancer types

In order to facilitate the researchers to use the lncRNA
mediated transcriptional perturbation resource in 20 types
of cancer, we constructed a user-friendly web interface
LncMAP (LncRNA Modulator Atlas in Pan-cancer, http:
//www.bio-bigdata.com/LncMAP), which allows users to
flexibly obtain information about their lncRNAs of interest.
This resource is valuable for both experimental and compu-
tational researchers. This platform provides a web interface
for users to search and download data sets in the database
(Supplementary Figure S6). Specifically, we provided exper-
imental users several ways to query the lncRNA mediated

http://www.bio-bigdata.com/LncMAP
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transcription perturbations as well as their association with
the drug activity. First, users can query the platform for ex-
ploring the triplets that involved the interesting lncRNA,
TF or target gene in specific cancer type. When input an in-
teresting lncRNA, TF or gene, this platform will return a
list of matched entries. The results included all the parame-
ters used for identification of the lncRNA–TF–gene triplets,
including the Z-scores in two groups and the regulatory pat-
tern of the triplets. Moreover, we stored the drug–lncRNA
associations in this platform. Then, the users can generate
or download the detailed annotations for listed entries to
explore the association between lncRNAs and drug activ-
ities. In the search result page, the correlation coefficients
and P-values were also listed.

In order to facilitate the users to explore the clinically
associated lncRNA–TF–gene triplets in specific cancer, we
provided the search interface for users to find the sur-
vival information of the interesting triplets. The log-rank
P-values in discovery and validation sets for each triplets
were included in the searching result page. Moreover, we
also provided the tool for users to obtain the transcriptional
regulation among TFs and genes in specific cancer context.
Specifically, we also provided several ways for visualization
of the expression of interesting lncRNAs, TFs and genes,
the TF–gene correlation changes mediated by lncRNAs,
network of TF–gene regulation, and network visualization
of drug–lncRNA associations (Supplementary Figure S6).
These visualization provided flexible ways for global view of
the lncRNA functions in cancer. All data in the resource can
be freely downloaded from the ‘download’ page for further
computational analyses. A detailed tutorial for the usage of
the resource is available in the ‘Help’ page.

DISCUSSION

Transcription regulatory network perturbations were
widely observed in various types of cancer. Identification
of determinants that mediated such perturbations is one of
the major challenges in cancer biology (54). In this study,
we have introduced a computational framework for identi-
fication of lncRNA-mediated transcription perturbations
in a diverse set of cancer types by integrating genome wide
transcriptional regulation with gene expression datasets.
The diversity of the perturbed transcriptional regulation,
and their association with specific lncRNA modulators
highlight the broad heterogeneity underlying various cancer
types. The majority of the active transcriptional regulation
and the lncRNA modulators were cancer specific. Applied
the proposed method to 20 types of cancer, we identified
widespread transcriptional regulation mediated by lncR-
NAs and identify three types of lncRNA modulator, in
which pan-cancer lncRNA modulators were with critical
functional features, including tissue-specific expression and
high conservation. Moreover, we also identify the drug-
related and survival related lncRNA-TF-triplets in various
types of cancer. All these results were provided in a user
friendly resource for both computational and biological
researchers, which will deepen our understanding of the
roles of lncRNAs in cancer.

Despite this heterogeneity, our analysis also identified a
type of lncRNA modulators that mediated transcription

perturbations in multiple types of cancer (pan-cancer mod-
ulators). These lncRNA modulators mediated widespread
transcription perturbations and widely expressed in multi-
ple tissues, were much more conserved. All these features
highlighted their critical roles in cancer. Moreover, our pan-
cancer analysis revealed that cancer types with similar tis-
sue origin significantly shared lncRNA-mediated transcrip-
tion perturbations. These lncRNAs were mainly involved
in cell cycle and immune response pathways. These discov-
eries related to lncRNAs would provide a comprehensive
understanding of immune regulation and provide novel in-
sights into the lncRNA-based immune therapy. Moreover,
integrated the genome wide lncRNA expression we found
that these pan-cancer lncRNA modulators show perturbed
expression in multiple cancer types. Our analyses also pre-
dict the involvement of many known lncRNA regulators
(such as PVT1 and CDKN2B-AS1) in cancer-associated
pathways, thus revealing putative onco-lncRNAs and tu-
mor suppressors, and yielding potential drug target candi-
dates.

Based on the drug activity screen data, we also revealed
the associations among lncRNA modulators and cancer
drugs. The ability of lncRNAs to fine-tune gene expres-
sion makes them as potential targets for drug development.
However, the process for drug discovering is never easy. Un-
certainty about how lncRNAs function makes the identifi-
cation and development of lncRNA based drug target even
more challenging (55). Our analyses not only revealed the
associations between specific lncRNA and drug, but also
provided the potential functional pattern of this lncRNA.
As our understanding of lncRNAs mediated transcriptional
perturbation and their regulatory mechanisms improve, de-
sign of effective lncRNA based target will gain a firmer
foundation and the likelihood of clinical success to cure can-
cer will increase.

Moreover, we found the majority of the lncRNA regu-
lated genes were enriched in DNA repair and immune re-
sponse. These observations indicated the widespread per-
turbations of DNA repair and immune functions in cancer.
The rapidly advancing field of cancer immunology has pro-
duced several new methods for treating cancer, called im-
munotherapies, which increase the strength of immune re-
sponses against tumors (56). The identified lncRNA mod-
ulators as important regulators of immune genes have shed
light on our understanding of the link between lncRNA
world and immune regulation. To facilitate users to ana-
lyze the immune-related lncRNA modulators, we obtained
the immune-related genes from ImmPort project (57) and
provided these triples as an independent resource (Supple-
mentary Table S4). Finally, further stratification of cancer
patients based on their lncRNA–TF–gene triplets identifies
different subtypes with distinct clinical features, including
survival rates.

In summary, we have systematically characterized
widespread lncRNA-mediated transcription perturba-
tions across cancer types and presented an integrative
computational method to identify lncRNA modulators
that mediated such perturbations. Our method and results
presented here will be useful for investigators who explore
the functions of lncRNAs through rapidly emerging next-
generation sequencing applications in cancer. We hope that
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the method and resource that we provide here will serve as
an inspiration for future investigating lncRNA functions in
diverse cancer types.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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