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Abstract: Poly(vinyl chloride) (PVC) undergoes photodegradation induced by ultraviolet (UV)
irradiation; therefore, for outdoor applications, its photostability should be enhanced through the
use of additives. Several carvedilol tin complexes were synthesized, characterized and mixed with
PVC to produce thin films. These films were irradiated at 25 ◦C with a UV light (λ = 313 nm) for up
to 300 h. The reduction in weight and changes in chemical structure and surface morphology of the
PVC films were monitored. The films containing synthesized complexes showed less undesirable
changes than the pure PVC film. Organotin with a high content of aromatics was particularly efficient
in inhibiting photodegradation of PVC. The carvedilol tin complexes both absorbed UV light and
scavenged radicals, hydrochloride, and peroxides and, therefore, photostabilized PVC.

Keywords: carvedilol–tin complexes; poly(vinyl chloride); photostabilizers; surface morphology;
weight loss; functional group indices

1. Introduction

Poly(vinyl chloride) (PVC) has numerous industrial applications [1]. It is one of the
three most manufactured thermoplastics [2]. PVC has received considerable attention due
to its low cost, long duration, good mechanical and chemical stability, ease of molding,
and ability to be produced in different forms (rigid and flexible) [3,4]. It is widely used
for the production of items such as medical equipment, toys, construction materials, food
packaging, and disposable blood bags [2]. It is considered to be an excellent alternative to
glass and wood in many applications [5].

PVC undergoes autocatalytic dehydrochlorination when exposed to a high tempera-
ture. This results in the formation of conjugated double bonds because of the elimination
of hydrogen chloride (HCl) [6]. Therefore, the photostability of PVC is poor, and it must be
mixed with appropriate photostabilizers to inhibit its decomposition and photooxidation.
Various types of thermal stabilizers are used for PVC [7]. Recent research has focused on
the production and use of organic PVC photostabilizers that are inexpensive to produce,
can be used at low concentrations, and are non-toxic. Various types of small molecules
are mixed with PVC to serve as photostabilizers and photoabsorbers. Such molecules can
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protect PVC from surface cracking, discoloration, and changes in mechanical properties
under long periods of exposure to sunlight [8–10].

Recently, various additives, including polyphosphates [9,10], aromatics [11,12], Schiff
bases [11–19], pigments [20], inorganic salts [21,22], and organotin complexes [23–29] have
been tested for their efficiency as inhibitors of PVC photodegradation and photooxidation.
Organotin complexes are highly stable, have distinctive properties, and are useful materials
in numerous applications [30,31]. Carvedilol is available commercially, it is inexpensive,
ecofriendly, non-toxic, and highly aromatic, and it contains heteroatoms (nitrogen and
oxygen). These properties make carvedilol a good ligand for coordination with tin to
produce effective PVC additives. This study reports the synthesis and characterization of
new carvedilol tin complexes. These complexes are non-volatile, cause no change in color,
are compatible with polymeric materials, can be used at a low concentration, and have
been tested as inhibitors of PVC photodegradation under exposure to UV light.

2. Materials and Methods
2.1. General

Triphenyltin chloride (95%; Ph3SnCl), dibutyltin oxide (98%; Bu2SnO), dibutyltin
dichloride (96%; Bu2SnCl2), dimethyltin dichloride (97%; Me2SnCl2), carvedilol (98%),
and solvent were supplied by Merck (Gillingham, UK). The PVC (MV = ca. 250,000) was
obtained from Petkim Petrokimya (Istanbul, Turkey). The FTIR spectra were recorded on a
Shimadzu FTIR 8300 spectrophotometer(Shimadzu, Tokyo, Japan). The 1H (500 MHz), 13C
(125 MHz), and 119Sn NMR (149 MHz) spectra were recorded on a Bruker DRX500 MHz
spectrometer. The conductivity was measured on a WTW ProfiLine Oxi 3205 conventional
portable meter in dimethyl sulfoxide (10−3 mole/L) at 25 ◦C (Geotech, Barcelona, Spain).
The PVC optical images were captured using a Meiji Techno Microscope (Tokyo, Japan). A
Veeco system was used to examine the surface morphology of PVC films. An accelerated
weather-meter QUV tester was used to irradiate the PVC films using UV light with λmax of
365 nm and a light intensity of 6.43 × 10−9 ein dm−3s−1.

2.2. Synthesis of Organotin Complexes 1 and 2

A mixture of carvedilol (0.41 g, 1.0 mmol) and either triphenyltin chloride (Ph3SnCl;
0.39 g, 1.0 mmol) or dibutyltin oxide (Bu2SnO; 0.25 g, 1.0 mmol) in methanol (MeOH,
15 mL) was refluxed either for six or eight hours, respectively. The solvent was removed
under vacuum and the solid produced was recrystallized from MeOH to yield a white
powder of either of the organotin complexes 1 or 2.

2.3. Synthesis of Organotin Complexes 3 and 4

A mixture of carvedilol (0.81 g, 2.0 mmol) and dialkyltin chloride (1.0 mmol) in MeOH
(20 mL) was refluxed for eight hours. The solvent was removed under reduced pressure
and the solid produced was recrystallized from MeOH to yield a white powder of either of
the organotin complexes 3 or 4.

2.4. Preparation of PVC Films

Organotin complexes (25 mg) were added to a stirred solution of PVC (5 g) in tetrahy-
drofuran (THF; 100 mL). The mixture was stirred for three hours at 25 ◦C. The homogenous
solution obtained was transferred onto glass plates containing holes (thickness = 40 µm)
and left to dry at room temperature for 24 h and subsequently left at reduced pressure for
eight hours.

2.5. Characterization of PVC Photodegradation Using FTIR Spectrophotometry

The progress of the photodegradation of the PVC was monitored using FTIR spec-
troscopy. The increases in the absorption of several functional groups as a function of
irradiation time were recorded for the PVC films. The indices of functional groups (Is)
were calculated using Equation (1) based on the absorbance of the peaks of corresponding
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functional groups (As) and that of a reference group (Ar) that is not affected by irradiation
(CH2) [32].

Is = As/Ar (1)

2.6. Monitoring of PVC Photodegradation Using Weight Loss

PVC photodegradation results in the elimination of volatiles and, therefore, weight
loss. The percentage of weight loss can be calculated from the weight of PVC before (W1)
and after irradiation (W2) using Equation (2) [27].

Weight loss (%) = [(W1 − W2)/W0] × 100 (2)

3. Results and Discussion
3.1. Synthesis of Tin Complexes 1–4

The reaction of carvedilol and either triphenyltin chloride or dibutyltin oxide at a 1:1
ratio in boiling methanol produced the tin complexes 1 or 2, respectively (Scheme 1), as a
white solid. On the other hand, the reaction of carvedilol and appropriate dialkyltin chlo-
ride at a 2:1 ratio under similar conditions produced the tin complexes 3 or 4, respectively
(Scheme 2), as a white solid. No base was used in the synthesis of complexes 1–4 which
agrees with previously reported procedures [33–35]. Table 1 displays the yields, melting
points, and elemental analyses (found and calculated %) for 1–4.
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Table 1. Yields, melting points, and elemental analyses for 1–4.

Complex Yield (%) MP (◦C)
Elemental Analyses (%) Found (Calculated)

C H N Sn

1 75 121–123 66.86 (66.77) 5.328(5.34) 3.65(3.71) 15.58 (15.71)
2 73 110–113 58.56 (58.64) 6.70 (6.77) 4.19 (4.27) 18.01 (18.11)
3 71 88–90 64.30 (64.43) 6.51 (6.57) 5.29 (5.37) 12.23 (11.37)
4 70 108–111 62.52 (62.57) 5.85 (5.88) 5.71 (5.84) 12.23 (12.37)

The FTIR spectra of 1–4 exhibited absorption bands resulting from the formation of Sn–
C (536–540 cm–1), Sn–O (466–474 cm–1), and Sn–N (424–447 cm–1) bonds which agree with
those reported for organotin compounds [35,36]. Furthermore, they exhibited absorption
bands for the aromatic and aliphatic N–H bonds at 3340–3410 and 3201–3294 cm–1, respec-
tively. The high shift in stretching frequency of aliphatic N–H indicated the occurrence of
coordination between tin and nitrogen atoms in carvedilol. Table 2 displays selected FTIR
spectral data for 1–4.

Table 2. Selected FTIR data for and 1–4.

Complex
Wave Number (ν, cm–1)

NH (Ar) NH (Ali) Sn–C Sn–O Sn–N

Carvedilol 3345 3059 — — —
1 3410 3294 536 466 447
2 3340 3201 543 466 439
3 3398 3290 540 474 435
4 3402 3236 540 474 424

The 1H NMR spectra of 1–4 showed the absence of the OH proton that appeared
at 5.21 ppm in the 1H NMR spectrum of carvedilol, thus confirming the formation of
the complexes. 1H NMR spectra revealed the presence of two exchangeable singlets that
appeared within the 8 ppm and 2 ppm regions because of the aromatic and aliphatic NH
protons, respectively (Table 3).

Table 3. 1H NMR data for and 1–4.

Complex ppm, Hz (DMSO-d6)

Carvedilol

11.28 (s, 1H, NH), 8.29 (d, J = 8.1 Hz, 1H, Ar), 7.50 (d, J = 8.1 Hz, 1H, Ar), 7.38 (t, J = 8.1 Hz, 1H, Ar), 7.35 (d,
J = 8.1 Hz, 1H, Ar), 7.31 (d, J = 8.1 Hz, 1H, Ar), 7.18 (t, J = 8.1 Hz, 1H, Ar), 7.12 (d, J = 8.1 Hz, 1H, Ar), 6.95–6.71
(m, 4H, Ar), 5.21 (s, exch., 1H, NH), 4.23–4.16 (m, 4H, OH, CH2 and CH), 4.03 (t, J = 7.1 Hz, 2H, CH2), 3.75 (s,

3H, OMe), 2.97 (m, 2H, CH2), 2.01 (s, 1H, NH)

1
11.28 (s, 1H, NH), 8.28 (d, J = 8.0 Hz, 1H, Ar), 7.90–7.82 (m, 5H, Ar), 7.49–7.32 (m, 10H, Ar), 7.28–7.11 (m, 4H,
Ar), 6.98–6.86 (m, 5H, Ar), 6.72 (d, J = 8.0 Hz, 1H, Ar), 4.25–4.22 (m, 3H, CH2 and CH), 4.07–4.02 (m, 2H, CH2),

3.75 (s, 3H, OMe), 3.00–2.88 (m, 4H, 2 CH2), 2.10 (s, 1H, NH)

2

11.28 (s, 1H, NH), 7.80 (d, J = 8.0 Hz, 1H, Ar), 7.00 (d, J = 8.0 Hz, 1H, Ar), 6.87–7.82 (m, 2H, Ar), 6.69–6.62 (m,
2H, Ar), 6.52–6.40 (m, 4H, Ar), 6.25 (d, J = 8.0 Hz, 1H, Ar), 4.73 (s, 1H, OH), 3.77–3.60 (m, 7H, 3 CH2 and CH),
3.24–3.08 (m, 6H, 3 CH2), 3.30 (s, 3H, OMe), 2.91 (m, 4H, 2 CH2), 2.11 (s, 1H, NH), 1.35 (m, 4H, 2 CH2), 0.98 (t,

J = 7.5 Hz, 6H, 2 Me)

3

11.36 (s, 2H, 2 NH), 8.26 (d, J = 8.0 Hz, 2H, Ar), 7.49 (d, J = 8.0 Hz, 2H, Ar), 7.38–7.31 (m, 4H, Ar), 7.15–7.06 (m,
4H, Ar), 7.01–6.93 (m, 8H, Ar), 6.73 (d, J = 8.0 Hz, 2H, Ar), 4.35–4.23 (m, 6H, 2 CH2 and 2 CH), 3.75 (s, 6H, 2

OMe), 3.28–3.10 (m, 4H, 2 CH2), 2.10 (s, 2H, 2 NH), 1.79 (m, 8H, 4 CH2), 1.70 (m, 4H, 2 CH2), 1.57–1.53 (m, 4H,
2 CH2), 1.33 (t, J = 7.6 Hz, 4H, 2 CH2), 0.87 (t, J = 7.6 Hz, 6H, 2 Me)

4
11.37 (s, 2H, 2 NH), 8.27 (d, J = 8.1 Hz, 2H, Ar), 7.50 (d, J = 8.1 Hz, 2H, Ar), 7.39–7.31 (m, 6H, Ar), 7.16–7.12 (m,
4H, Ar), 7.03–6.89 (m, 6H, Ar), 6.74 (d, J = 8.1 Hz, 2H, Ar), 4.41–4.15 (m, 6H, 2 CH2 and 2 CH), 3.83–3.74 (m, 6H,

3 CH2), 3.59 (s, 6H, 2 OMe), 3.32–3.19 (m, 6H, 3 CH2), 2.32 (s, 2H, 2 NH), 0.84 (s, 6H, 2 Me)

The 13C NMR spectra of 1–4 showed all the carbon atoms within the complexes
(Table 4). The 119Sn NMR spectra of 1 (−136.2 ppm) and 2 (−196.5 ppm) confirmed that
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the geometry of these complexes is penta-coordinated. Conversely, the geometry of both 3
(−341.8 ppm) and 4 (−213.8 ppm) is hexa-coordinated (Table 4). The 119Sn chemical shifts
are different for complexes with geometries involving four (+200 to −60 ppm), five (−90 to
−190 ppm), and six coordination numbers (−210 to −400 ppm) [37–39].

Table 4. 13C and 119Sn NMR data for carvedilol and 1–4.

Complex
NMR (ppm, Hz, DMSO-d6)

13C 119Sn

Carvedilol 156.0, 149.3, 148.2, 141.2, 139.0, 126.5, 124.5, 122.4, 121.8, 121.0, 120.7, 118.6, 113.8, 112.3,
111.7, 110.3, 103.8, 100.5, 70.5, 68.5, 55.5, 52.6, 48.6 —

1 155.0, 149.3, 148.1, 141.2, 139.0, 136.2, 135.8, 129.0, 128.1, 126.5, 124.5, 122.5, 121.8, 121.1,
120.7, 118.6, 113.9, 112.3, 111.6, 110.3, 103.9, 100.5, 70.5, 68.4, 68.3, 55.5, 52.5, 48.8 −136.2

2 154.5, 148.8, 147.7, 140.7, 138.5, 126.0, 124.0, 122.0, 121.3, 120.6, 120.3, 118.1, 113.4, 111.9,
111.2, 109.9, 104.4, 100.0, 70.0, 68.1, 68.0, 55.0, 52.2, 48.1, 32.0, 27.5, 26.3, 13.5 −169.5

3 155.8, 149.0, 147.6, 141.2, 139.0, 126.5, 124.5, 122.5, 121.7, 120.7, 120.5, 118.6, 114.4, 112.3,
111.6, 110.4, 104.0, 100.5, 70.2, 68.2, 68.0, 55.4, 51.5, 47.8, 39.2, 26.7, 25.8, 13.7 −341.8

4 154.8, 149.2, 148.0, 141.2, 139.0, 126.5, 124.6, 122.5, 121.7, 120.7, 120.5, 118.6, 114.8, 112.3,
111.6, 110.4, 104.1, 100.5, 70.1, 66.3, 66.2, 55.4, 51.2, 46.6, 6.7 −213.8

The molar conductivity (10−3 M; ethanol) for 1 (2.7 µS/cm), 2 (5.4 µS/cm), 3
(3.5 µS/cm), and 4 (4.8 µS/cm) confirmed that these complexes are non-electrolytic
(less than 100 µS/cm) [40–42].

3.2. PVC Photodegradation Using FTIR Spectroscopy

Irradiation causes photooxidation of PVC and promotes the formation of small frag-
ments containing ketones, polyene, and alcohol. The absorbance and intensity of the
functional groups corresponding to these fragments can be monitored with FTIR spec-
troscopy [43,44]. Tin complexes 1–4 were mixed with PVC at a concentration of 0.5% by
weight and casted to thin (40 µm) polymeric films. The films were exposed to light with
a wavelength of 313 cm−1 at 25 ◦C for up to 300 h. After each 50-h period of irradiation,
we recorded the FTIR spectra for the irradiated films. The growth in intensity of C=C
(alkenes; 1604 cm−1), C=O (ketones; 1772 cm−1), and OH (alcohols; 3500 cm−1) peaks
were monitored and compared with a reference peak (CH2; 1328 cm−1) [45–47]. Figure 1
displays the FTIR spectra of pure PVC film before and after irradiation for 300 hours. It
shows that after irradiation, the intensity of C=C, C=O, and OH peaks in the FTIR spectra
increased significantly compared to that before irradiation. Equation (1) to calculate the
functional group indices (IC=C, IC=O, and IOH). Figure 2 shows the changes in these indices
as a function of time (hours).

The IC=C, IC=O, and IOH of pure PVC film were higher than those of the blends
containing additives 1–4. As the duration of irradiation increased, the functional group
indices increased steadily and gradually. The IC=C for PVC films, before irradiation was
0.04, and it had increased to 0.41 (blank PVC), 0.24 (PVC/1 blend), 0.30 (PVC/2 blend), 0.28
(PVC/3 blend), and 0.34 (PVC/4 blend), after irradiation. After irradiation (300 hours), the
index in the C=O group had increased from 0.05 to 0.41 (blank PVC), 0.24 (PVC/1 blend),
0.31 (PVC/2 blend), 0.27 (PVC/3 blend), and 0.33 (PVC/4 blend). Similar increases in the
IOH (from 0.04 to 0.31) were seen after irradiation. The highly aromatic additive, 1, was the
most effective complex in inhibiting the irradiation-induced growth of functional group
indices for PVC; this was followed the additives 3, 2, and 4, in that order. The phenyl
rings within 1 act as a good UV absorber and can convert harmful irradiation to harmless
heat [14].
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3.3. PVC Photodegradation Using Weight Loss

Long-term exposure of PVC films to UV irradiation eliminates several by-products,
such as volatiles (e.g., HCl) and small fragments with a low molecular weight [48]. There-
fore, depending on the duration of exposure, irradiation of PVC causes a loss in the weight
of the material [49]. We calculated the PVC weight loss due to irradiation using Equation (2)
and plotted it as a function of time (Figure 3). As the duration of irradiation increased, the
progression of the weight loss was sharp and steady increased, and it was more significant
for the blank PVC material. At the end of the irradiation process (300 h), the percent weight
losses of PVC were 3.2%, 1.7%, 2.2%, 2.0%, and 2.4% for pure PVC film, PVC/1, PVC/2,
PVC/3, and PVC/4 blends, respectively. The lowest PVC weight loss was observed when
1 was used as an additive.
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3.4. Surface Morphology of PVC Films

Long-term irradiation of PVC causes damage and the appearance of defects and
irregularities in the surface of the material [50]. The damage results primarily from dehy-
drochlorination and chain scission [51]. In the current study, the surface of PVC before
irradiation was generally smooth and regular [51]. The microscopic images of PVC films
after irradiation (300 h) revealed the formation of grooves, spots, cracks, and a color change
(Figure 4). However, for the PVC/tin complex blends, the damage was less significant than
that seen in the surface of pure PVC film. The additives reduced the rate of elimination of
HCl from PVC and, therefore, improved the photostability of the polymer.
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Figure 4. Microscope images (1 mm) of: (a) pure PVC, and (b) PVC/1, (c) PVC/2, (d) PVC/3, and (e)
PVC/4 blends both before and after irradiation.

We inspected the PVC surface morphology further, using a Field Emission Scan-
ning Electron Microscope (FESEM). A FESEM yields high-resolution images that provide
detailed information about the homogeneity, shape, cross-sections, and particle sizes of
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materials [52,53]. FESEM images of non-irradiated PVC generally reveal a smooth and
homogenous surface [54]. In this study, the FESEM image (Figure 5a) of non-irradiated
PVC (blank) revealed a regular, homogenous, and smooth surface. Moreover, the particles
were of similar size and shape. However, the PVC surface of the blends, after irradia-
tion were significantly damaged (Figure 5b–f). Cracks, cavities, spots, irregularities, and
variations in the sizes and shapes of particles were more clearly visible on the surface of
irradiated pure PVC film (Figure 5b). Such damage and irregularities resulted mainly due
to chain cross-linking and elimination of HCl and other small molecules [55]. The findings
show that the additives used, particularly additive 1, significantly reduced the rate of both
cross-linking and dehydrochlorination (Figure 5).
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We also used an atomic force microscope (AFM) to provide clear topographic images
of the irradiated PVC films. The AFM images indicated that the surfaces of irradiated
PVC film were less smooth than they were before irradiation (Figure 6). We analyzed the
smoothness of the PVC surface using the roughness factor (Rq). A high Rq indicates a low
degree of smoothness and considerable irregularity due to dehydrochlorination and bond-
breaking of polymeric chains [6]. After irradiation, the surface of PVC/1 film exhibited a
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high degree of smoothness (Rq = 36.3). Conversely, the blank PVC film exhibited a high
degree of roughness and irregularities (Rq = 232.0) after irradiation. It is evident that
complex 1 improved the smoothness of the PVC surface 6.4-fold. The Rq of the irradiated
PVC/2, PVC/3, and PVC/4 films was 42.2, 44.5, and 137.7, respectively. The additives used
provided superior PVC photostabilization to that provided by tin complexes containing
2-(4-Isobutylphenyl)propanoate [56] and naproxen [27], and by Schiff bases containing
melamine [15] and triazol-3-thiol [19], and their performance was comparable to that of
the tin complex containing furosemide [29].
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The energy-dispersive X-ray (EDX) spectra of PVC blends with tin complexes (Figure 7)
revealed new bands corresponding to tin, nitrogen, and oxygen, in addition to carbon
and chlorine atoms (high proportion). After irradiation, the carbon content of PVC films
increased along with a decrease in chlorine content. The reduction in the chlorine content
indicates the elimination of HCl due to photodegradation and photooxidation of PVC.
After irradiation, the PVC films containing additives had a higher percentage of chlorine
than had with the pure PVC materials. Figure 7 shows the abundance of elements PVC
blends after irradiation.



Polymers 2021, 13, 500 12 of 16
Polymers 2021, 13, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 7. Energy-dispersive X-ray (EDX) mapping of: (a) pure PVC film, and (b) PVC/1, (c) PVC/2, 
(d) PVC/3, and (e) PVC/4 blends after 300 hours of irradiation. 

3.5. PVC Photostabilization Proposed Mechanisms 
Additives 1–4 are shown to be good photostabilizers of PVC, protecting against pho-

todecomposition, and photooxidation of the material, upon exposure to irradiation. The 
organotin 1 was the most effective additive as photostabilizers of PVC. Additive 1 is 
highly aromatic, as it contains three phenyl rings in addition to the aryl rings within the 
skeleton of carvedilol. Additives 2 and 3 contain n-butyl groups, whereas additive 4 con-
tains methyl groups. In this study, these additives, particularly additive 1, acted as UV 
absorbers, peroxide decomposers, and radical scavengers [14,29,56–59]. Furthermore, the 
additives contain the highly acidic tin atom (Lewis acid), they act as excellent scavengers 
of HCl (Figure 8) [57,60]. The low concentration of 1–4 within the polymeric matrix mini-
mizes any harmful effects of additives when irradiated [60]. Moreover, the coordination 
between PVC polarized bonds (C–Cl) and electron-rich atoms (e.g., oxygen) in carvedilol 
stabilize polymeric chains through the transference of energy [29]. 

Figure 7. Energy-dispersive X-ray (EDX) mapping of: (a) pure PVC film, and (b) PVC/1, (c) PVC/2, (d) PVC/3, and
(e) PVC/4 blends after 300 h of irradiation.

3.5. PVC Photostabilization Proposed Mechanisms

Additives 1–4 are shown to be good photostabilizers of PVC, protecting against
photodecomposition, and photooxidation of the material, upon exposure to irradiation.
The organotin 1 was the most effective additive as photostabilizers of PVC. Additive 1
is highly aromatic, as it contains three phenyl rings in addition to the aryl rings within
the skeleton of carvedilol. Additives 2 and 3 contain n-butyl groups, whereas additive 4
contains methyl groups. In this study, these additives, particularly additive 1, acted as UV
absorbers, peroxide decomposers, and radical scavengers [14,29,56–59]. Furthermore, the
additives contain the highly acidic tin atom (Lewis acid), they act as excellent scavengers of
HCl (Figure 8) [57,60]. The low concentration of 1–4 within the polymeric matrix minimizes
any harmful effects of additives when irradiated [60]. Moreover, the coordination between
PVC polarized bonds (C–Cl) and electron-rich atoms (e.g., oxygen) in carvedilol stabilize
polymeric chains through the transference of energy [29].
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4. Conclusions

In this study, simple procedures are used to synthesize high yields of several organotin
complexes. We analyzed the effect of organotin complexes as inhibitors of PVC photodegra-
dation. Irradiation of thin films of PVC produces destructive changes in the infrared spectra
due to the formation of small fragments containing functional groups, loss of weight of
the material, and surface defects in the PVC caused by photodegradation. In the presence
of tin complexes, such changes were less significant than those that occurred in the blank
PVC film. As the concentrations of the additives used were low, their use did not result in
changes in either color or homogeneity. The additives used enhanced the photostability
of PVC significantly, and the additive with a high degree of aromaticity was particularly
effective. Such additives act as absorbers of UV irradiation and scavengers of hydrogen
chloride, peroxides, and radicals.
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