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Abstract Background/purpose: Periodontal breakdown in periodontitis is exacerbated by
pro-inflammatory responses of periodontal stromal cells such as periodontal ligament fibro-
blasts (PDLFs). Procyanidin B2 (PB2) is a ligand of the peroxisome proliferator-activated recep-
tor (PPARg). Herein, we investigated the expression of PPARg isoforms in PDLFs and
periodontal tissue, and examined the effects of PB2 on PPARg isoform-dependent antiinflam-
matory responses.
Materials and methods: PPARg isoforms were examined by PCR. PPARg isoform-dependent in-
flammatory functions and anti-inflammatory effects of PB2 in PDLFs were evaluated based on
IL-6 expression. Co-immunoprecipitation analysis of fixed chromatin-tethered protein
(CoIPfctp) was conducted to investigate the association of each PPARg isoform with the NF-
kB-transcriptional complex. The effects of PB2 on periodontitis progression were evaluated us-
ing a ligature-induced murine periodontitis model.
Results: Three isoforms of PPARg were expressed in PDLFs and periodontal tissues, consisting
of the main full-length isoform (PPARg) and two dominant negative isoforms that lack the
ligand binding domain, namely the ubiquitously-expressed isoform (PPARg-UBI) and unknown
isoform (PPARg-PDL). PPARg and PPARg-UBI were predominantly expressed. CoIP-fctp re-
vealed that PPARg-UBI was selectively associated with NF-kB p65, a key transcriptional factor
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Table 1 Primer pairs used in thi

Primer name

PPARG

PPARG-UBI

PPARG-PDL

IL-6

MCP-1

COL1A1

OCN

HPRT

PPARG Z full-length PPARG, PPARG-
MCP-1 ZMonocyte chemoattractant
Phosphoribosyltransferase 1.
of IL-6 expression. PB2 suppressed LPS-induced-IL-6 expression exacerbated by the over-
expression of PPARg-UBI. In the murine periodontitis model, topical application of PB2 signif-
icantly mitigated alveolar bone loss.
Conclusion: These results suggest that the anti-inflammatory effects of PB2 in periodontal tis-
sues/cells are distinct, and these effects arise from the inhibition of PPARg-UBI; hence, the
application of PB2 and modification of the splicing event in three PPARg isoforms have thera-
peutic potential for preventing periodontitis.
ª 2023 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Periodontitis accompanied by alveolar bone loss and the
irreversible breakdown of periodontal epithelial and con-
nective attachment is developed by a local pathogenic
bacterial infection that induces the production of cytokines
and enzymes from host cells as a result of the host’s pro-
tective inflammatory response.1 The excess amount of pro-
inflammatory cytokines, such as IL-6, TNF-a, and IL-1b, in
inflamed periodontal tissue that is mainly secreted from
infiltrated immunological cells, such as macrophages,
neutrophils, and T cells, play a major role in the onset and
progression of periodontitis.1 Periodontal stromal cells,
such as periodontal ligament fibroblasts (PDLF), osteo-
blasts/osteocytes, and gingival fibroblasts, also participate
in the onset and progression of periodontal diseases by
secreting pro-inflammatory cytokines, circulating RNAs,
and RANKL, which is a ligand for the RANK receptor of the
osteoclast precursor.2,3 Moreover, IL-6 secreted from PDLF
influences periodontal tissue breakdown.4 NF-kB, an in-
flammatory signal, is active and required for expressing
pro-inflammatory cytokines in the stromal cells, similar to
s study.

Species

Human

Human

Human

Human

Human

Human

Human

Human

UBI Z PPARG ubiquitous isoform
protein-I, COL1A1 Z Collagen t
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immunological cells.5,6 The importance of the NF-kB signal
in periodontal stromal cells for periodontal tissue break-
down has been revealed by examining osteoblasts/
osteocyte-specific inactivation of NF-kB eliminated alve-
olar bone loss in an experimental periodontitis mouse
model.7 Thus, protection of aberrant NF-kB activation in
periodontal stromal cells is considered to be key for pre-
venting periodontitis.

Peroxisome proliferator-activated receptor (PPARg) is a
nuclear receptor that plays a role in energy metabolism and
osteogenic/cementogenic differentiation of PDLF.8,9 In
addition, PPARg aids in inhibiting excess inflammation in
both the acute and chronic stages. PPARg suppresses the
expression of a subset of Toll-like receptors (TLR),10 and
ligand-activated PPARg directly associates with NF-kB to
inhibit its transcriptional abilities.11 Furthermore, rosiglita-
zone, an exogenous agonist of PPARg that belongs to the
family of thiazolidinedione compounds (TZD), was systemi-
cally injected into periodontal tissue of a ligature-induced
rat periodontitis model and prevented alveolar bone loss,
presumably by inhibiting osteoclastogenesis.12 TZDs were
previously administered to patients with type II diabetes as
Direction Sequence

forward GAGCCCAAGTTTGAGTTTGC
reverse GGCGGTCTCCACTGAGAATA
forward AATCAACCGCCCAGGTTT
reverse CTGTGAGGACTCAGGGTGGT
forward TGCAGTGGGGATGTCTCATA
reverse CTGCAGTAGCTGCACGTGTT
forward AAGCCAGAGCTGTGCAGATG
reverse GTTGGGTCAGGGGTGGTTAT
forward AGCAAGTGTCCCAAAGAAGC
reverse GAGTTTGGUTTTGCTTGTCC
forward GTGCTAAAGGTGCCAATGGT
reverse ACCAGGTTCACCGCTGTTAC
forward GGCGCTACCTGTATCAATGG
reverse TCAGCCAACTCGTCACAGTC
forward TGGCGTCGTGATTAGTGATG
reverse CGAGCAAGACGTTCAGTCCT

, PPARG-PDL Z PPARG PDL specific isoform, IL-6 Z Interleukin-6,
ype I alpha 1 chain, OCN Z Osteocalcin, HPRT Z Hypoxanthine
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the first choice drug to improve insulin resistance; however,
TZDs have recently become less prevalent due to the po-
tential carcinogenicity.13 Long-chain fatty acids, 15-deoxy-
D12,14-PGJ2, oxidized LDL, and their metabolites are
endogenous agonists of PPARg,14 but their specificity as
Figure 1 PPARg isoforms identification in PDLFs. (A) PDLFs were
PPARG isoform expression was evaluated using the primer pairs am
view of three PPARG isoforms identified in PDLFs. (C) PDLFs were
collected to analyze the expression changes of PPARG, PPARG-UBI,
n Z 3 for each group. *P < 0.05, significantly higher than non-tre
Kbp Z kilo base pair, RT Z reverse transcriptase, CDS Z coding s
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PPARg ligands has not been fully validated. Procyanidin B2
(PB2), a member of the flavonoids, has recently been iden-
tified as a PPARg ligand and showed favorable systemic ef-
fects for reducing the risks of cardiovascular diseases, type II
diabetes, and cancers.15,16 Dietary flavonoids and
stimulated with LPS for 24 h and then total RNA was collected.
plifying from exon 2 to 8 for full-length PPARG. (B) Schematic
stimulated with TNF-a or LPS for 24 h and then total RNA was
and PPARG-PDL. Each column represents the mean � SD, where
ated. cDNA Z complementary DNA, LPS Z lipopolysaccharide,
equence, ORF Z open reading frame.



Figure 2 PPARg isoforms identification in human clinical periodontal tissue. Inflamed clinical periodontal tissues (18 samples
from different patients) were collected, and the expression levels of three PPARG isoforms, MCP-1, COL1A1, IL-6, and OCN were
compared. High correlation (r > 0.8 or r < �0.8), moderate correlation (0.4 < r < 0.8 or �0.8 < r < �0.4), and weak correlation
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isoflavonoids, such as epigallocatechin-3-gallate and quer-
cetin, inhibit excess inflammation in periodontal tissue and
cells.17e19

Moreover, various splicing isoforms of PPARg have been
detected.20e23 The dominant negative isoform identified in
adipocytes possesses a DNA binding domain but lacks the
ligand binding domain, and therefore, competitively pre-
vents full-length PPARg association with co-transcriptional
factor RXR, and the relative expression level of dominant
negative PPARG was directly correlated with the body mass
index in clinical samples.23 Thus, isoform-dependent func-
tions have been disclosed; however, the types and func-
tions of PPARG isoforms in PDLFs and isoform-specific
abilities for binding to NF-kB and modulating the effects of
NF-kB remain unclarified.

In the present study, 3 isoforms of PPARg in PDLFs and
clinical periodontal tissue were identified, and their re-
lations to IL-6 expression were revealed. Then, the effects
of PB2 on periodontitis onset and progression were clarified
to reveal the isoform-specific favorable effects for inflam-
matory responses of PDLFs.

Materials and methods

Clinical sample preparation

This study was approved by the Ethics Committee of the
Tohoku University Graduate School of Dentistry (approval
number: 2020-3-045). Written informed consent was ob-
tained from the patients. Inflamed periodontal tissues
removed during non-surgical and surgical periodontal
treatments were collected, immersed in RNAiso plus
(Takara Bio Inc., Otsu, Japan) and sonicated with a ho-
mogenizer (Tomy, Tokyo, Japan).

Reagents

Procyanidin B2 (19865) was purchased from Cayman
Chemical (Ann Arbor, MI, USA). LPS (127e05141) was pur-
chased from Fujifilm Wako Pure Chemical Corporation, Ltd.
(Osaka, Japan).

Isoforms identification

Entire mRNA sequence identification was conducted as
described previously.24 PPARG isoforms were amplified from
the human PDLF cDNA sample using KOD DNA Polymerase
(Toyobo Life Science, Tokyo, Japan) with a forward primer
(AAGGCCATTTTCTCAAACGA) associating exon 2 and a
reverse primer (CTGCAGTAGCTGCACGTGTT) associating
exon 8 of full-length PPARG (ENST00000397010.7 PPARG-
205).

Cell culture and stable cell generation

Human PDLFs were purchased from Lonza Inc. (Walkers-
ville, MD, USA) and maintained in low glucose Dulbecco’s
Modified Eagle Medium (DMEM; Thermo Fisher Scientific,
(0.3 < r < 0.4 or �0.4 < r < �0.3) are indicated by green, blue, and
colour in this figure legend, the reader is referred to the Web vers
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Carlsbad, CA, USA) supplemented with 100 units/ml of
penicillin, 100 mg/ml of streptomycin, and 10% fetal bovine
system. PDLFs were cultivated at 37 �C under humidified
atmospheric conditions (5% CO2 and 95% air). For generating
PDLFs stably expressing the full-length (PPARg), ubiquitous
(PPARg-UBI), and periodontal isoforms of PPARG (PPARg-
PDL), PPARg, PPARg-UBI, and PPARg-PDL, sequences were
amplified from the human PDLF cDNA generated using SSIV
(Thermo Fisher Scientific) with reverse primers that had the
FLAG coding sequence. These procedures were previously
described in detail.25

Quantitative PCR (qPCR) analysis

Total RNA purification, cDNA preparation, and qPCR
reactions were conducted as described previously.26,27

Human HPRT was used as an internal reference control.
PCR primer sequences for target genes are shown in Table 1.

Immunoblotting

Immunodetection was conducted as described previously.28

Briefly, reduced samples were loaded onto NuPAGE Bis-Tris
(Thermo Fisher Scientific) gels in MOPS buffer, and sepa-
rated proteins were transferred onto a polyvinylidene
fluoride membrane for immunodetection using the anti-
FLAG (66008-4, 1:1000, Proteintech, Rosemont, IL, USA)
and anti-p65 (Cell Signaling Technology, D14E12) antibodies
as the primary antibodies.

Co-immunoprecipitation analysis of fixed
chromatin-tethered protein (CoIP-fctp)

Sub-confluent PDL transfectants were pre-incubated with
4 mM of MG132, a proteasome inhibitor, for 6 h and fixed
with 1.5% formaldehyde for 10 min. Cells were washed
twice with Dulbecco’s phosphate-buffered saline (DPBS)
and then scraped off. Cell pellets were dissolved in ChIP
sonication cell lysis buffer (Cell Signaling Technology,
component of #81804) and incubated for 10 min at 4 �C.
After centrifugation, cell pellets were mixed with ChIP
sonication nuclear buffer (Cell Signaling Technology,
component of #81804) and sonicated. The lysates were 10-
fold diluted with DPBS and mixed with anti-p65 (Cell
Signaling Technology, D14E12, 1:100). Tubes were rotated
overnight at 4 �C. The next day, Protein G beads were
added to each tube and mixed for 3 h at 4 �C. Then, the
beads were washed and mixed with LDS sample buffer and
reverse-crosslinked. The collected proteins were loaded
onto SDS-PAGE as described previously.

Experimental animals

The study was carried out in compliance with the ARRIVE
2.0 guidelines. All experimental procedures conformed to
the “Regulations for Animal Experiments and Related Ac-
tivities at Tohoku University” and were reviewed by the
Institutional Laboratory Animal Care and Use Committee of
red lines, respectively. (For interpretation of the references to
ion of this article.)



Figure 3 PDLF-PPARg-UBI enhances IL-6 expression but PB2 restores it. (A) p65-immunoprecipitated and input samples of
PDLF-empty, PDLF-PPARg, PDLF-PPARg-UBI, and PDLF-PPARg-PDL were separately loaded onto SDS-PAGE, and the association of
transgene products, namely PPARg, PPARg-UBI, and PPARg-PDL, were analyzed by immunodetection of FLAG using the anti-FLAG
antibody. Then, the membranes were stripped, and equivalent amounts of loaded proteins were confirmed using the anti-p65
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Tohoku University, and finally, approved by the President of
the University (Permit No. 2018DnA-043-08). Eleven-week-
old male C57BL6/J mice (specific pathogen-free grade)
were purchased from CLEA Japan, Inc. The mice were
anesthetized, and silk ligatures (Elp Sterile Blade Silk,
Black, 5e0, Akiyama Medical MFG. CO., LTD, Tokyo, Japan)
were tied around their second maxillary molars for 14 days.
For evaluating the effects of PB2 on periodontal tissue
breakdown, PB2 dissolved in DPBS was topically adminis-
tered (5, 10, or 20 mg/kg) every other day during the 14-
day periodontal inflammation period. Mice in the control
group were administered the same amount of DPBS in the
same manner, with the same frequency.

Micro-computed tomography

Micro-computed tomography (mCT) was conducted as
described previously.29 The hemimaxillae were dissected,
fixed for 24 h in 4% paraformaldehyde, and stored in DPBS at
4 �C. Samples were scanned using a mCT scanner (Scanxmate-
E090, Comscantecno Co. Ltd., Yokohama, Japan) with an
isotropic resolution of 50 mm. All images were re-oriented,
aligning the tomographic coronal plane of the second
molar 2D images parallel to the buccal-lingual center line
and coronal-apical center line. The vertical distances from
the cementoenamel junction (CEJ) to the alveolar bone
crest at the mesial and distal roots were measured and
summed. This sum was used for quantitatively comparing
bone regeneration levels in the periodontal regeneration
stage.

Histology

The maxilla samples used for mCT analysis were decalcified
with 0.134 mol of EDTA in DPBS at 4 �C for 2 weeks. Masson’s
Trichrome staining was performed on 5 mm-thick paraffin
sections, as described previously.30 Histological images
were captured using an upright microscope (DM6000 B:
Leica, Wetzlar, Germany) with a digital camera (DP28:
Olympus, Tokyo, Japan).

Statistical analysis

Statistical analysis was performed by one-way analysis of
variance, followed by the Tukey test (Fig. 1) and two-tailed
unpaired Student’s t-test (Figs. 3 and 4).

Results

PPARg isoform identification in PDL tissue and
PDLFs

To determine which PPARG isoforms are present in PDLFs,
PCR was conducted to detect PPARG transcribed products
expanding from exon 2 to exon 8 of full-length PPARG, and
antibody. (B) PDLF-empty, PDLF-PPARg, PDLF-PPARg-UBI, and PD
absence of PB2 (1 and 10 mM), and then total RNA was collected to q
*P < 0.05, significantly lower than the transfectant treated with LP
PB2 Z Procyanidin B2.
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ultimately, three PPARG-specific bands were identified
(Fig. 1A). DNA sequencing of the amplified products
revealed that the longest one was full-length PPARG, as
expected, followed by the spliced isoform lacking exon 7
(ubiquitous isoform: PPARG-UBI ), which was previously
identified in tissues other than PDLFs or periodontal tis-
sue.23 The shortest isoform lacked exons 6 and 7 (PDL
specific isoform: PPARG-PDL), which has not been previ-
ously reported according to Ensembl genome browser (ac-
cess date 2023/08/29) (Fig. 1B). DNA sequencing of the
band that migrated more than 1.5 kB revealed non-specific
amplification (data not shown). Since none of the bands
were observed in the samples without reverse transcrip-
tase, these bands arose from transcripts and not potentially
contaminated DNA. The expression of these three isoforms
was decreased by TNF-a (Fig. 1C). The expression of PPARG
and PPARG-UBI were significantly up-regulated by the
treatment with LPS (1 mg/ml), but that of PPARG-PDL was
suppressed.

Next, clinical periodontal tissue samples were obtained
during surgical or non-surgical periodontal treatment to
examine whether PPARG, PPARG-UBI, and PPARG-PDL are
expressed in periodontal tissue in vivo and whether there is
a correlation between the expression levels of the three
isoforms (Fig. 2A). The direct correlation between PPARG
and PPARG-UBI was identified (rZ0.40868), but no
apparent correlation between PPARG and PPARG-PDL
(rZ0.12383) or between PPARG-UBI and PPARG-PDL
(rZ0.06989) was revealed. Then, IL-6 expression was
inversely correlated with PPARG (rZ�0.39216) and
PPARG-UBI (rZ�0.38720) and directly correlated with
PPARG-PDL (rZ0.35362), as shown in Fig. 2B. MCP-1
expression was not correlated with PPARG, PPARG-UBI, or
PPARG-PDL. For correlation with extracellular matrix-
coding genes (Fig. 2C), COL1A1 expression was only corre-
lated with PPARG-PDL (rZ0.84136), and OCN expression
was only correlated with PPARG (rZ0.41187).
PDLF-PPARg-UBI induces IL-6 expression and PB2
restores increased-IL-6 expression in PDLF-PPARg-
UBI

The PDLFs over-expressing PPARG (PDLF-PPARg-FLAG),
PPARg-UBI (PDLF-PPARg-UBI-FLAG), or PPARG-PDL (PDLF-
PPARg-PDL-FLAG) were generated, and co-
immunoprecipitation of chromatin-tethered protein assay
(CoIP-ctps) was performed to examine the interaction be-
tween p65 and PPARg, PPARg-UBI, or PPARg-PDL, revealing
that only PPARg-UBI localized in the vicinity of p65 (Fig. 3A,
arrow). Next, to assess the anti-inflammatory abilities of
these 4 transfectants, cells were stimulated with LPS (1 mg/
ml) in the presence or absence of PB2 (1 and 10 mM)
(Fig. 3B). LPS increased IL-6 expression in all 4 types of
PDLF transfectants. PB2 suppressed LPS-induced IL-6
expression in PPARg-UBI. In contrast, PB2 did not suppress
LF-PPARg-PDL were stimulated with LPS in the presence or
uantify the expression of IL-6. HPRTwas used for normalization.
S alone. IP Z immunoprecipitation, LPS Z lipopolysaccharide,



Figure 4 PB2 prevents periodontal tissue breakdown in ligature-induced experimental periodontitis. (A) The vertical dis-
tances from the CEJ to the alveolar bone crest at the mesial and distal roots on day 14 were measured and summed (n Z 8). (B)
Demineralized male maxilla sections of the mice treated with 0 or 20 mg/kg collected on day 14 were stained with Masson’s
trichrome. *P < 0.05, significantly different from the control. Scale bars correspond to 300 and 100 mm at low and high magnifi-
cation, respectively. Red arrows indicate collagen fibers in PDL tissue. PB2 Z Procyanidin B2. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

T. Yamamoto, H. Yuan, S. Suzuki et al.
LPS-induced IL-6 expression in PDLF-empty, PDLF-PPARg, or
PDLF-PPARg-PDL.
PB2 prevents periodontal tissue breakdown in
ligature-induced experimental periodontitis

To investigate whether PB2 possesses protective functions
for periodontal tissue in vivo, ligature-induced
1808
periodontitis was induced for 14 days, and meanwhile,
PB2 (5, 10, and 20 mg/kg) or DPBS was locally applied into
the mesial and distal sides of the ligated upper second
molar every other day. Quantitative analysis of the distance
between the cementum-enamel junction and alveolar bone
crest at day 14 showed that the distance was significantly
narrow in the ligated teeth treated with PB2 compared with
the ligated teeth treated with DPBS, indicating that PB2
administration reduced bone loss (Fig. 4A). The images for
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Masson trichrome staining of ligated second molars at day
14 showed that PB2 treatment suppressed infiltration of
immunological cells and conserved Sharpey’s fiber structure
in PDL tissue of furcation area and interdentium (red ar-
rows) (Fig. 4B).
Discussion

The present study demonstrated that periodontal tissue/
cells express three isoforms of PPARg, namely full-length
PPARg and 2 dominant negative types, PPARg-PBI and
PPARg-PDL (Figs. 1 and 2). PB2 suppressed PPARg-PBI-
induced IL-6 expression in PDLFs, and PB2 topical applica-
tion inhibited periodontal tissue breakdown in ligature-
induced murine periodontitis.

PB2 has shown anti-inflammatory effects promoting M2
macrophage polarization.14 PB2 also contributes to the
attenuation of hepatocyte pyroptosis depending on PPARg
and requires Nrf2-induced PPARg expression to ameliorate
endothelial dysfunction in preeclampsia.31,32 Thus, the
favorable effects of the PB2-PPARg axis are not limited to
particular cell types. During prolonged periodontal chronic
inflammation and following periodontal destruction stages,
various types of immunological cells predominantly partic-
ipate in pathogenesis with T cells and B cells in the early
and late stages of periodontal progression, respectively.33

Therefore, protective effects of PB2 for periodontal
breakdown in the murine periodontitis model do not solely
arise from inhibition of pro-cytokine secretion from stromal
cells (Fig. 4). PB2 is obtained by ingesting apples, cherries,
cocoa, and grape seeds, and has been reported to exhibit
multiple beneficial functions in PPARg-dependent and in-
dependent manners, such as antioxidative activity, miti-
gation of endoplasmic reticulum stress, and anti-
inflammatory effects, without any negative effects, even
a high dose.32,34e36 Further studies are required to identify
how PB2 topical injection ameliorates periodontal inflam-
mation by focusing on the interaction between stromal
mesenchymal cells, such as PDLFs, and infiltrated immu-
nological cells such as macrophages.

Among the three PPARg isoforms, PPARg-PDL lacking
exons 6 and 7 was newly identified in this study (Fig. 1).
PPARg-UBI lacking exon 7 was identified in adipose tissue,
and SRSF1, a member of the serine/arginine-rich splicing
factor, is required for expressing PPARg and PPARg-UBI.23

Approximately 7000 monogenic hereditary diseases have
been reported, one-third of which arise from splicing
mutations.37e39 Thus, similar to adipocytes, SRSFs possibly
participate in the expression of PPARg-UBI and PPARg-PDL.
Only PPARg-UBI, not PPARg or PPARg-PDL, localized in the
vicinity of the p65-associated chromatin region in PDLFs
and suppressed LPS-induced IL-6 expression (Fig. 3). Thus,
PPARg-UBI might guide transcriptional activators to the IL-6
promoter region where p65 associates; however, further
analyses are required to reveal the three-dimensional p65
binding structure in PPARg-UBI, but not in PPARg or PPARg-
PDL, elucidate the specificity of PPARg-UBI and possible
inhibition by PB2, and evaluate the extent to which favor-
able outcomes by PB2 rely on PPARg-UBI inhibition. LPS
usually induces IL-6 expression, and the treatment of PDLFs
with a high dose of LPS increased PPARg and PPARg-UBI
1809
expression in vitro (Fig. 1), although PPARg and PPARg-UBI
expression was inversely associated with IL-6 expression
in vivo. This discrepancy may indicate that the anti-
inflammatory ability of PPARg, a dominant isoform, is suf-
ficient to down-regulate IL-6 expression during the minor
chronic inflammation stage observed in most clinical cases.

In conclusion, for the first time, this study demonstrated
that PB2 protects periodontal tissue breakdown in vivo, and
PB2 specifically suppresses the pro-inflammatory ability of
PPARg-UBI in vitro. Thus, the application of PB2 and arti-
ficial modification of the splicing event in three PPARg
isoforms have therapeutic potential for preventing
periodontitis.
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