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Abstract: Plant RNA viruses encode essential viral proteins that depend on the host translation
machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the
classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′

polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have
evolved a variety of translation strategies such as cap-independent translation, translation recoding
on initiation and termination sites, and post-translation processes. This review focuses on advances
in cap-independent translation and translation recoding in plant viruses.

Keywords: plant RNA viruses; cap-independent translation; translation recoding

1. Introduction

Plant viruses usually encode several viral proteins essential for the important processes
in the viral life cycle, such as replication, translation, movement, and virus packaging.
However, translation of viral proteins totally depends on the host translation machinery,
which prefers RNA templates with the same characteristics as cellular mRNA. For DNA
viruses, the genomic transcripts have the same characteristics as cellular mRNA since
their viral genome enters the nucleus. Translation of the viral RNA for DNA viruses
is accomplished using the canonical ribosome scanning model. For RNA viruses, their
viral genome does not enter the nucleus and remains the intrinsic characteristic of the
virus particle. The genomic RNA of many plant RNA viruses lacks the 5′ cap and/or 3′

poly(A) as cellular mRNA, which are essential factors ensuring the effective translation of
cellular mRNA. In addition, the viral RNA of some RNA viruses is multi-cistronic, which is
remarkably different from mono-cistronic cellular mRNA. It is suggested that the internal
open reading frame (ORF) and ORFs located at the 3’ part may be expressed by several
strategy. Although most plant RNA viruses present differences in terms of the 5′ end, 3′

end, and encoding characteristic from cellular mRNA, they accomplish the expression
of viral proteins through many strategies, including the synthesis of subgenomic RNA
at the transcriptional level, cap-independent translation, and translation recoding at the
translational level [1–3]. This review focuses on advances in cap-independent translation
and translation recoding in plant viruses.
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2. Characteristics of 5′ and 3′ Ends of Viral RNAs in Plant RNA Viruses

To study the translation of viral proteins, the characteristics of the 5′ and 3′ ends of
the viral RNA are the primary factors to be considered. If viral RNA has a capped 5′ end
and polyadenylated 3′ end, it can express the viral protein through the canonical ribosome
scanning model as cellular mRNA. In the ribosome scanning model of eukaryotic cellular
mRNA, the 7-methylguanosine cap at the 5′ end of cellular mRNA is first bound by eIF4E,
part of the eIF4F complex, which recruits the 43S preinitiation complex, including the 40S
small ribosomal subunit, eIF2–GTP–Met-tRNAi ternary complex, along with eIF1, eIF1A,
eIF3, and eIF5. The resulting 48S preinitiation complex is then scanned from 5′ to 3′ in
an ATP-dependent manner until the charged initiator Met-tRNAi is base-paired with an
AUG start codon surrounding by suitable context sequences. A number of initiation factors
are then displaced to allow the joining of the 60S large ribosomal subunit to form the
complete 80S ribosome to initiate translation. The 3′ poly (A) can be bound by PABP, which
also binds eIF4G to cyclize the cellular mRNA, greatly enhancing translation by avoiding
cellular mRNA decay and cyclic utilization of ribosomal subunits [4,5].

Here, all genera of plant RNA viruses are listed with characteristics of the 5′ and 3′

ends, as well as the potential translation recoding strategy (Table 1). Of the 106 assigned
genera of plant RNA viruses [6,7], only 18 (17.0%) had genomic RNA with both 5′ cap and
3′ poly(A), while 24 (22.6%) had genomic RNA without 5′ cap and 3′ poly(A) (Table 1). In
addition, 64 (60.4%) had genomic RNA with a 5′ cap (30 genera) or 3′ poly(A) (34 genera)
(Table 1). For genera without the 5′ cap, seven in the family Secoviridae, two in the family
Solemoviridae, 12 in the family Potyviridae of the order Patatavirales, and three in the family
Luteoviridae had a viral genome-linked protein (VPg) at the 5′ end of the genomic RNA. For
genera without 3′ poly(A), six in the family Bromoviridae, seven in the family Virgaviridae,
and one in the family Tymoviridae had a 3′ tRNA-like structure (Table 1). There were
58 genera (54.7%) of plant RNA viruses that lack the 5′ cap (Table 1), which may translate
the viral proteins through a cap-independent translation strategy to recruit translation
factors in different manners.
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Table 1. Characteristic of 5′ and 3′ ends of plant RNA viruses and their potential translational recoding strategy.

Order Family Subfamily Genus
Viral RNA or Subgenomic RNA Translation Recoding Strategy

References
5′ End 3′ End

Bunyavirales Fimoviridae Emaravirus 5′ cap no 3′ poly(A) / [8]
Phenuiviridae Coguvirus 5′ cap no 3′ poly(A) / [9]

Rubodvirus 5′ cap no 3′ poly(A) / [10]
Tenuivirus 5′ cap no 3′ poly(A) / [11]

Tospoviridae Orthotospovirus 5′ cap no 3′ poly(A) / [12]
Durnavirales Amalgaviridae Amalgavirus no 5′ cap no 3′ poly(A) ribosomal frameshift [13]

Partitiviridae Alphapartitivirus no 5′ cap 3′ poly(A) / [14]
Betapartitivirus no 5′ cap 3′ poly(A) / [15]
Deltapartitivirus no 5′ cap 3′ poly(A) / [16]

Hepelivirales Benyviridae Benyvirus 5’ cap 3′ poly(A) ribosomal read-through,
leaky scanning [17]

Martellivirales Bromoviridae Alfamovirus 5’ cap no 3′ poly(A), has a 3’ tRNA-like structure / [18]
Anulavirus 5’ cap no 3′ poly(A), has a 3’ tRNA-like structure / [19]
Bromovirus 5’ cap no 3′ poly(A), has a 3’ tRNA-like structure / [20]

Cucumovirus 5’ cap no 3′ poly(A), has a 3’ tRNA-like structure / [21]
Ilarvirus 5’ cap no 3′ poly(A), has a 3’ tRNA-like structure / [22]
Oleavirus 5’ cap no 3′ poly(A), has a 3’ tRNA-like structure / [23]

Closteroviridae Ampelovirus 5′ cap no 3′ poly(A) ribosomal frameshift [24]
Closterovirus 5′ cap no 3′ poly(A) ribosomal frameshift [25]

Crinivirus 5′ cap no 3′ poly(A) ribosomal frameshift [26]
Velarivirus 5′ cap no 3′ poly(A) ribosomal frameshift [27]

Endornaviridae Alphaendornavirus no 5′ cap no 3′ poly(A) / [28]
Kitaviridae Blunervirus 5′ cap no 3′ poly(A) leaky scanning [29]

Cilevirus 5′ cap 3′ poly(A) / [30]
Higrevirus 5′ cap 3′ poly(A) / [31]

Mayoviridae Idaeovirus 5′ cap no 3′ poly(A) / [32]
Pteridovirus 5′ cap no 3′ poly(A) / [33]

Virgaviridae Furovirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through,
leaky scanning [34]

Goravirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through,
leaky scanning [35]

Hordeivirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through,
leaky scanning [36]

Pecluvirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through,
leaky scanning [37]
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Table 1. Cont.

Order Family Subfamily Genus
Viral RNA or Subgenomic RNA Translation Recoding Strategy

References
5′ End 3′ End

Pomovirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through,
leaky scanning [38]

Tobamovirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through [39]

Tobravirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure ribosomal read-through,
leaky scanning [40]

Mononegavirales Rhabdoviridae Alphanucleorhabdovirus 5′ cap 3′ poly(A) / [41]
Betanucleorhabdovirus 5′ cap 3′ poly(A) / [42]

Gammanucleorhabdovirus 5′ cap 3′ poly(A) / [43]
Cytorhabdovirus 5′ cap 3′ poly(A) / [44]
Dichorhavirus 5′ cap 3′ poly(A) / [45]
Varicosavirus 5′ cap 3′ poly(A) / [46]

Ourlivirales Botourmiaviridae Ourmiavirus no 5′ cap no 3′ poly(A) / [47]
Patatavirales Potyviridae Arepavirus 5’ VPg 3′ poly(A) / [48]

Bevemovirus 5’ VPg 3′ poly(A) / [49]
Brambyvirus 5’ VPg 3′ poly(A) / [50]
Bymovirus 5’ VPg 3′ poly(A) / [51]
Celavirus 5’ VPg 3′ poly(A) / [52]

Ipomovirus 5’ VPg 3′ poly(A) / [53]
Macluravirus 5’ VPg 3′ poly(A) / [54]

Poacevirus 5’ VPg 3′ poly(A) / [55]
Potyvirus 5’ VPg 3′ poly(A) / [56]

Roymovirus 5’ VPg 3′ poly(A) / [57]
Rymovirus 5’ VPg 3′ poly(A) / [58]

Tritimovirus 5’ VPg 3′ poly(A) / [59]
Picornavirales Secoviridae Cheravirus 5’ VPg 3′ poly(A) leaky scanning [60]

Sadwavirus 5’ VPg 3′ poly(A) / [61]
Sequivirus 5’ VPg 3′ poly(A) / [62]

Torradovirus 5’ VPg 3′ poly(A) leaky scanning [61]
Waikavirus 5’ VPg 3′ poly(A) / [62]

Comovirinae Comovirus 5’ VPg 3′ poly(A) / [61]
Fabavirus 5’ VPg 3′ poly(A) / [61]
Nepovirus 5’ VPg 3′ poly(A) leaky scanning [62,63]

Reovirales Reoviridae Sedoreovirinae Phytoreovirus 5′ cap no 3′ poly(A) leaky scanning [64]
Spinareovirinae Fijivirus 5′ cap no 3′ poly(A) / [64]

Oryzavirus 5′ cap no 3′ poly(A) leaky scanning [64]
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Table 1. Cont.

Order Family Subfamily Genus
Viral RNA or Subgenomic RNA Translation Recoding Strategy

References
5′ End 3′ End

Serpentovirales Aspiviridae Ophiovirus 5′cap no 3′ poly(A) ribosomal frameshift [65]

Sobelivirales Solemoviridae Polemovirus 5’ VPg no 3′ poly(A) ribosomal frameshift,
leaky scanning [66]

Sobemovirus 5’ VPg no 3′ poly(A) ribosomal frameshift,
leaky scanning [67]

Tymovirales

Alphaflexiviridae Allexivirus no 5′ cap 3′ poly(A) leaky scanning [68]
Lolavirus no 5′ cap 3′ poly(A) leaky scanning [69]

Mandarivirus no 5′ cap 3′ poly(A) leaky scanning [69]
Platypuvirus no 5′ cap 3′ poly(A) leaky scanning [70]
Potexvirus 5′ cap 3′ poly(A) leaky scanning [71]

Quinvirinae Carlavirus 5′ cap 3′ poly(A) leaky scanning [69,72]
Foveavirus 5′ cap 3′ poly(A) leaky scanning [69,72,73]
Robigovirus 5′ cap 3′ poly(A) leaky scanning [72]

Betaflexivridae Trivirinae Capillovirus no 5′ cap 3′ poly(A) / [73]
Chordovirus no 5′ cap 3′ poly(A) / [74]
Citrivirus no 5′ cap 3′ poly(A) / [75]
Divavirus no 5′ cap 3′ poly(A) / [76]

Prunevirus 5′ cap 3′ poly(A) leaky scanning [77]
Ravavirus 5′ cap 3′ poly(A) leaky scanning [77]
Tepovirus no 5′ cap 3′ poly(A) / [78]

Trichovirus no 5′ cap 3′ poly(A) / [73]
Vitivirus 5′ cap 3′ poly(A) leaky scanning [73]

Wamavirus no 5′ cap 3′ poly(A) leaky scanning [79]

Luteoviridae Enamovirus 5′ VPg no 3′ poly(A)
leaky scanning,

ribosomal frameshift,
ribosomal read-through

[80]

Luteovirus 5′ VPg no 3′ poly(A)
leaky scanning,

ribosomal frameshift,
ribosomal read-through

[81]

Polerovirus 5′ VPg no 3′ poly(A)
leaky scanning,

ribosomal frameshift,
ribosomal read-through

[82]

Tymoviridae Maculavirus 5′ cap 3′ poly(A) leaky scanning [83]
Marafivirus 5′ cap 3′ poly(A) leaky scanning [84]
Tymovirus 5′ cap no 3′ poly(A), has a 3′ tRNA-like structure leaky scanning [85,86]
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Table 1. Cont.

Order Family Subfamily Genus
Viral RNA or Subgenomic RNA Translation Recoding Strategy References

5′ End 3′ End

Tolivirales Tombusviridae Calvusvirinae Umbravirus no 5′ cap no 3′ poly(A) ribosomal frameshifting [87]
Procedovirinae Alphanecrovirus no 5′ cap no 3′ poly(A) ribosomal read-through [88]

Alphacarmovirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaky scanning [89]

Aureusvirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [90]

Avenavirus no 5′ cap no 3′ poly(A) ribosomal read-through [91]

Betacarmovirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [92]

Betanecrovirus no 5′ cap no 3′ poly(A) ribosomal read-through [88]
Gallantivirus no 5′ cap no 3′ poly(A) ribosomal read-through [93]

Gammacarmovirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [94]

Macanavirus no 5′ cap no 3′ poly(A) ribosomal read-through [95]

Machlomovirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [96]

Panicovirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [97]

Pelarspovirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [98]

Tombusvirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [99]

Zeavirus no 5′ cap no 3′ poly(A) ribosomal read-through,
leaking scanning [100]

Regressovirinae Dianthovirus no 5′ cap no 3′ poly(A) ribosomal frameshift [101]

Note: “/” indicating no translation recoding strategy based on genome organization and/or corresponding publication.
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3. Cap-Independent Translation in Plant RNA Viruses

Cap-independent translation in plant RNA viruses is often mediated by two types
of cis-elements: internal ribosome entry site (IRES) and 3′ cap-independent translation
enhancer (3′ CITE). IRES was first reported in animal RNA viruses such as poliovirus and
Encephalomyocarditis virus (EMCV), and it is mainly located at the 5′ upstream region
of corresponding open reading frames (ORFs) [102,103]. 3′CITE was first reported in
plant RNA viruses, such as satellite tobacco necrosis virus (sTNV), and it is located at 3′

downstream of the corresponding ORFs [2,104,105]. In addition to RNA viruses, IRES
and 3′CITE were reported in eukaryotic cellular mRNAs, which may play a role when
cap recognition is suppressed under special conditions and act as modulators of enhanced
stress resistance, metabolic processes, and development [105–108].

3.1. IRESes in Plant RNA Viruses

Since IRES was first reported in picornavirus RNAs [102,103], it has been reported
in many animal and plant RNA viruses, as well as in host cellular mRNAs [109–113].
For animal RNA viruses, viral IRESes are classified into six classes on the basis of their
structural characteristics and the requirements for various translation initiation factors and
IRES trans-acting factors (ITAFs). Picornavirus IRESes are classified into five types (I, II, III,
HCV-like, and AV-like), and dicistrovirus IRESes are classified into another type [114–117].
The IRES sequences in animal RNA viruses are long (at least 450 nt), and the corresponding
RNA tertiary structures are very complex. Various translation initiation factors, as well as
ITAFs, are required by these IRESes to play a role during translation initiation [117–124].
There seemed to be an inverse correlation between the degree of the stable structure of
the IRES element and the number of factors. Most animal IRESes do not require eIF4E,
which is one of the main targets of cellular translation regulation [125]. IRES activity in
some animal RNA viruses is also synergistically enhanced by the long-distance RNA–RNA
interaction between the 5’ and 3’ ends [126–132].

Studies on IRESes in plant RNA viruses have mainly focused on members of the family
Potyviridae, such as tobacco etch virus (TEV), turnip mosaic virus (TuMV), potato virus Y (PVY),
triticum mosaic virus (TriMV), and wheat yellow mosaic virus (WYMV) [111,113,133–136].
IRESes in plant RNA viruses have shorter sequence lengths (60–190 nt, excluding TriMV)
and simpler structures than those in animal RNA viruses. The characteristics of genomic
RNA in the family Potyviridae are similar to those in the family Picornaviridae. They all
have VPg at the 5’ end and poly (A) at the 3’ end. They all encode a single polyprotein to
produce functional proteins via the cleavage of proteinases. However, the 5’UTR of the
family Potyviridae is relatively shorter than that of the family Picornaviridae (about 150 nt in
Potyviridae and 600–1200 nt in Picornaviridae), and the structure of the 5’UTR in the family
Potyviridae is simpler than that in the family Picornaviridae. In addition, the VPg of the
family Potyviridae is relatively larger than that in the family Picornaviridae (20–23 kDa in
Potyviridae, and 2–3 kDa in Picornaviridae) [111]. VPg can interact with eIF4E or eIFiso4E,
which was associated with the regulation on translation of viral RNA and host mRNA in
several potyviruses such as TEV, TuMv and PVA [137–140]. Eukaryotic eIF4E-mediated
recessive resistance to plant viruses were reported, which is a direction of virus-resistant
crop breeding [141]. In the genus Calicivirus, VPg- eIF4E interaction is required for transla-
tion [142]. However, But the VPg of members in the family Picornaviridae is dispensable
in the process of translation regulation [143]. TheVPg in the family Picornaviridae can be
released from viral RNA though “unlinkase” activity via TDP2 enzyme [144]. Due to
the two state of VPg including dissociative state and RNA-linked state, the relationship
between VPg and translation is complicated. The possible function and mechanism of
VPg in translation are not discussed here. Here, reported IRESes in plant RNA viruses are
shown and summarized below.
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3.1.1. IRESes in Members of Family Potyviridae

TEV is a model virus used to study the translation regulation of the family Potyviri-
dae [145,146]. Early studies have shown that two regulatory elements (CIRE and CIRE-2)
in the 5’UTR (144 nt) of TEV can improve the cap-independent translation efficiency by
8–21-fold [133,147], and poly (A) can synergistically improve the translation efficiency
mediated by the 5’UTR [147,148]. The 5’ proximal domain (38–75 nt) in TEV can fold into a
pseudoknot (Ψ), which is essential for cap-independent translation [149]. In addition, loop
sequences (UACUUCU) in L3 can pair with the 1117–1123 nt of 18S rRNA. It is suggested
that the base-pairing sequences between the 5′UTR and 18S RNA may directly recruit
ribosomal subunits to enhance translation [149]. When the 5’UTR of TEV is placed in the
intergenic region of the bi-cistronic reporter vector, it promotes the expression of the second
ORF, indicating IRES activity [150]. When a stable secondary structure is placed before the
5’ end, the IRES efficiency is reduced by nearly 10-fold, indicating that maximal activity
of the IRES requires an open 5’ end. [147]. The IRES activity from the 5’UTR of TEV is
eIF4F-dependent rather than eIFiso4F-dependent due to the interaction between eIF4G and
the 5’UTR of TEV, and this interaction facilitates cap-independent translation [138,150,151].

Insertion of the 5’UTR (184 nt) of PVY into the intergenic region of the bi-cistronic
reporter vector can promote the expression of the second gene, which indicates that the
5’UTR of PVY has IRES activity [134]. On the basis of this prediction, the 5’UTR of PVY has
two hairpins [152]. Deletion of the first hairpin increases translation, whereas deletion of
the second hairpin slightly decreases translation [152]. It is suggested that the first hairpin
has a negative effect on IRES activity because of the potential block on the scanning of
ribosomes [152]. In addition, the 3’ terminal 55 nt region in the 5’UTR of PVY is crucial
for cap-independent translation [152]. However, the detailed mechanism and required
translation factors have not yet been determined.

The 5’UTR of TuMV (130 nt) can promote translation in vivo and in vitro, but the
exact mechanism is still unclear [135]. When a stable hairpin is added before the TuMV
5’UTR, its translation level is reduced by 70%. The complementary sequences to the 5’UTR
of TuMV inhibited cap-independent translation in a trans competition experiment, while
the identical complementary sequences located at reporter gene increased translation [135].
It is suggested that both 5’UTR of TuMV and its complementary sequences can support the
cap-independent translation.

TriMV is a newly discovered virus that infects wheat. Compared with other mem-
bers of the genus Potyvirus, its 5’UTR with 739 nt is very long and its opening reading
frame starts from the 13th initiation codon [153,154]. The 5’UTR of TriMV enhances cap-
independent translation in vivo and in vitro [136]. IRES activity from the TriMV 5’UTR
requires a hairpin structure at position 469–490 nt [136]. The 5’UTR of TriMV can di-
rectly interact with eIF4G and eIFiso4G, and the hairpin structure at position 469–490 nt is
very important for this interaction between the 5’UTR and eIF4G [155]. In addition, cap-
independent translation mediated by the 5’UTR also requires eIF4A instead of eIF4E [155].

In PVA, another member of the genus Potyvirus, the 5’UTR (161 nt) without remarkable
structure characteristic played a key role in the translation of viral RNA stimulated by VPg
and ribosomal protein P0 [156]. It is implied the possible synergistic function of VPg and
5’UTR on translation.

Recently, a novel IRES element was found in the 5′UTR (162 nt) of RNA1 of WYMV [103].
The core elements of IRES in WYMV RNA1 have two hairpins (H1 and H2) and an internal
linker region (LR1). IRES activity from the 5′UTR can be synergistically enhanced via long-
distance RNA–RNA interaction between C80U in the 5′UTR and A7574G in the 3′UTR [103].
Structural stability of the stem and nucleotide specificity of the upper loop in H1, along
with the length of discontinuous stems and nucleotide specificity of the upper loop in H2
are the core cis-element for IRES activity from the 5′UTR [103]. The IRES of WYMV RNA1
5′UTR is eIF4E-dependent, and the target site of eIF4E is the top loop of H2, especially
C114UUUCC [103]. In addition, the cytosines (C55, C66, C105, and C108) in the hairpins H1
and H2 and the guanines (G73, G79, and G85) in LR1 form discontinuous base pairing to
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maintain a dynamic equilibrium state. Dynamic base pairs between C55 and C66 in H1 and
guanines (G73, G79, and G85) in LR1 have positive effects on IRES activity, while dynamic
base pairs between C105 and C108 in H2 and guanines (G73, G79, and G85) in LR1 negatively
regulate the IRES activity [103]. Dynamic base pairs among cytosines (C55, C66, C105, and
C108) in H1/H2 and guanines (G73, G79, and G85) in LR1 maintain a tertiary equilibrium
state to ensure that the IRES activity of the RNA1 5’UTR is at a suitable level, which is
suggested to be the evolution target of WYMV RNA1 [103].

3.1.2. IRESes in Other Plant RNA Viruses

In addition to IRES found in species of the family Potyviridae, it has been reported in
other types of plant RNA viruses. The upstream coat protein (CP) ORF in TCV contains an
IRES, which can regulate the expression of CP protein [157]. The low-level expression of CP
protein can be detected even if CP subgenomic RNA is not synthesized. The IRES located
upstream of the CP ORF in TCV does not present structural characteristics, and the IRES
activity is related to an unstructured A-rich sequence. Moreover, IRES activity depends on
eIF4G instead of eIF4E [157]. IRES with A-rich sequences has also been found upstream
of the CP and MP ORFs in crTMV [158]. Similar IRES elements have also been found in a
variety of viruses of the family Tombusviridae, such as HCRSV and PFBV [159,160]. These
IRES elements present unstructured characteristic [157–160]. An IRES has been found in
the 5’UTR of RNA2 of the blackcurrant conversion virus (BRV), a Nepovirus. This IRES did
not present a remarkable secondary structure, but it did contain multiple segments of an
8–10 nt sequence motif essential for IRES activity, which can complement the position of
the 1113–1123 nt region of 18S rRNA [161]. Subsequently, similar regions complementary
to 18S rRNA have been found in the 5’UTR of other species of Nepovirus. It is speculated
that these IRESes may directly recruit 40S subunit, because 18s rRNA is part of the 40S
subunit [161]. IRES has also been found in the genome of the potato leaf roll virus (PLRV).
The IRES is completely located in the ORF. The core cis-elements include a conserved AUG
codon and adjacent inverse symmetric motif (GGAGAGAGAGG) [162].

To date, IRESes of plant RNA viruses have presented multifarious structural char-
acteristics and can be roughly divided into three types according to their structural char-
acteristics (Table 2). Type I IRES is unstructured and generally contains a section of an
A-rich sequence. The representative viruses are TCV/HCRSV/PFBV/BRV. Type II IRES
is structural. All of these IRESes have one or several hairpins. According to the num-
bers and other characteristics of hairpin structures, they can be divided into the single
hairpin type such as in TEV, the double hairpin type such as in PVY and TriMV, and the
equilibrium state structure type such as in WYMV. In WYMV, there are two hairpins in
IRES with an equilibrium-state structure, which is mediated by discontinuous C–G base
pairing between the two hairpins: dynamic base pairs among cytosines (C55, C66, C105, and
C108) in two hairpins and guanines (G73, G79, and G85) in the linker region. In addition to
types I and II, there are several IRESes whose structural characteristics are unclear. The
IRES in TuMV/PVA/PLRV has been classified as type III. Although there are three type
of IRESes based on their structural characteristics, IRESes in plant RNA viruses appear to
have simpler structure than that in animal RNA viruses. Similarly, IRESes of mammalian
cellular mRNA are also less structured than that in animal RNA viruses [163,164]. In
addition, IREses in yeast and fruit fly exhibit a weak secondary structure, which was
correlated with high IRES activity [165]. With the exception of animal RNA viruses, RNAs
from other resources including plant RNA viruses contain less structured IRESes. The less
structured nature of IRESes in plant RNA viruses may be related to the shorter 5′UTR than
that in animal RNA viruses. In addition, the 5′UTR length (a median length of approx-
imately 53–218 nucleotides) of cellular mRNA appears to be shorter than that of IRESes
(at least 450 nt) in animal RNA viruses [166]. A subset of eukaryotic IRESs exhibit very
low secondary structure in the 5′UTR sequences immediately upstream of the initiation
codon [165]. However, not all IRESes in plant RNA viruses exhibit a less structure char-
acteristic. For instance, IRESes in WYMV presented a tertiary equilibrium-state structure,
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which was an alternative complex structure of IRES [103]. It has been suggested that the
length of IRES sequences is not the sole determinant on the complexity of tertiary structure.
The determinant of structure complexity of IRES can be a future research direction, in
addition to the dialectic relationship between IRES structure and IRES activity.

Table 2. Summary of IRESes in plant RNA viruses.

IRES Type
Group I with

Unstructured cis-Elements

Group II with Structured cis-Elements Group III with
Unclear Structure

Characteristic
Single-Stem Loop

Structure
Double-Stem Loop

Structure
Equilibrium-State

Structure

Virus TCV/HCRSV/
PFBV/crTMV BRV TEV PVY TriMV WYMV TuMV/PVA PLRV

Structural
characteristic US-1 US-2
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In addition to the different structural characteristics, IRESes in plant RNA viruses
present different mechanisms to recruit translation factors or ribosomes. Some IRESes
such as TCV and TEV can bind eIF4G, while others such as WYMV can bind eIF4E.
In addition, some IRESes, such as BRV, TEV and TriMV, can directly bind 18S rRNA.
Although the genomic RNA of these plant RNA viruses does not contain the 5′cap, they
can recruit the translation initiation complex by binding to specific components, such as
eIF4E, eIF4G, and/or 18S rRNA. To date, IRESes of plant RNA viruses have appeared
to function without the assistance of ITAF, while some IRESes in animal RNA viruses
and cellular mRNA required ITAF [118–124,164,167,168]. Whether some potential ITAFs
modulate the activity of IRESes in plant RNA viruses can be a future research direction.
According to the sequence or structural characteristics of these IRESes in plant RNA viruses,
a potential control strategy for the plant RNA viruses was tested. In studies of TuMV, TriMV
and WYMV, complementary oligonucleotide with core cis-elements shows remarkable
inhibition on translation [113,135], which implied that complementary oligonucleotides
could be efficient agents against plant disease through the inhibition of translation of
viral proteins. In addition, other types of small molecules, such as specific nucleotides and
peptides, can be used as inhibitors of viral disease if they can block the essential interactions
of IRESes and host translation factors or ribosomes. These types of molecules have been
reported in studies of animal RNA viruses [169–174], which implies that this strategy can be
applied to the control of diseases caused by plant RNA viruses. Small molecules blocking
the core region in IRESes or the essential interaction between IRESes and host translation
factors or ribosomes are potential agents for the management of viruses. In addition to
resolving the detailed characteristic of core cis-elements in IRESes, the precise interaction
sites between IRESes and host translation factors or ribosomes can be a future research
direction, which will provide insight into the design of small-molecule blocking agents.
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The primary function of IRES is the regulation of cap-independent translation, and
different types of IRESes have been identified in some plant RNA viruses, which recruit
translational initiation factors in different manners (Table 2). In addition to regulating
cap-independent translation, the IRES of WYMV can play a positive role in regulating the
translation of RNA with 5′ cap [113]. It implied a potential interaction between IRES and
the 5′ cap in translation. Similarly, the 5′UTR (14 nt and 21 nt) of RNA3 and RNA10 in
RBSDV presents IRES activity and can enhance the translation of RNA with a 5′cap [175].
The mechanism of the potential synergistic function between the 5′ cap and IRES requires
further identification in future.

3.2. 3′CITE in Plant RNA Viruses

The 3’CITE was firstly reported in sTNV [104] and subsequently discovered in a large
number of positive-strand RNA plant viruses [2,176,177]. 3’CITEs have also been found
in both eukaryotic cells and animal RNA viruses [112,178,179]. In general, 3’CITEs can
recruit diverse translation initiation factors or directly recruit and bind to the ribosome
subunit, and the translation initiation complex is subsequently brought to the 5’ end of
the RNA through long-distance RNA–RNA interaction to initiate translation [2]. Detailed
characteristics of 3’CITEs have mainly been determined for plant RNA viruses. According
to their recruitment on different host translation initiation factors, RNA structures, and
circularization mechanisms, these 3’CITEs can be classified into seven classes: TED, BTE,
PTE, TSS, ISS, YSS, and CXTE (Table 3).

Table 3. Summary of 3′ CITEes in plant RNA viruses.

3′ CITE
Type TED BTE PTE TSS ISS YSS CXTE

Viruses sTNV/PLPV/
PCRPV BYDV/TBTV PMV/PEMV2 TCV/CCFV/

PEMV2 MNSV TBSV/CIRV/
PLCV CABYV

Structure
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ring eIF4F, which is essential for translation functions [200,201]. The apical loop of TED in 
sTNV contains sequences complemented by the apical loop of the 5′UTR, while mutation 
to disrupt the potential base pairing slightly reduces translation [180]. The detailed mech-
anism of how the ribosome complex recruited by TED is brought to the 5′UTR remains 
unclear. 

Similar TED elements have been experimentally verified for other related viruses. 
Three carmoviruses including pelargonium line pattern virus (PLPV), pelargonium chlo-
rotic ring pattern virus, and pelargonium ring spot virus have been shown to contain a 
TED-like element, which has sequences in its apical loops putatively forming a kissing-
loop interaction with a 5′ proximal hairpin [187]. The core sequences (YGCCA; Y is a py-
rimidine) in the apical loop of the TED-like element are conserved, which mediate the 
long-distance kissing-loop interaction with the 5′ proximal sequences. When the predicted 
long-range base pairing with the TED-like element in the PLPV is disrupted, the transla-
tion efficiency is reduced to less than 10% of the wt levels. It has been revealed that mainte-
nance of the 5’–3´ gRNA communication is imperative for efficient translation mediated 
by the TED-like element [98]. 

3.2.2. Barley Yellow Dwarf Virus (BYDV)-Like Element (BTE) 
BTE was first reported in BYDV and subsequently found in all species of the genus 

Luteovirus, as well as in some species of the genera Necrovirus, Umbravirus, and Dianthovi-
rus [182,202]. BTE contains a highly conserved 17 nt sequence (GGAUCCUGGNR-
NACAGG, the underlined base pair; N is any base and R is a purine) and a stable stem-
loop SL-IIII pairing with the 5′UTR (140 nt) [183,203]. This long-distance RNA–RNA in-
teraction between BTE and the 5′ ends of the gRNAs and/or sgRNAs is necessary for effi-
cient translation [183]. eIF3 can bind to both the UTRs of BYDV to stabilize the 3′UTR–
5′UTR interaction and facilitate the transfer of the translation machinery from the 3′BTE 
to the 5′UTR [204]. BTE of BYDV bound eIF4G with unusually high affinity and recruited 
translation machinery in an eIF4G-dependent manner [205]. The three-dimensional 
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3.2.1. Translation Enhancer Domain (TED)

TED was discovered in the 3′UTR (619 nt) of sTNV, a parasitic subviral agent, and
it enhances translation in vitro and in vivo [104]. Its structure is predicted to form a
long hairpin containing several internal bulges and a 6 nt apical loop, which has no
strong uninterrupted helices [104,180,198,199]. TED can recruit eIF4F or eIFiso4F, typically
preferring eIF4F, which is essential for translation functions [200,201]. The apical loop of
TED in sTNV contains sequences complemented by the apical loop of the 5′UTR, while
mutation to disrupt the potential base pairing slightly reduces translation [180]. The
detailed mechanism of how the ribosome complex recruited by TED is brought to the
5′UTR remains unclear.
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Similar TED elements have been experimentally verified for other related viruses.
Three carmoviruses including pelargonium line pattern virus (PLPV), pelargonium chlorotic
ring pattern virus, and pelargonium ring spot virus have been shown to contain a TED-like
element, which has sequences in its apical loops putatively forming a kissing-loop interac-
tion with a 5′ proximal hairpin [187]. The core sequences (YGCCA; Y is a pyrimidine) in
the apical loop of the TED-like element are conserved, which mediate the long-distance
kissing-loop interaction with the 5′ proximal sequences. When the predicted long-range
base pairing with the TED-like element in the PLPV is disrupted, the translation efficiency
is reduced to less than 10% of the wt levels. It has been revealed that maintenance of the
5′–3′ gRNA communication is imperative for efficient translation mediated by the TED-like
element [98].

3.2.2. Barley Yellow Dwarf Virus (BYDV)-Like Element (BTE)

BTE was first reported in BYDV and subsequently found in all species of the genus
Luteovirus, as well as in some species of the genera Necrovirus, Umbravirus, and Di-
anthovirus [182,202]. BTE contains a highly conserved 17 nt sequence (GGAUCCUGGNRNA
CAGG, the underlined base pair; N is any base and R is a purine) and a stable stem-loop
SL-IIII pairing with the 5′UTR (140 nt) [183,203]. This long-distance RNA–RNA interaction
between BTE and the 5′ ends of the gRNAs and/or sgRNAs is necessary for efficient
translation [183]. eIF3 can bind to both the UTRs of BYDV to stabilize the 3′UTR–5′UTR
interaction and facilitate the transfer of the translation machinery from the 3′BTE to the
5′UTR [204]. BTE of BYDV bound eIF4G with unusually high affinity and recruited trans-
lation machinery in an eIF4G-dependent manner [205]. The three-dimensional structure
of BTE of BYDV was determined via crystallization and preliminary X-ray diffraction
analysis [206].

BTE-like elements have also been reported in tobacco bushy top virus (TBTV) [207]. A
study on the BTE of TBTV identified the structural evolution of BTE, which is mediated
by the mutation of nucleotides outside of the BTE regions at the 3′ end. It is suggested
that other regions at the 3′ end regulate translation by affecting the structure of the BTE
region [207]. In addition, we found that the 5′ terminal region of the TBTV genome has
a local molecule regulating the formation or deformation of long-distance RNA–RNA
interactions between the 5′UTR (10 nt) and BTE (G. Geng and X. Yuan, unpublished data).
In addition, a recent study revealed that opium poppy mosaic virus (OPMV) has a BTE
at the 3′ end, which also contains another 3′CITE termed TSS [208]. The BTE, not the
TSS in OPMV, contributes to the translation of the reporter constructs [208]. In addition
to the conserved 17 nt sequences, BTE in species of the genus Umbravirus and seven
additional BTEs from species of the family Tombusviridae and Luteoviridae have additional
structural and sequence similarities, including the distance between SL1 and SL2, conserved
sequences located downstream of SL2 and SL3 [208].

3.2.3. Panicum Mosaic Virus-Like Translation Element (PTE)

PTE is present in several species of the genera Carmovirus and Panicovirus, pea enation
mosaic virus RNA 2 (PEMV2) of the genus Umbravirus, and pothos latent virus of the genus
Aureusvirus [187]. The PTE consists of a three-way branched helix with a large G-rich bulge
(G domain) in the main stem and two helical branches at the branch point with a short
C- or pyrimidine-rich bulge (C domain) [186]. The 5′ side hairpin of PTEs, excluding the
PTE in PEMV2, has an apical loop complementary to the apical loop of a hairpin at or near
the 5′ end of the viral RNA. In PEMV2, the translation complex recruited by the PTE is
brought to the 5′ end through the 5′–3′ interaction mediated by kl-TSS. Meanwhile, the PTE
of PEMV2 has been shown to bind eIF4E with high affinity [187,188]. MCMV also contains
a 3′CITE mainly similar to PTE, termed MTE, which can interact with eIF4E with high
affinity [209]. However, MTE lacks a strong pseudoknot, unlike most PTEs, and stimulates
cap-independent translation with less efficiency than most PTEs [209].
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3.2.4. T-Shaped Structure (TSS)

TSS was first discovered in the turnip crinkle virus (TCV) of the genus Carmovirus [189].
The TSS contains a unique set of three hairpins and two pseudoknots that fold into a
structure similar to that of tRNAs, as predicted by molecular modeling and confirmed by
small-angle X-ray scattering (SAXS)/NMR, which was the first resolved 3D structure of a
3′CITE [190]. The TSS of TCV binds to the ribosome 60S subunit, and this binding is not
only important for TSS activity, but also for circularization of the RNA template [189]. In
addition, TSS is a scaffold that forms a highly interactive structure at the 3′ end of TCV,
which undergoes a widespread conformation shift upon binding to RNA-dependent RNA
polymerase [210,211].

A similar TSS structure has been proposed for the related cardamine chlorotic fleck
virus of the genus Carmovirus. The 3′UTR of PEMV2 of the genus Umbravirus contains two
functional TSSs. One is termed kl-TSS, located 9 nt upstream of the PTE, and the other is
termed 3′TSS, located near the 3′ end of the genomic RNA, which is predicted to fold into
structures similar to tRNAs [191,192]. In addition, TSS was also discovered in TBTV of the
genus Umbravirus (X. Yuan, unpublished data) and also contained BTE, another type of
3′CITE [207].

3.2.5. I-Shaped Structure (ISS)

ISS, the shortest 3′CITE, has been found in the different genera of the family Tombusviri-
dae such as maize necrotic spot virus of the genus Tombusvirus and melon necrotic spot
virus (MNSV) of the genus Carmovirus [194,212]. The ISS consists of a stem-loop structure
(approximately 60 nt) with a four-base helix and flanking bulged sequences, which is
similar to the RNA structure of TED. However, the sequences and motifs between the ISS
and TED are fundamentally different. Two different types of ISS were previously identified
in different MNSV isolates: MNSV-Ma5 and MNSV-264. Although there is considerable
sequence divergence between the 3′CITEs of the MNSV isolates, all have the shape of an “I”.
ISS binds the translation initiation factor eIF4F and engages in an RNA–RNA kissing-loop
interaction with a hairpin loop located at the 5′ end of the genomic RNA [194,195,212].

3.2.6. Y-Shaped Structure (YSS)

Nearly all members of the genus Tombusvirus are predicted to have a conserved YSS
at the 3′ end [2,99,196]. The YSS consists of three long helices (SL-A, SL-B, and SL-C)
protruding from a central hub and folded into structures similar to the shape of a “Y”.
Mutations in three extended helices altering the structure of the stem or bulge formations
reduce translation mediated by the YSS of TBSV [196]. The YSS of TBSV engages a 5′–3′

RNA–RNA interaction to facilitate cap- and poly(A)-independent translation [99]. YSS has
also been discovered in carnation Italian ring spot virus and pelargonium leaf curl virus,
whose activity for efficient translation requires eIF4F or eIFiso4F [213].

3.2.7. Cucurbit Aphid-Borne Yellows Virus (CABYV) Xinjiang-Like Translation
Element (CXTE)

A small 3′CITE termed CXTE was identified from the 3′UTR of the MNSV-N isolate,
which can overcome eIF4E-mediated resistance due to the insertion of 55 nt sequences from
CABYV [197]. These 55 nt sequences form a new 3′-CITE called CXTE. In the MNSV-N
isolate, CXTE is responsible for recruiting translation machinery, and ISS is responsible
for the formation of the 5′–3′ interaction [2,197]. Cap-independent translation mediated
by CXTE may occur in an eIF4E-independent manner. This is the first report of 3′CITE
transferring between different families by recombination in nature [197].

To date, the detailed characteristics of 3′CITE have been mainly identified in plant
RNA viruses. Different 3′CITEs present different structural characteristics and regulate
translation in a different manner recruiting host translation machinery (Table 3). Some
plant RNA viruses such as species of Umbravirus contain multiple 3′CITEs. BTE, not TSS,
in OPMV plays a role in cap-independent translation [208]. However, two types of 3′CITEs
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(CXTE and ISS) synergistically play a role in translation in the case of MNSV-N [197]. PTE
and kl-TSS also synergistically play a role in translation in the case of PEMV 2 [192]. In
addition to plant RNA viruses, there are many possible 3′CITEs in animal RNA viruses
and eukaryotic cellular mRNAs [112,178,179], whose characterization is the virgin land for
cap-independent translation and even translation regulation. This implies the universal
existence of 3′CITE in different types of RNA, even in different organisms. Characteristics
and mechanisms of 3′CITE in plant RNA viruses, animal RNA viruses, and eukaryotic
cellular mRNA need to be identified, which will provide new insight into the translational
regulation and evolution of different types of RNA. In addition, the 3′ end of genomic
RNA in plant RNA viruses has also been reported to contain cis-elements regulating
viral replication, which is another important biological process in viral life cycle. 3′CITE
and replication-associated cis-elements located at the 3′end of virus genome may induce
reciprocal actions or effects due to the local tertiary structure [210,211], which can be a future
research direction for the deeper characterization of 3′CITE. In addition, switching between
translation mediated by 3′CITE and replication mediated by corresponding cis-elements
may also play an essential role in the viral life cycle, because the 3′ end could undergo a
structural change upon binding to RdRp, the core component of viral replication [210].

IRES and 3′CITE are two types of cis-elements that mediate the cap-independent
translation of viral RNA without the 5′ cap. According to information from previous
studies and this review, IRES and 3′CITE in plant RNA viruses appear to present different
structural characteristics. IRESes in plant RNA viruses present one of three characteristics:
unstructured, structured, or unclear structure (Table 2). All 3′CITEs present seven types
of remarkable structural characteristics (Table 3). Although the structure presents variety
with few similarities, some conserved characteristics can be identified related to translation
initiation factors or ribosome RNA bound by IRES or 3′CITE. According to the reported
data, IRES or 3′CITE can bind to at least one of three components including eIF4E, eIF4G,
or 18S RNA, which are important components for the translation initiation complex. It
is suggested that both IRES and 3′CITE can recruit the translation initiation complex
through three different pathways: type I, II, or III (Figure 1). Through the interaction
with eIF4E, eIF4G, and/or 18S RNA, IRES or 3′CITE in plant RNA viruses can recruit
the host translation initiation complex to ensure the translation initiation of viral RNA
(Figure 1). In addition, cap-independent translation is also synergistically enhanced by
viral RNA civilization mediated by the long-distance interaction between IRES or 3′CITE
and cis-elements located at another end of the viral genome (Figure 1). cis-Elements in IRES
and/or 3′CITE involved in the interaction with host translation initiation complex or the
civilization of viral RNAs are the target for the design the small-molecule agents for the
management of virus diseases.
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4. Translation Recoding

Cap-independent translation is responsible for the expression of viral proteins located
at the 5′ proximal region in viral genomic RNAs or subgenomic RNAs without the 5′

cap. However, some plant RNA viruses are multi-cistronic, and viral proteins located
at the internal or 3′ part of genomic RNAs are expressed through other strategies at the
transcriptional or translational level. At the transcriptional level, some plant RNA viruses
can produce subgenomic RNAs, in which some viral proteins located at the internal or 3′

part of the genomic RNAs are changed to 5′ proximal [1]. At the translational level, these
proteins unlocated at the 5′ proximal in genomic or subgenomic RNAs can be expressed
through translational recoding, which is an alternative method of identifying the message
of the initiation or stop codon of the ORF. Translation recoding includes several types: leaky
scanning or non-AUG initiation standing for the recoding of the initiation codon, ribosomal
read-through or ribosomal frameshift standing for the recoding of the stop codon, and
translational bypassing standing for special expression of the peptide from a discontinuous
frame [3,214,215].

4.1. Leaky Scanning

Leaky scanning was first discovered in the genus Orthobunyavirus, in which the ORF of
NSs was located completely inside the ORF of N. The NSs are expressed via leaky scanning
at the AUG of the ORF of the N protein [216]. Leaky scanning is a mechanism of the
translation initiation complex skipping the first initiation codon AUG of the correspond-
ing ORF and initiating translation at the downstream initiation codon AUG due to the
nonoptimal context surrounding the first initiation codon AUG [217]. The optical context
of the initiation codon AUG is (A/G)CCAUGG in mammalian systems and ACAAUGG
in the plant systems, in which purine (A/G) at the −3 position and G at the +4 position
are the strongest indicators of translation initiation in animals, plants, and fungi [218–220].
This process allows the expression of multiple C-terminally coincident isoforms of a single
protein (in-frame alternative initiation sites), distinct proteins encoded by different overlap-
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ping ORFs (alternative initiation sites in different reading frames), or even distinct proteins
encoded by nonoverlapping continuous ORFs [221].

According to the genome organization of plant RNA viruses, leaky scanning can occur
at eight genera in the family Alphaflexiviridae, three genera in the family Betaflexivridae,
one genus in the family Benyviridae, one genus in the family Kitaviridae, three genera in
the family Luteoviridae, two genera in the family Reoviridae, three genera in the family
Secoviridae, two genera in the family Solemoviridae, six genera in the family Virgaviridae,
nine genera in the family Tombusviridae, and three genera in the family Tymoviridae (Table
1). Leaky scanning is a universal translation recoding strategy for plant RNA viruses. The
17K protein in BYDV-PAV sgRNA1 is produced by leaky scanning from the start codon
(UGAAUGA) of CP ORF, in which the leaky ratio was about 50% [222]. The p39 protein
is the leaky scanning product of p23 in the peanut clump virus, in which the ratio of
leaky scanning on p23 was 20–30% [223]. βc protein is translated using a leaky scanning
mechanism from the start codon ofβd ORF in RNAβ of barley strip mosaic virus [224].
Rice tungro bacilliform virus (RTBV) can express the internal ORFs II and III by leaky
scanning [225]. In potato virus X, the 8K ORF is translated by leaky ribosome scanning
through the 12K ORF [226]. In the PLPV, the expression of p9.7 is the leaky scanning
product from p7 with the ratio of 10% of p7. In addition, p37 is produced through the leaky
scanning over the start codon of p7 and non-AUG start codon of p9.7, and the ratio of p37
to p7 was about 50% [227]. Translation of ORF 2a in sobemoviruses is also dependent on
the leaky scanning mechanism [228].

4.2. Non-AUG Initiation

The leaky scanning mechanism implies the importance of the context of initiation
codon AUG, which can also be confirmed by another translation recoding mechanism
termed non-AUG initiation. No AUG initiation was first discovered in the sendai virus in
1988, and translation can be initiated from the ACG codon [229]. In the non-AUG initiation
strategy, some codons such as CUG, GUG, ACG, AUU, AUA, AUC, and UUG have been
confirmed to initiate translation at a 2–30% level, and CUG surrounded by an optimal
context is the most efficient non-AUG initiation codon [230]. Initiation at a non-AUG codon
normally requires a strict context such as an A or G at −3 and a G at +4. In addition,
a stem loop located at approximately 14 nt downstream of the initiation codon could
enhance non-AUG initiation [231,232]. Non-AUG initiation has been discovered in many
plant viruses, such as RTBV, species of the family Tombuviridae, and species of the family
Panicovirus [225,227,233,234].

4.3. Ribosomal Frameshift

During the special translation process, ribosomes show an abnormal shift of non-
three codons on the RNA template, which changes the reading frame of the ORF. This
phenomenon is termed ribosomal frameshift [235]. The ribosome can slip one or two nu-
cleotides (−1 or−2 frameshifts) to the 5′ end or one or two nucleotides (+1 or +2 frameshifts)
to the 3′ end [25,236–238], in which the programmed −1 ribosomal frameshift is the type
with detailed characteristics [239]. Programmed −1 ribosomal frameshift was first de-
scribed by the expression of the Gag–Pol polyprotein of the rous sarcoma alpharetrovirus,
which is a chimeric product of overlapping gag and pol ORFs [240,241]. The −1 ribosomal
frameshift is involved in several levels of cis-elements: a “slippery site” composed of
seven nucleotides with the characteristic XXXYYYZ (X is any base, Y is A or U, and Z is
not G) [241–243]; a downstream stimulatory structure, typically a stem loop or pseudo-
knot [244–246]; a suitable 5–9 nt between the slippery site and downstream stimulatory
structure; an element at the 3′ end forming a long-distance RNA–RNA interaction with the
downstream stimulatory structure [247–249].

Ribosomal frameshifting is an important gene expression strategy in plant RNA
viruses, which can occur in one genus of the family Amalgaviridae, one genus of the family
Aspiviridae, four genera of the family Closteroviridae, four genera of the family Luteoviri-
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dae, and two genera of the family Solemoviridae (Table 1). The ORF2a–ORF2b protein in
PLRV, CP-12K protein in potato virus M, and the Pipo protein in TuMV are expressed
via a −1 ribosomal frameshift [250,251]. PEMV2 expresses its RNA polymerase using a
−1 ribosomal frameshift, which is regulated through multiple cis-acting elements [252].
The viral RdRp of species of the genus Closterovirus such as CTV and BYV is possibly
translated through a +1 frameshift [253]. Viruses of the family Luteoviridae express ORF 2
via a −1 ribosomal frameshift from ORF 1, thereby giving an ORF 1/2 fusion protein [254].
p98 (RdRP) in TBTV is expressed via a −1 ribosomal frameshift [255], which is regulated
by downstream kissing-linker and multiple pairs of long-distance RNA–RNA interac-
tions between downstream regions of slippery sequences and the 3′ end (Yu and Yuan,
unpublished data).

In addition to the above translational ribosomal frameshift, there is a transcriptional
frameshift due to RNA editing on the RNA template to change the sequences of the
ORF. The expression of P3N-PIPO in PVY and TuMV, as well as of P1N-PISPO in sweet
potato feather mottle virus, has been confirmed through the transcriptional frameshift
mechanism [251,256–259]. The transcriptional frameshift mechanism has also been found
in prokaryotes, eukaryotes, and chloroplasts [260–264].

4.4. Ribosomal Read-Through

During the special translation process, the ribosome can fail to terminate translation at
the stop codon and pass through the stop codon to produce a C-terminal extended peptide
at a proportion of 0.3–5%. This phenomenon during translation is termed ribosomal
read-through [265,266]. Ribosomal read-through was first discovered in TMV, in which
read-through of an amber stop codon produced a 183K protein, which requires the existence
of two naturally tyrosine-specific suppressor tRNAs [267–269]. Ribosomal read-through
may be involved in several cis-elements including suppressor tRNA and a local stimulatory
structure, such as a stem loop or pseudoknot, downstream of the stop codon, which is an
element at the proximal 3′ end engaging in long-distance RNA–RNA interaction with the
local stimulatory structure [270–275].

In plant RNA viruses, ribosomal read-through can occur in the genus Benyvirus
in the family Benyviridae, three genera in the family Luteoviridae, seven genera in the
family Virgaviridae, and 14 genera in the family Tombusviridae (Table 1) and is used to
express two types of proteins: including replicase and CP [271]. The RNA replicase of
TMV is translated by read-through [276]. In the genus Tobamovirus, the read-through
replicase p182 is sufficient for viral replication and transcription [277]. The CP of BYDV
is expressed by readthrough [278]. Tobacco necrosis virus-D expresses its polymerase via
read-through [279]. The family Luteoviridae encodes two forms of CP: the major component,
CP, and read-through protein (CP readthrough domain (RTD)) [280]. The readthrough (RT)
product of CP is involved in vector transmission through specific interactions between
CP-readthrough and vector proteins [270,281,282]. The ratio of CP-RT to CP is regulated
such that the surface of the virion contains a suitable CP-RT to facilitate vector transmission.
Replicases in the family Tombusviridae and Virgaviridae are expressed via read-through; the
ratio of read-through is about 5–10% and is regulated by several cis-elements [283]. During
genome replication, plant RNA viruses produce dsRNA, which can induce gene-silencing
cleavage. These plant RNA viruses express replicase at a suitable level via read-through to
control the speed of replication of the genome.

Although different types of translation recoding in plant RNA viruses present differ-
ent mechanisms involving different cis-elements and various viral or host trans-factors,
the expression of translation recoding products at the suitable level is the common point
for different RNA viruses. The suitable ratio of translation recoding is essential for fit-
ness of corresponding RNA viruses, suggesting that small molecules interfering with the
suitable ratio of translation recoding in plant RNA viruses can be effective agents for the
management of virus diseases. The design of this type of small molecule relies on the
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detailed characterization of cis-elements or trans-factors involved in the different translation
recoding processes, which is also a future research direction in translation recoding.

5. Conclusions

IRESes and 3’CITEes in plant RNA viruses presented different structure characteristic
in different viruses and recruited host translation machinery through eIF4E, eIF4G or 18s
rRNA. However, detailed information about interaction between cap-independent transla-
tion elements and translation machinery was rough, which require further identification in
future. Both ribosomal frameshift and ribosomal read through in plant RNA viruses were
involved in several levels of cis-elements, but detailed characterization on structure of these
core cis-elements was few and rough. In addition, potential relationship between the ratio
of translation recoding and virus fitness was unclear. During translation regulation of plant
RNA viruses, different RNA cis-element may undergo structure shift on the interaction
with other cis- or- trans- element and/or factors. However, the study on the structure shift
of cis-elements was few. All these information gap will be future direction.

Translation of viral proteins is a vital process during the life cycle of viruses. Com-
prehensive and persistent identification of different translation strategies in plant RNA
viruses will provide new insights into translation regulation and new mechanisms in virus
evolution, which will result in new strategies, target sites, and agents for the management
of viral diseases of plants.
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