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Abstract
Background: Obtaining quantitative predictions for cellular metabolic activities requires the
identification and modeling of the physicochemical constraints that are relevant at physiological
growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it
limits the solvent capacity available to metabolic enzymes.

Results: Using a recently introduced flux balance modeling framework (FBAwMC) here we
demonstrate that this constraint determines a metabolic switch in E. coli cells when they are shifted
from low to high growth rates. The switch is characterized by a change in effective optimization
strategy, the excretion of acetate at high growth rates, and a global reorganization of E. coli
metabolic fluxes, the latter being partially confirmed by flux measurements of central metabolic
reactions.

Conclusion: These results implicate the solvent capacity as an important physiological constraint
acting on E. coli cells operating at high metabolic rates and for the activation of a metabolic switch
when they are shifted from low to high growth rates. The relevance of this constraint in the context
of both the aerobic ethanol excretion seen in fast growing yeast cells (Crabtree effect) and the
aerobic glycolysis observed in rapidly dividing cancer cells (Warburg effect) should be addressed in
the future.

Background
Understanding an organism's metabolism at a system
level requires knowledge of the physicochemical con-
straints limiting its metabolic capabilities under different
growth conditions, and the genetic regulatory mecha-

nisms that ultimately allow it to adapt to a changing envi-
ronment. In some cases there is an obvious connection
between an environmental change and the regulatory
mechanisms responding to it, an example being a switch
from aerobic to anaerobic growth [1]. However, there are
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constraints leading to less obvious metabolic changes,
involving a complex global rearrangement of the cell's
metabolism. A key aim of systems biology is to uncover
the metabolic constraints determining such complex phe-
notypic changes, which can be understood only when the
system is analyzed at a global scale [2-4].

In the absence of cell-scale kinetic models, flux balance
analysis (FBA) provides experimentally testable predic-
tions on an organism's metabolic flux state [4-8], which
are based on conservation principles, particularly mass
conservation, and metabolic capacity constraints. The
impact of local constraints, such as uptake capacities, have
been investigated [4-7], and capacity constraints over full
metabolic pathways have been considered as well [9].
Moreover, it has been hypothesized that the high concen-
tration of macromolecules in the cell's cytoplasm imposes
a global constraint on the metabolic capacity of an organ-
ism [10,11]. More recently, we demonstrated that the key
quantity is the total intracellular volume available to met-
abolic enzymes that result in a limited solvent capacity
[12]. The addition of the solvent capacity constraint to a
FBA model allowed us to explain, within a metabolic effi-
ciency framework, the hierarchy of substrate consumption
of E. coli cells growing in a mixture of carbon sources [12].
On the other hand, the pattern of substrate consumption
can also be reproduced by superimposing regulatory
information obtained e.g., from microarray data [13].
Taking together, these results indicate that the FBA model
together with the solvent capacity constraint can be used
to predict the regulatory mechanisms and, equally impor-
tantly, to understand their advantage in terms of meta-
bolic efficiency and constraints. It is not clear, however, if
the limited capacity constraint play a role at other physio-
logical growth conditions, e.g., when nutrients are scarce.

Here we study the impact of the limited solvent capacity
on E. coli cell metabolism at different physiological
growth conditions. We demonstrate that this constraint is
relevant for fast growing cells, and predict the existence of
a metabolic switch between cells growing at low and high
nutrient abundance, respectively. We carry out flux meas-
urements of several reactions in the E. coli central metab-
olism, observing a partial agreement with the model
predictions. Moreover, to uncover the regulatory mecha-
nisms that control the changes in flux rates, we perform
gene expression and enzyme activity measurements, find-
ing that the switch is controlled predominantly at the
enzyme activity level implemented by changes in the
activity of a few key enzymes in the E. coli central metab-
olism. Finally, we discuss the potential relevance of the
limited solvent capacity constraint to experimental obser-
vations in other organisms.

Results
Limited solvent capacity constrains the metabolic rate of 
fast growing E. coli cells
The cell's cytoplasm is characterized by a high concentra-
tion of macromolecules [14] resulting in a limited solvent
capacity for the allocation of metabolic enzymes. More
precisely, given that the enzyme molecules have a finite
molar volume vi only a finite number of them fit in a given
cell volume V. Indeed, if ni is the number of moles of the
ith enzyme, then

where the inequality sign accounts for the volume of other
cell components and the free volume necessary for cellu-
lar transport as well. Dividing by cell mass M we can refor-
mulate this inequality in terms of the enzyme
concentrations Ei = ni/M (moles/unit mass), resulting in

where C = M/V is the cytoplasmic density. An enzyme
concentration Ei results in a flux fi = biEi over reaction i,
where the parameter bi is determined by the reaction
mechanism, kinetic parameters, and metabolite concen-
trations. Therefore, the enzyme concentration constraint
(Eq. 2) is reflected in the metabolic flux constraint

where

Since the coefficients ai (units of inverse flux) quantifies
the contribution to the overall crowding by reaction i we
refer to them as the 'crowding coefficients'.

To understand the relevance of the constraint (Eq. 3) at
physiological growth conditions we first estimate the
crowding coefficients (Eq. 4) using data from experimen-
tal reports. The E. coli cytoplasmic density of macromole-
cules is C = 0.34 g/ml [15], while the molar volumes of
proteins are proportional to their molar masses [16]. The
coefficient of proportionality represents the specific vol-
ume and it is about 0.73 ml/g. This empirical law allows
us to compute the molar volumes of E. coli enzymes from
their molar masses. As a first approximation we estimate
bi, the coefficient of proportionality between reaction rate
and enzyme concentration, from the enzyme's turnover
numbers. Data obtained from the BRENDA data base [17]
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for about hundred E. coli enzymes (Additional file 1)
shows that the turnover numbers vary over five orders of
magnitude (Fig. 1a), from 10-2 to 102 1/s. Using these
parameter estimates we compute the crowding coeffi-
cients ai for about a hundred E. coli enzymes (Fig. 1b),
resulting in an average and standard deviation of 0.014
and 0.009 1/[mmol/g/h], respectively. Because of the
large enzyme turnover variations the crowding coeffi-
cients are distributed over a wide range as well, from 10-6

to 100 1/[mmol/g/h] (Fig. 1b).

FBAwMC predicts a change of effective metabolic 
efficiency objective
Having estimated the crowding coefficients we next eval-
uate the relevance of the solvent capacity constraint (Eq.
3) at physiological growth conditions. To this end we uti-
lize a FBA model of E. coli MG1655 metabolic network
that takes into account this constraint referred to as 'flux
balance analysis with molecular crowding' (FBAwMC)
[12]. Under conditions of aerobic growth in a glucose-
limited medium, FBAwMC predicts a saturation of the
glucose uptake rate and the growth rate (Fig. 2a,b) with
increasing the glucose uptake capacity. The predicted max-
imum glucose uptake rate (~15 mmol/g/h) and maxi-
mum growth rate (~0.7 h-1) are within the range of
experimentally determined values [18], corroborating our
previous report [12] that the solvent capacity constraint
(Eq. 3) is relevant at physiological conditions.

Associated with the predicted saturation of E. coli meta-
bolic rates, FBAwMC predicts a metabolic switch charac-

terized by a change in the effective criteria of metabolic
efficiency. At low growth rates the ratio between the bio-
mass production rate and the glucose uptake rate is at a
maximum but decreases with increasing the growth rate.
In contrast, the ratio between the biomass production rate
and the average reaction rate increases with increasing the
growth rate, reaching a maximum at high growth rates. In
agreement with our expectations, at low growth rates
nutrients are scarce and the best strategy for a cell is to
maximize the biomass production rate per unit of limiting
nutrient (in this case, glucose) uptake rate. In contrast, at
high growth rates the nutrients are abundant, the pre-
dicted metabolic rate is limited by the solvent capacity
constraint (Eq. 3) and, therefore, the maximum growth
rate is achieved by maximizing the biomass production
rate per average reaction rate (Fig. 2c). The predicted
change in metabolic efficiency objective is accompanied
by a redistribution of the metabolic fluxes, including
those of exchange fluxes. Indeed, a characteristic example
is the predicted excretion of acetate at high growth rates
(Fig. 2d) that is well supported by experimental observa-
tions [9,19,20].

FBAwMC-predicted metabolic fluxes are within the range 
of experimental values
FBAwMC is also able to predict internal metabolic fluxes
as a function of the growth rate. A subset of the FBAwMC-
derived flux predictions in the central carbon metabolism
are shown in Figure 3. In most cases the FBAwMC pre-
dicted fluxes are within the range of experimentally deter-
mined values. This is a striking result given that this

Estimating the crowding coefficients of E. coli metabolic enzymesFigure 1
Estimating the crowding coefficients of E. coli metabolic enzymes: (a) Distribution of turnover rates of E. coli 
enzymes as obtained from the BRENDA data base [17]; (b) Distribution of crowding coefficients among a hundred E. coli 
enzymes, as obtained using Eq. 4.
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implementation of FBAwMC does not contain any free
paremeters. The only model parameters are the crowding
coefficients, which were determined above using inde-
pendent experimental results. We should also note that
the observed wide variability around the average behavior
(Fig. 3, experimental error bars) is not a shortcoming of
our modeling framework but is due to our current inabil-
ity to obtain a direct estimate for all crowding coefficients
(due to incomplete information available on various
kinetic parameters). Thus, further testing of our predic-
tions will be necessary upon availability of better esti-
mates for the crowding coefficients.

Limiting our analysis to the expected behavior, we observe
a slope change for several fluxes when reaching the high-
est growth rates. The reactions of the glycolytic pathway,
the flux towards the pentose-phosphate pathway via the
reaction catalyzed by the gene product of zwf, and the ace-
tate pathway switch at high growth rates to a faster flux
increase with increasing the growth rate (Fig. 3). The
experimental values corroborate this qualitative behavior,
but the change is bigger for the ptsG-catalyzed reaction
and even qualitatively different for the pykA-catalyzed
reaction, both being part of the glycolytic pathway. A sec-
ond noticeable effect is the predicted saturation of the

The signatures of the predicted metabolic switchFigure 2
The signatures of the predicted metabolic switch: The glucose uptake rate (a) and growth rate (b) as a function of the 
glucose uptake capacity, as obtained from the FBAwMC model. The line represents the average behavior and the error bars 
represent the standard deviation over 1,000 choices of crowding coefficients. (c) Flux ratios illustrating the switch in metabolic 
efficiency objective from low to high growth rates. At low growth the biomass rate per unit of uptake rate (circles) is at a max-
imum, while the biomass rate per unit of average rate is at a maximum at high growth rates (squares). (d) Acetate excretion 
rate as a function of the growth rate. At high growth rates the prediction for acetate excretion is sensitive to the crowding 
coefficients uncertainty, resulting in the large error bars.
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Predicted vs. measured metabolic fluxes in the E. coli central metabolismFigure 3
Predicted vs. measured metabolic fluxes in the E. coli central metabolism. Comparisons between the FBAwMC-pre-
dicted- (orange plots) and measured (blue plots) fluxes as a function of growth/dilution rates for selected reactions in the cen-
tral carbon metabolism of E. coli. The experimental flux measurements were performed at dilution rates 0.1, 0.25, 0.4, 0.55 and 
0.72 h-1. Selected reactions of glycolysis (red boxes), the first reaction of the pentose phosphate pathway (zwf) (magenta box), 
the TCA cycle (blue boxes), acetate excretion pathway (green boxes) and the reactions catalyzed by ppc and aceE connecting 
the glycolytic- and TCA pathways (yellow boxes) are shown. The solid black circles represent the denoted metabolites while 
the black arrows represent metabolic reactions labeled by the genes encoding the enzymes catalyzing the respective reactions 
(see Table S1 in Additional file 4 for the list of abbreviations and information on enzymes encoded by listed genes). The error 
bars for predicted fluxes indicate the standard deviation over 1,000 choices of the crowding coefficients among the list of val-
ues estimated for ~100 E. coli enzymes, whereas the error bars for the experimental fluxes represent the standard deviations 
for three independent measurements.
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TCA cycle flux at high growth rates. The experimentally
measured values of the TCA cycle flux exhibit, however, a
stronger effect characterized by a decreasing tendency at
high growth rates (Fig. 3). Taken together these results
indicate that while for most reactions the FBAwMC pre-
dictions are within the range of experimental measure-
ments, a method for a more accurate estimate of the
crowding coefficients on a network scale will be required
to provide more precise predictions.

Identifying the regulatory mechanism(s) that control the 
action of the metabolic switch
To examine if the changes in growth conditions and the
corresponding adjustments in cellular metabolism can be
traced by distinct molecular signatures we next measured
the in vitro activity of eighteen selected enzymes (Addi-
tional file 2) that catalyze reactions in the central carbon
metabolism of E. coli MG1655, and correlate their
changes with those observed for the measured flux rates
(Fig. 4). For several enzymes there is a good correlation
between the measured enzyme- and flux activities (Pear-
son Correlation Coefficient, PCC, close to- or larger than
0.8). For example, with an increasing growth rate the
enzyme activity of the ptsG and pfkA gene products follow
the same increasing tendency as the fluxes of the corre-
sponding metabolic reactions (PCC = 0.79 and 0.85,
respectively). (The glycolytic flux is known to be control-
led by the activity of these two enzymes while other reac-
tions adjust their fluxes through changes in metabolite
concentrations [21]). In contrast, we found no significant
correlation between the measured fluxes and enzyme
activities of the TCA reactions (PCC = 0.64, 0.35, -0.03
and -0.28 for enzymes associated with gltA, sucA, fumA
and mdh, respectively), implying that the TCA flux is con-
trolled by the activity of enzymes catalyzing reactions out-
side this pathway. A possible candidate to exert this action
is the acetate pathway. Indeed, an increase of the flux on
the acetate pathway towards the production of acetate can
balance both the increase in the flux originating from the
glycolytic pathway through aceE and a decrease in the flux
from Acetyl-CoA to the TCA cycle. This hypothesis is sup-
ported by the increase in the enzyme activity of phospho-
transacetylase (pta) when the growth rate increases
beyond 0.4 h-1 (PCC = 0.98), which is exactly the growth
rate threshold where the switch is taking place.

In parallel with the enzyme activity measurements we also
prepared mRNA from samples obtained at all five dilution
rates and processed them for microarray analysis. The full
microarray data set is presented in the Additional file 3
and its detailed analysis is presented in Additional file 4
(SI text 5–8). In contrast to the observed overall correla-
tion between measured fluxes and in vitro enzyme activi-
ties we do not observe a significant correlation between
the measured metabolic fluxes and the relative changes in

mRNA levels of enzyme-encoding genes (SI Fig. S5 in
Additional file 4), implying that the switch and corre-
sponding enzymatic functions are not predominantly
controlled at the transcriptional level. Correspondingly,
no significant correlation between the in vitro enzyme
activities and the relative changes in mRNA levels of
enzyme-encoding genes can be seen (SI Fig. S5 in Addi-
tional file 4). Taken together these results indicate that the
metabolic switch is predominantly controlled by an
increase in the enzyme activities of the end products of
ptsG and pfkA controlling the glycolysis flux, and pta con-
trolling the acetate pathway flux, respectively.

Discussion
Developing a modeling framework that can describe and
predict in a quantitative manner the experimentally
observed behavior of an organism is a significant chal-
lenge for systems biology. One prerequisite of this goal is
to uncover the physicochemical constraints exerting the
main influences on cellular metabolism [4]. Our results
here and in Ref. [12] indicate that the limited solvent
capacity represents a physiologically relevant constraint
for fast growing E. coli cells. The incorporation of this con-
straint to the FBA modeling framework leads to the
FBAwMC model whose predictions indicate that the sol-
vent capacity constraint results in a maximum glucose
uptake rate and growth rate that are within the range of
experimentally determined values. The flux predictions
for several reactions of the E. coli metabolism are within
the range of our measurements, as well.

From the perspective of quantitative modeling using flux
balance approximations, the solvent capacity constraint
forces us to consider reaction kinetics via the crowding
coefficients, at least for fast growing cells. At low meta-
bolic rates the solvent capacity constraint is less relevant
and flux balance alone is sufficient to obtain satisfactory
predictions. In contrast, at high metabolic rates a precise
knowledge of the crowding coefficients is required to
obtain accurate predictions. In the absence of kinetic
information we can still obtain a good approximation by
sampling the crowding coefficients from a list of esti-
mated values and then focus on the resulting general
trend.

More importantly, the solvent capacity constraint allows
the interpretation of the metabolic switch taking place
between slow and fast growing E. coli cells. A recent study
of FBA models with different objectives demonstrates that
under nutrient scarcity a FBA model with the maximiza-
tion of the biomass yield objective achieve the highest
predictive accuracy, while maximizing the ATP or biomass
yield per average flux unit is the best objective for unlim-
ited growth on glucose under aerobic conditions [22]. In
contrast, by considering the solvent capacity constraint we
Page 6 of 10
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Comparison of measured metabolic fluxes and in-vitro enzyme activitiesFigure 4
Comparison of measured metabolic fluxes and in-vitro enzyme activities. Measured flux rates (blue, mmol/h/g dry 
biomass) and in vitro enzyme activities (red, U/mg protein) on two separate Y-axes of selected reactions in the central metabo-
lism of E. coli are shown as a function of growth/dilution rates (X-axis). All labels are as in Figure 3. Additional file 2 shows the 
actual data on measured enzyme activities. The error bars for the experimental flux and enzyme activity plots are a result of 
three independent measurements.
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obtain the same results using the maximization of bio-
mass production rate objective alone (Fig. 2c). This is
more consistent with the expectation that cells achieving
the fastest growth rates outgrow cells growing at a slower
rate, but how the highest growth rate is achieved is deter-
mined by both the availability of substrates and internal
metabolic constraints, such as the solvent capacity. Fur-
thermore, the well-known acetate excretion [9,19,20] is
explained by the solvent capacity constraint as well. We
should note, however, that this does not exclude the pos-
sibility that under certain physiological conditions acetate
excretion may result from a limited availability of oxygen
in the culture medium [23].

Conclusion
From a more general perspective the results reported in
this study further implicate the limited solvent capacity as
an important constraint acting on the metabolism of cells
operating at high metabolic rates. Thus, the relevance of
this constraint will also need to be examined in the con-
text of the observed aerobic ethanol excretion of fast grow-
ing yeast cells (Crabtree effect) [24] and aerobic glycolysis
in fast growing mammalian cells, particularly tumor cells
(Warburg effect) [25]. The common theme of these effects
is that (i) they occur in fast growing cells and (ii) that in
the presence of oxygen cells partially switch to anaerobic
metabolism, resulting in the excretion of metabolic
byproducts. Yet, the role of other proposed effects, such as
a limit on attainable mitochondrial respiration [26] and
available oxygen [23], cannot be excluded and, therefore,
should be subject to further studies.

Methods
Estimation of crowding coefficients
The E. coli intracellular density is C = 0.34 g/ml [15]. The
specific volume was estimated for several proteins using
the molar volumes and masses reported in Ref. [16],
resulting in average of 0.73 ml/g and standard deviation
of 0.02 ml/g. The enzymes' turnover rates were obtained
from the BRENDA database [17] for 102 E. coli enzymes.

Metabolic flux predictions
The Flux Balance analysis with Molecular Crowding [12]
is implemented by solving the following optimization
problem: maximize the biomass production rate subject
to the constraints: balance in the production and con-
sumption of each metabolite (flux balance), the maxi-
mum capacity constraint for the carbon source uptake rate
and the solvent capacity constraint (Eq. 3). After express-
ing the reaction's stoichiometric coefficients in units of
mol/dry biomass, the maximum growth rate corresponds
to the biomass production rate, where biomass produc-
tion is an auxiliary reaction containing as substrates the
cellular components in their relative concentrations and
as product the cell's biomass. The crowding coefficients

were modeled as noise, assigning them randomly selected
values from a list of estimated values for about hundred E.
coli enzymes (Additional file 1). The predictions for all
fluxes are provided in Additional file 5.

Bacterial strain and general growth conditions
The E. coli K12 strain MG1655 (F- λ- ilvG rfb50 rph1) was
used throughout the work. In order to obtain biomass
samples for flux measurements, 20-ml of the overnight
grown culture (~8–10 h) of wild-type cells in LB-medium
was inoculated in 980-ml M9 minimal medium (Sigma)
containing 2 g/L glucose, where 90% was natural glucose
and the remaining 10% was labeled glucose [1,2-13C2]-
glucose (with >99% purity and 99% isotope enrichment
for each position, [Cambridge Isotope Laboratories,
Andover, MA]). Cells were grown in a continuous growth
mode at 5 different dilution rates (0.1, 0.25, 0.4, 0.55, and
0.72 L h-1) in a Labfors bioreactor (Infors, Switzerland).
The growth of the bacterial culture was regularly moni-
tored at A600nm to document steady state, as described in
Additional file 4 (SI text 3 and SI Fig. S7)

Metabolic enzyme activity assays
For determining metabolic enzyme activities from three
separate experiments, the cell pellets (collected at all five
dilution rates) were first resuspended and washed in 100
mM Tris-HCl (pH 7.0) sonication buffer containing 20
mM KCl, 5 mM MnSO4, 2 mM DTT and 0.1 mM EDTA,
and then disrupted in a sonicator by 3 sonication cycles of
30 sec each. The cell debris was removed by centrifugation
and the resulting cell extract (supernatant) was immedi-
ately used for enzyme assays or stored at -20°C. All subse-
quent steps were carried out on ice. Supernatants of the
samples were used for quantitative assaying of endog-
enous enzyme activities by continuous spectrophotomet-
ric rate determination at 30°C in a thermostatically
controlled spectrophotometer (Cary 500) with 1-cm light
path, as described in the Additional file 4 (SI text 3).
Supernatants of the samples were also used for determin-
ing total protein concentrations using standard Bradford's
assay (BioRad).

Flux measurements and analyses
For flux analysis, biomass (from ~100 ml culture) and
supernatant samples were collected at all five dilution
rates. These samples were immediately flash frozen in liq-
uid nitrogen and stored at -80°C until further analysis.
Flux rates were determined using a tracer-substrate based
GC-MS and NMR metabolome mapping platform. The
analyses included determining positional 13C tracer
enrichment in multiple intermediary metabolites of glyc-
olysis, glycogen synthesis, tricarboxylic acid cycle and
their intracellular products from [1,2-13C2]-D-glucose, as
described in detail in Additional file 4 (SI text 4). The
retention times and mass-to-charge (m/z) ion clusters of
Page 8 of 10
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selected ions of bacterial and culture media metabolites
were determined using mass isotopomer analysis (MIDA)
[27,28], and expressed as net fluxes by subtracting reverse
fluxes from forward tracer incorporation patterns via
reversible metabolic steps [29]. Results were expressed as
mmol/hr/g dry biomass glucose. Each experiment was car-
ried out using triplicate cell cultures for each condition
within each experiment, and the experiments were
repeated once. Mass spectroscopic analyses were carried
out by three independent automatic injections of 1 µl
samples by the automatic sampler and accepted only if the
standard sample deviation was less than 1% of the nor-
malized peak intensity. Statistical analysis was performed
using the Student's t-test for unpaired samples. Two-tailed
significance at the 99% confidence interval (µ +/- 2.58σ),
p < 0.01 indicated significant differences in glucose-
derived fluxes. For some reversible reactions, we measured
both forward and reverse fluxes and calculated net fluxes
towards product synthesis.

RNA preparation for microarray analysis
At all five dilution rates, 10–20 ml of the cell culture was
collected, mixed with 10% (v/v) of ice cold stop-solution
(5% water-saturated phenol in absolute ethanol), and cell
pellets were obtained by centrifugation at 4,500 × g for 5
min at 4°C, followed by flash-freezing of pellets with liq-
uid nitrogen. Cell pellets were stored at -80°C until fur-
ther use. RNA was isolated from the frozen cell pellets
using Masterpure RNA isolation kit (Epicentre Biotech-
nologies, Madison, WI) and RNA samples were processed
for transcriptome analysis using E. coli Affymetrix micro-
array chips, as described previously [12]. Dchip method
was used to analyze all microarray data as described in
Additional file 4 (SI text 5–8).
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