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)is work develops a method for automatically extracting temperature data from prespecified anatomical regions of interest from
thermal images of human hands, feet, and shins for the monitoring of peripheral arterial disease in diabetic patients. Binarisation,
morphological operations, and geometric transformations are applied in cascade to automatically extract the required data from
44 predefined regions of interest. )e implemented algorithms for region extraction were tested on data from 395 participants. A
correct extraction in around 90% of the images was achieved. )e process of automatically extracting 44 regions of interest was
performed in a total computation time of approximately 1 minute, a substantial improvement over 10 minutes it took for a
corresponding manual extraction of the regions by a trained individual. Interrater reliability tests showed that the automatically
extracted ROIs are similar to those extracted by humans with minimal temperature difference. )is set of algorithms provides a
sufficiently accurate and reliable method for temperature extraction from thermal images at par with human raters with a tenfold
reduction in time requirement. )e automated process may replace the manual human extraction, leading to a faster process,
making it feasible to carry out large-scale studies and to increase the regions of interest with minimal cost. )e code for the
developed algorithms, to extract the 44 ROIs from thermal images of hands, feet, and shins, has been made available online in the
form of MATLAB functions and can be accessed from http://www.um.edu.mt/cbc/tipmid.

1. Introduction

Body temperature has long been used as a natural indicator
of diseases [1]. Normally, the body maintains a constant core
temperature of 37°C.)e body naturally responds to changes
in the peripheral regions, by sweating and other physio-
logical processes, to control the core temperature. Diseases,
such as peripheral arterial disease (PAD) and local infection,
may affect this thermoregulatory process resulting in cooler
extremities or increased peripheral temperature [2].

Peripheral arterial disease is a condition in which
plaque builds up in the arteries carrying blood from the
heart to the peripheries. Over time, the extent of plaque
increases leading to narrowing of the lumen of the arteries,

restricting blood flow to the peripheries and thus reducing
the ability of the body to regulate the peripheral temper-
ature [3]. Diabetic patients are more likely to suffer from
PAD and its complications, with the lower limbs being the
most affected area in what is commonly known as the
diabetic foot [4]. Assessing the temperature in the lower
limbs in patients suffering from PAD is critical to detect
any arising complications, such as local infection, which
may eventually lead to amputation of part of or the whole
limb. Presently, the clinical practice of temperature as-
sessment involves manual palpation of the lower limbs by
the clinician. However, this method is unable to detect
small temperature changes in the foot and may be affected
by various exterior factors [2].
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)ermal imaging detects the long-wave infrared radia-
tion emitted from a surface of interest. )e amount of ra-
diation can be accurately related to the temperature of the
same surface [5]. Human skin, with an emissivity value of
0.98, is a particularly suitable material for temperature
measurement using thermal imaging [6]. )is is reflected in
the increase in the study and use of thermal imaging in
medical and clinical applications [1, 7, 8]. One of the po-
tential medical application areas is the monitoring of pe-
ripheral arterial disease, and its complications, in the
diabetic foot [1, 9]. Compared to the present method of
detecting differences in temperature in the diabetic foot
using palpations of the plantar aspect of the foot, thermal
imaging can detect very small changes in the surface tem-
perature. Moreover, it can easily detect these changes in
multiple places as opposed to the manual method which can
monitor one region at a time. Furthermore, thermal imaging
gives an objective value for the temperature in contrast with
the subjective temperature estimate obtained from manual
palpation.

Areas of increased temperature in the foot are predictive
of the development of ulcerations. A difference in tem-
perature in contralateral regions of the plantar aspect greater
than 22°C is generally considered to be abnormal [10].
Benbow et al. have concluded that thermography is a simple,
inexpensive, and noninvasive method for the identification
of the neuropathic foot and the increased risk of ulceration
[11].

Oe et al. found that when examining the thermal images
in a case study of a subject with diabetes and a foot ulcer, a
high-temperature area could be identified extending from
the fourth toe (where the ulcer was present) to the ankle [12].
)e patient was later diagnosed with osteomyelitis in the
ulcer on the left foot. Based on these observations, ther-
mography could prove useful for screening of foot ulcers for
further complications. Tamaki et al. confirmed the predictive
power of thermal imaging in detecting osteomyelitis in
diabetic feet by studying 18 subjects with osteomyelitis and
obtaining a 100% positive predictive value [13].

Nagase et al. [14] have monitored thermographic pat-
terns in the plantar surface of the foot and compared the
patterns between nondiabetic subjects and diabetic subjects.
)ey have determined 20 different possible patterns which
the plantar thermographic pattern can follow using the four
different angiosomes in the plantar region of the foot. Both
healthy control subjects and diabetic subjects were screened,
and each of these was categorised to one of the 20 patterns.
While the control group subjects were generally categorised
in two of the patterns, the diabetic group had a larger
distribution across the 20 patterns. )is suggests that, by
monitoring the thermal patterns in the plantar aspect of the
foot, it is possible to identify any abnormalities and possibly
detect complications in the diabetic foot.

In our previous work, Gatt et al. [2], we have determined
the normative heat pattern distribution in hands, feet, and
shins in a population of healthy adults. We identified 44
regions of interest (ROIs) across the three body regions from
which the thermal patterns were established. Our aim was to
repeat this study on a population of subjects which suffer

from diabetes and PAD to identify any difference in the
thermal patterns between the two populations. Such a study
would help us to better understand the relationship between
PAD and how it affects the peripheral temperature. How-
ever, such an analysis would require a large number of
subjects. In the study of Gatt et al. [2], the temperature values
were extracted manually by trained clinicians using an area
demarcation software tool, namely, FLIR Altair software.
)is process was time-consuming, especially considering the
large number of ROIs that had to be extracted. Additionally,
regions extracted had a degree of subjectivity and non-
repeatability owing to the human element in the extraction
process. An automated approach that allows for the rapid
and consistent segmentation of regions of interest from
thermal images is desirable as a first step in the monitoring
of PAD using thermography. In this work, we will focus on
the technical aspect of this segmentation process. Specifi-
cally, a method for automatic extraction of temperature data
from ROIs on thermal images of human hands, feet, and
shins is presented.

2. Related Work

)e literature in the field of thermal imaging for the
monitoring of diabetic feet, and medical thermography in
general, focuses on the detection of abnormal regions of
temperatures which may be indicative of emerging ulcera-
tions or other pathologies. )is is often done through
asymmetry analysis in which regions from one foot are
compared to the corresponding regions on the contralateral
foot, with a deviation of more than 22°C being considered
substantial to warrant further investigation [15–17]. In such
studies, the body regions are segmented from the back-
ground such that corresponding contralateral regions can be
compared. )is step is generally carried out using either
thresholding or clustering method [17, 18]. Once the body
region is segmented from the background, the two con-
tralateral regions are transformed such that corresponding
pixels are aligned.)is step is usually carried out using either
rigid or nonrigid transformation based on automatically
detected corresponding points of the body.

A further step beyond segmenting the body regions from
the background is to subsegment the identified body regions.
Yoon et al. [19] analysed thermal images of human arms, and
automatically extracted the forearm region from the rest of
the arm. )eir method was shown to correctly extract the
forearm regions; however, no further analysis was carried
out on the segmented areas.

Herry [20] also segmented regions from thermal images
of hands, with the fingers and the palm being identified. )e
subsegmented regions were visually inspected to provide
qualitative results, but no quantitative performance mea-
sures were provided.

Blank and Kargel [21] proposed a method to identify
finger and palm regions from thermal images of human
hands using morphological opening with varying radii
circular structuring elements. In an iterative process, the
radius of the structuring element was increased and the area
and circumference of the structure that remained after
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morphological opening were recorded. By detecting the two
largest peaks in the first derivative of the change in area,
dA/dr, the finger and palm regions could be identified.
However, the derivative of the signal is susceptible to minor
local variations and may result in false detections. Blank and
Kargel tested their method on thermal images from seven
subjects. When we tested this method on a larger test da-
tabase, this method failed to reliably extract the correct
points. In the work of Blank and Kargel, the average finger
and palm temperatures were next computed from all pixels
in these regions. )e method is pose independent but
critically depends on good background-foreground seg-
mentation, as any areas which are segmented incorrectly will
change the value and position of the peaks. Since in our work
the hand thermal images have a good foreground to
background contrast, this method was adopted with some
variations to segment the fingers from the rest of the hand
for subsequent ROI extraction.

)e same method was also used by Gauci et al. [22] to
subsegment the fingers and the palm from the rest of the
hand in thermal images.

Gauci et al. [22] automatically extracted temperature
values from anatomical regions of interest from thermal
images of human hands, feet, and shins. )e methods
disclosed in this paper are an improvement of the algorithms
proposed in this work.

Most of the reviewed studies stop at the background-
foreground segmentation or at the subsegmentation stage,
from which the mean temperature of the whole body region
is computed [21]. However, Nagase et al. have shown that
certain pathologies are characterised by localized variations
in temperature [14]. A localized temperature variationmight
not substantially affect the average temperature of the whole
body region, and thus the detectability of this local tem-
perature variation is diminished if only the mean temper-
ature is considered. Furthermore, the mean temperature of
the whole body region does not provide any spatial in-
formation on the local temperature variations. )erefore in
order to detect the pathology, temperature measurements
need to be extracted from localized regions of interest rather
than from the whole body region.

Scientific studies on the thermal patterns associated with
normal and pathological subjects would benefit from au-
tomated image analysis techniques in order to allow for the
processing of large volumes of data. Similarly, deployment of
such tools in a clinical setting dealing with sizeable number
of patients would benefit from automated techniques that
would provide the physician with readily available results.
)is motivates the efforts towards automated techniques for
the extraction of reliable temperature data from regions of
interest. In this work, we extract consistent local regions of
interest from the subsegmented body regions in order to
measure specific local temperatures.

3. Methods

3.1. Data Acquisition. For the purpose of this work, thermal
images of the volar aspect of hands, the anterior aspect of
shins, and the dorsal aspect of the feet were considered.

)ermal and visual images as shown in Figure 1 were ac-
quired from each participant. A clutter-free background is
assumed for the acquired images. In total, 44 anatomical
regions of interest (ROIs) were considered as shown in
Figure 2. )ese ROIs are linked to regions of the foot which
are at higher risk of developing ulcerations, while the regions
on the hands and the shins serve as baseline data as these
regions are relatively unaffected by PAD. Since in our work,
we are considering only healthy limbs without any ampu-
tated peripherals, we have a set of 44 ROIs for each subject
that need to be found in the images and labelled uniquely
with 44 distinct ROI labels. 395 subjects gave their informed
consent to participate in this study which was approved by
the University Research Ethics Committee at the University
of Malta.

A FLIR SC7200M infrared thermal camera, which has a
spatial resolution of 320 × 256 pixels and a thermal sensi-
tivity of 20mKwith an accuracy of ±1°C, was used to acquire
thermal images. Standardmedical thermal image acquisition
protocol was followed to acquire the thermal images [23, 24].
)e camera was kept perpendicular to the surface being
imaged and at a distance between 1.5m and 2m from the
surface of interest. A corresponding visual image was ac-
quired for every thermal image using a Canon EOS 1100D
digital visual camera with a resolution of 12MP. It is worth
mentioning that the same anatomical portion of the cor-
responding body region was captured in all images. Spe-
cifically, in the hands, it is important to capture all the fingers
and the palm and that these are centred in the image such
that some of the forearm is also included. In the case of the
shin images, the section of the shins from just below the knee
till the toes has to be in full view and, in the case of the feet,
the whole plantar aspect of the feet, including the toes, must
be acquired. )is is the only operator-dependent procedure
in this algorithm.

Since the thermal and visual images were captured using
different acquisition devices, images of the same region are
not aligned. When capturing the images, the subject was
asked to remain stationary during the acquisition of the
thermal and visual images. Both images were captured from
approximately similar poses and distances and perpendic-
ularly to the surface of interest; thus, the two images are
sufficiently close to orthographic and with little mis-
alignment between the two images.

)e segmentation methods developed herein exploit the
shape and geometry of the body regions of interest. Since the
body regions considered in this work vary significantly in
shape, three different shape-based methods were developed,
the hand images, the feet images, and the shin images,
respectively.

3.2. Hands Segmentation and Extraction Algorithm. )e first
step for every image, whether hand, foot, or shin, is that of
identifying the body regions from the background in the
thermal image. )e hands usually have a significantly higher
temperature than the background and consequently a higher
intensity in the thermal image. However, regions at the edges
of the hand, such as the finger tips, might have a significantly
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lower temperature than central regions such as the palm of
the hand. For this reason, local adaptive thresholding for
image binarisation was used so that the threshold is adapted

locally for each pixel according to the intensity of the pixel
neighbourhood. For the thresholding process, a Gaussian
weighted mean statistic in a neighbourhood which is 1/16th
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Figure 1: Sample thermal (a) and visual (b) images acquired in this study.
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Figure 2: 44 anatomical regions of interest identified on the hands (a), feet (b), and shins (c).
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the size of the image was used. Figure 3 shows the seg-
mentation of a sample hand thermal image.

Besides segmenting the hand from the background, it is
necessary to identify the fingers. )is was done using an ad-
aptation of the iterative morphological opening approach
proposed by Blank and Kargel [21]. Specifically a morpho-
logical opening operation using a disc-shaped structuring el-
ement (SE) was used to identify the finger pixels from the rest
of the hand. )e morphological opening operator was applied
in an iterative manner, increasing the radius r of the disc-
shaped SE at each iteration. For every iteration, the areaA(r) of
remaining foreground pixels was calculated. Figure 4 shows the
plot of A(r) versus the increasing radii of the SE, r, together
with the actual remaining pixels on the image. )ree salient
features can be identified in the plot, namely, the sudden drop
in area when the SE radius is large enough to remove the
fingers from the image; the long plateau segment following this
drop, where there is only minor smoothing of the palm region;
and another sharp, but shallower, drop when the SE radius is
large enough to remove the forearm from the image. )e
radius of the SE at the end of the first drop in area is used to
identify the fingers from the rest of the hand. To avoid false
detections arising due to the susceptibility of the first derivative,
dA/dr, to local variations, the required radius was determined
based on the variance of A(r) across the increasing r since this
variance is less susceptible to local variations due to the av-
eraging effect. Specifically, a variance measure V(r) at every
point along A(r) was calculated. V(r) is defined as

V(r) �
1

N− 1


r+N/2

r′�r−N/2

A r′( − μ A r′( ( ( 
2
, (1)

where N is the size of a moving window around r. )e
midpoint of the signal A(r) was observed to generally lie on
the second salient feature of the signal (i.e., the long plateau
segment following the first drop; refer to Figure 4). )us the
midpoint of A(r) was used as a simple heuristic to provide a
starting point for the process of identifying the required
radius. Starting from this midpoint and moving towards
r � 0, the average variance of the first three neighbourhoods
was used to establish a reference value. )e first neigh-
bourhood whose variance was greater than the reference by a
predefined factor was taken to be the radius of SE required to
identify the fingers. Using this radius, a binary image which
contains only the fingers in the image can be obtained, as
shown in Figure 5.

From the finger binary image, shown in Figure 5(b), each
finger was identified by analysing the angle between the lines
from the centroid of each finger blob to the centroid of the
palm.)e largest angle corresponds to the angle between the
thumb and the little finger since these two fingers are the
most further apart in the hand. Since each hand image is
labelled as a left hand or a right hand, the direction of the
angle between the two lines, clockwise or anticlockwise, can
be used to distinguish the thumb from the little finger. )e
smallest angle from the identified thumb then corresponds
to the angle between the thumb and the index finger. Using
similar computations, all five fingers can be identified in a
manner which is rotation independent.

A template which contains the three ROIs on the palm of
the hand was defined, as shown in Figure 6(a). )e template
has three anchor points, circled in red in Figure 6(a). To
determine the 3 ROIs on the palm, the 3 corresponding
points on the thermal image are determined by detecting the
intersection points between the major axis of the thumb,
index, and little finger blobs and the edges of the respec-
tive blobs, selecting the intersection point closest to the
palm centroid. )is process is shown in Figure 6(b), with
the selected intersection point shown in blue. An affine
transformation, mapping these three points to the corre-
sponding anchor points on the template is determined to fit
the template on the palm of the image being processed and
determine the three ROIs on the palm.

To extract the five ROIs on the finger tips, the Hough
transform was applied to the edges of each individual finger.
If more than one circle is returned, the circle whose centre is
closest to the fingertip of the finger, shown in green in
Figure 6(b), is used and all other circles are discarded.
Figure 7 shows the hand ROIs extraction process.

3.3. Shins Segmentation and Extraction Algorithm.
Similar to the hands, the shins in the thermal images have a
higher intensity than the background, and thus thresholding
can be used to identify the shins from background. Local
adaptive thresholding was once again used. Figure 8 shows
this procedure being applied on a sample shins thermal image.

Following binarisation, the medial line of each shin is
found and the angle which this line makes with the hori-
zontal axis of the image is computed.)is angle is used as the
orientation of the limb being processed. )ree points are
identified on the medial line which will serve as reference
points for the placement of the ROIs on the shins. )ese
points lie at the top of the shin, at the centre of the shin, and
at 3/4 of the length of the shin according to the predefined
position of the shin ROIs as shown in Figure 2. Each point is
then used to place a rectangular ROI whose length and
height are automatically scaled according to the local limb
dimensions, which is rotated to follow the orientation of the
limb being processed. Figure 9 illustrates the process of
extracting six rectangular ROIs on a sample thermal image.

3.4. Feet Segmentation and Extraction Algorithm. )e tem-
peratures in the feet are generally lower than the temperatures
in the hands and the shins, and are usually close to that of the
background temperature. Due to this lower temperature in
the feet, there is a similarity in intensity between foreground
and background regions in the thermal image making the
background-foreground segmentation very challenging. On
the contrary, the corresponding visual images offer a sig-
nificant and consistent difference between the feet and the
background and can be accurately segmented using Otsu’s
thresholding method. )erefore, the binarised visual image
was used to segment the thermal image.

)e two images first had to be aligned. Since the visual
and thermal images were captured almost simultaneously
and close to perpendicular to the surface of interest, the
difference between the two images mainly consists of
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rotation and scaling, with possibly some skewness. )us, an
affine transform is sufficient to align the two images. )e
visual image was aligned to the thermal image using an affine
transformation based on, at least, three corresponding
points on the visual and thermal images which were
manually selected by the user. Figure 10 shows the process of
aligning a visual image to the corresponding thermal image.
Figure 11 illustrates the segmentation of a sample foot
thermal image.

)e segmented foot thermal image was rotated such that
the major axis of the foot, determined by eigenvalue de-
composition, was vertically aligned. )e aligned and seg-
mented visual image was once again used in the extraction of
the five ROIs on the toes. )e edges around and between the
toes were stronger and more consistent in the visual images
than in the thermal images allowing for more reliable region
extraction. A Laplacian of the Gaussian filter was used to
extract the edges of the toes and nearby regions, in the upper

(a) (b)

Figure 5: Identification of the finger pixels. (a) Detected finger pixels (green). (b) Fingers binary image.

(a) (b) (c)

Figure 3: Segmentation of a sample hand thermal image using local adaptive thresholding. (a) Original thermal image. (b) Binary mask.
(c) Segmented image.
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radius at which the finger removal process ends (blue).
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half of the vertically aligned foot. )e detected edges were
binarised, skeletonised, and the outer contours of the foot
were removed as shown in Figure 12(a). )e resulting
edge map contains both the edges around and between the
toes, and spurious, unwanted edges arouse due to illumi-
nation changes and shadows on the foot in the visual image.
In contrast to the edges around the toes, the unwanted edges
are characterised by a lower intensity and a relatively smaller
size. Consequently, these edges were removed by

thresholding on the edge size and corresponding mean
intensity, thereby retaining only the edges around and be-
tween the toes, as shown in Figure 12(b).

)e outer contours are next restored, and the resulting
edge map is used to form closed contours around the toes.
Edgels whose connectivity with their edge contours is
through only one side are considered as endpoint edgels.
)ese endpoint edgels were connected to the closest edgel in
the edge map which is not on the same contour as the

(a) (b) (c)

Figure 8: Segmentation of a shin thermal image using local adaptive thresholding. (a) Original thermal image. (b) Binarised thermal image.
(c) Segmented thermal image.

(a) (b)

Figure 7: Identification of the ROIs on the hand.

(a) (b)

Figure 6: Palm ROIs extraction process. (a) Template used to extract the palm ROIs with three anchor points circled in red. (b) Detection of
point corresponding to the anchor point on the thumb image. )e blue intersection point is selected.
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endpoint to form new contours as shown in Figure 13. )e
five largest closed regions detected in this manner are as-
sumed to correspond to the toes, as seen in Figure 14(b). A
morphological opening operator, using a disc-shaped
structuring element, is applied to the resulting binary im-
age to extract the remaining regions. Figure 14 shows the
results of this algorithm.

To extract the circular regions on the ball of the foot
(BOF), corresponding to regions 27 and 33 in Figure 2, an
iterative process is applied which starts at the bottom row of

the vertically aligned foot and moves up, towards the toes,
one row at a time. In each iteration, a circle, C, is defined as

C � c Wr( , r, βWr( , (2)

where r is the y coordinate of the circle centre, set to the
current iteration row; c(Wr) is the x coordinate of the circle
centre, set to themidpoint of the horizontal width of the foot at
row r, Wr; and βWr is the circle diameter where β is defined
according to the desired size of the circular ROI according to

(a) (b) (c)

Figure 10: Alignment of the visual image to the thermal image. (a) Original visual image. (b) Original thermal image. (c) Aligned visual
image.

(a) (b) (c)

Figure 11: Segmentation of a thermal image of the foot. (a) Aligned visual image. (b) Segmented visual image. (c) Segmented thermal image.

(a) (b)

Figure 9: Shin ROIs extraction. (a) Extracted medial line (red) and identified centre points. (b) Identified and rotated rectangular ROIs.
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Figure 2. )e iterative process terminates at row r∗, when the
Euclidean distance d(·) between the centre of circleC, denoted
by Cxy, and the middle row of the toe ROIs, R, satisfies

d Cxy, R  � τ, (3)

where τ is set according to the position of the desired ROIs
according to Figure 2. Once the candidate row, r∗, is chosen,
two quadrilateral regions, regions 28-29 and 34–35 in Fig-
ure 2, are defined. Specifically, their centre points are set to

Q1c � Cx −
βWr∗

2
−

Wrect1
4

, r
∗

 ,

Q2c � Cx +
βWr∗

2
+

Wrect2
4

, r
∗

 ,

(4)

where Cx � c(Wr∗) is the x coordinate of the circle centre
and Wrect1 � Wrect2 � αWr∗ is the width of the quadrilaterals.
α is set according to the desired size of the ROIs, as shown in

(a) (b)

Figure 13: Detection of edge endpoint and connection of edges to form closed loops around the toes. (a) Detected edge endpoints. (b)
Extended edges.

(a) (b)

Figure 12: Extraction of edges close to the toes regions (a) and removal of unwanted edges (b). Remaining edges correspond to edge pixels
in the regions between the toes.
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Figure 2. Figure 15 summarizes the placement procedure of
the quadrilateral ROIs on the ball of the foot.

If there is any overlap between the extracted ROIs and
the toe ROIs, vertices A and B in Figure 15 are moved
horizontally downwards. If there is an overlap between the
extracted ROIs and the background, vertices A and D are
moved diagonally towards the quadrilateral centre. Since
these ROIs are on the ball of the foot which typically has a
convex shape, a diagonal movement is bound to remove the
overlap whilst retaining the quadrilateral shape.

To extract the three ROIs on the heel of the foot, cor-
responding to regions 30–32 and 36–38 in Figure 2, a similar
procedure is carried out. )e only difference to the ex-
traction of the ROIs on the ball of the foot is the placement of
the circle centre. To find the centre of the circle on the heel of
the foot, the circle Hough transform is applied to the edges of
the thermal image of the foot. Circles which have a diameter
comparable to the width of the foot in the image are con-
sidered. )e circle with the centre at the lowest position
corresponds to the heel. )is row position is also used to
place the heel ROIs, and the same process used for the
regions on the ball of the foot is repeated. Figure 16 shows
the results of extracting the 11 ROIs on feet thermal images.

)e methods presented in this paper are publicly
available, in the form of MATLAB functions, together with
some sample thermal images and may be accessed from
http://www.um.edu.mt/cbc/tipmid.

4. Results

4.1. Segmentation and ROIs Extraction. )e algorithms were
applied to the acquired thermal images, in a pipeline, one for
each body region, and at every stage of the pipeline, a visual
inspection was carried out to verify the integrity of the
segmentation and the correct placement and sizing of the
ROI labels. Based on this visual inspection, it was possible to
take a decision to determine whether an ROI was extracted

correctly or otherwise. )e decision logic used for this
purpose is as follows:

(i) A background-foreground segmentation was con-
sidered correct if it retained the integrity of the shape
of the body region without any missing or additional
features in the segmented image

(ii) An extracted ROI was considered correct if it fol-
lowed the correct placement and size with respect to
the dimensions of the body region as defined in the
template shown in Figure 2 and which does not
overlap with the background regions or any other
ROIs on the same image

One feature to be noted in the pipeline is that an error in
one of the stages of the pipeline does not necessarily imply
that the following algorithm will also fail.

(a) (b) (c)

Figure 14: Regions completely contained within the extended edges are detected and shaped using morphological opening. (a) Extended
edges. (b) Detected toes regions. (c) Disc-shaped regions.
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βWr∗
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Figure 15: Positioning of the circular and quadrilateral ROIs on
the ball of the foot and the heel.
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)e success rate was determined by obtaining the
number of correct and incorrect ROI labels. In this study, a
true positive (TP) would be a correctly localized ROI which
is assigned its respective, distinct label; a false positive (FP) is
an incorrectly localized ROI. Since, every image contains a
specific number of ROIs and all ROI labels for an image are
being assigned, negatives are undefined. Specifically, hand
images contain eight ROIs, shin images contain six ROIs,
and feet images have 11 ROIs, with each ROI having a
specific ROI label.

As shown in Table 1, out of 155 hand images, 97.9% of
the finger ROIs and 94% of the palm ROIs were correctly
localized and labelled. )e main source of failure was the
background-foreground segmentation, which occurred in
two hand images, and the misidentification of the fingers
from the rest of the hand, which occurred in 11 other
images.

As shown in Table 2, 99% of the shin ROIs were correctly
localized and labelled. )e main source of failure was the
background-foreground segmentation which failed in three
images due to a close similarity in temperatures between the
foreground and background temperatures in the lower parts
of the shins.

As shown in Table 3, 77.5% of the toe ROIs, 73.7% of the
ball-of-the-foot ROIs, and 79.5% of the heel ROIs were
correctly localized and labelled. )e main sources of errors
were the segmentation of the visual image, which failed in
four images, and the misalignment of the thermal and visual
images, which failed in eight images.

4.2. Method Validation via Interrater Reliability. To validate
the segmentation results, an interrater reliability test was
carried out. A set of 60 correctly segmented thermal
images consisting of 20 hand images, 20 shin images, and
20 foot images were selected. Four human raters were
asked to manually demarcate the ROIs using FLIR Altair
area demarcation tool. )e automated ROIs extraction
method developed herein was used as the fifth rater in this
study. )e objective of this interrater analysis was to
establish whether the results from the ROI extraction
methods are comparable to the results obtained from

human raters. )e latter currently constitute the gold
standard for region extraction. A spatial overlap co-
efficient, the Dice similarity coefficient (DSC) [25], was
used to determine the similarity between the extracted
regions. )e DSC is defined as

DSC(A, B) �
2 A∩ B| |

|A| + |B|
, (5)

where A and B are the two target regions. )e 44 ROIs were
categorised into six groups as follows: fingers, palms, shins,
toes, ball of the foot (BOF), and heel ROIs. )e Dice co-
efficient was computed between corresponding regions
between pairs of human raters and between the algorithm
and the human raters. For each ROI group, there are six
possible pairwise combinations between human raters, and
four combinations between human raters and algorithm.
)e mean and standard deviation (SD) of the similarity

(a) (b)

Figure 16: Identification of the ROIs on the feet.

Table 1: Success rate of hand ROIs extraction.

Test database
155 images 775 finger ROIs 465 palm ROIs 1240 total ROIs
Correct 759 (97.9%) 437 (94%) 1196 (96.5%)
Incorrect 16 (2.1%) 28 (6%) 44 (3.5%)

Table 2: Success rate of shin ROIs extraction.

Test database
134 images 804 shin ROIs
Correct 796 (99%)
Incorrect 8 (1%)

Table 3: Success rate of foot ROIs extraction.

Test database

171 images 855 toe
ROIs

513 BOF
ROIs

513 heel
ROIs

1881 total
ROIs

Correct 663 (77.5%) 378 (73.7%) 408 (79.5%) 1449 (77%)
Incorrect 192 (22.5%) 135 (26.3%) 105 (20.5%) 432 (23%)
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coefficients for each group of ROIs was extracted for human
rater pairs and for algorithm-human rater pairs as shown in
Table 4.

Referring to Table 4, it is noted that, for all ROI groups,
except for the toes, the mean algorithm-human rater co-
efficient is similar to the mean human rater coefficient. )is
implies that the algorithmmay equivalently replace a human
rater.

For the toes group, a mean human rater coefficient of
0.621 (SD 0.182) and an algorithm-human rater coefficient
of 0.427 (SD 0.170) were achieved, suggesting that the
algorithm extracts ROIs that are substantially different
than those extracted by humans.)rough visual inspection
of the ROIs was extracted by the algorithm, it was de-
termined that the ROIs correctly cover the whole toe area,
whereas the human rater ROIs are limited to circular ROIs,
typically centred on the toes. Despite the discrepancy
between the humans and the algorithm, it is noted that the
algorithm ROIs are still valid and correct as shown in
Figure 17.

Since the purpose of the ROI extraction is to measure the
ROI temperature from the radiometric data, the mean
temperature of the ROIs extracted by the algorithm was
compared to that extracted by the human raters. Table 5
shows the mean difference between the temperatures
extracted by humans and by the algorithm. Since in the
diabetic foot, abnormalities are associated with temperature
differences of 2.2°C or greater, we considered a difference in
temperature between the two sets of extracted ROIs of
quarter of the 2.2°C reference as being negligible. A sign test
confirmed that there was no statistically significant differ-
ence greater than 0.55°C at an alpha value of 0.05 between
the mean temperature extracted by the algorithm and that
obtained by the human raters, as shown in Table 5. )is
result demonstrates that the mean temperature extracted by
the algorithm is, in substance, the same as that extracted by
the human raters.

5. Discussion

)e implemented algorithms were found to be effective for a
large proportion of the thermal images on which they were
tested. From Tables 1–3, it is noted that 484 ROIs required a
manual intervention from a total of 3925 ROIs, which means
an intervention in 12.3% of the ROIs. )erefore, 87.7% of the
ROIs were extracted without any need for a manual in-
tervention. )e extraction of the foot ROIs was the most
challenging out of the three algorithms due to the highly
overlapping temperature ranges of the feet and the background
in the captured thermal images.

Failed attempts at extracting the ROIs can be split in two
categories: missed ROIs, in which the desired ROI has not
been detected and there is no information about the tem-
perature in the region, and inaccurate ROIs, in which the
ROI is offset from the desired location.

When executed using MATLAB on a system with a
2.7GHz dual core processor and 8GB of RAM, the algo-
rithms required 1.4 seconds to process thermal images of
the hands, less than 0.1 seconds for thermal images of the

Table 4: Dice similarity coefficients mean and standard deviation.

ROI group
Human rater pairs Algorithm-human

pairs
Size Mean (SD) Size Mean (SD)

Fingers 600 0.756 (0.124) 400 0.688 (0.142)
Palms 360 0.698 (0.175) 240 0.691 (0.171)
Shins 720 0.552 (0.237) 480 0.512 (0.242)
Toes 600 0.621 (0.182) 400 0.427 (0.170)
BOFs 360 0.676 (0.192) 240 0.700 (0.148)
Heels 360 0.721 (0.134) 240 0.702 (0.128)

(a)

(b)

Figure 17: Comparison of automatic ROIs (a) and manual ROIs
(b) extracted on the toes for the same image. Although the
agreement between these regions is poor, the automatically
extracted ROIs are more desirable.

Table 5: Mean temperature differences and statistical test results.

ROI group Algorithm-human differences ρ valueMean (SD)
Fingers 0.077 (0.079) <0.02
Palms 0.159 (0.161) 0.023
Shins 0.364 (0.442) 0.08
Toes 0.145 (0.139) 0.09
BOF 0.132 (0.148) 0.007
Heels 0.117 (0.111) 0.007
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shins and 2.2 seconds for thermal images of the feet. Since
for each subject, two hand thermal images, one thermal image
of the shins, and two feet thermal images were acquired, and
the algorithms required 7.3 seconds to process the five
thermal images. )e algorithm which processes thermal
images of the feet also required a manual user intervention to
register the thermal and visual images, which typically could
be carried out in less than a minute. )erefore, the whole
process of extracting the 44 desired ROIs from the five
thermal images took around one minute to be completed. A
corresponding process of extracting these regions manually,
using an area demarcation tool, took an experienced user
around 10 minutes. )erefore besides automating the area
extraction process, significant reduction in the time required
for the operation is achieved.

Interrater reliability tests showed that the ROIs extracted
by the algorithm are within tolerance of the ROIs extracted
by humans. )is shows that the algorithms presented in this
work can be used to extract temperature data with similar
reliability and accuracy as humans.

6. Conclusion

Several medical applications of thermography require the
extraction of temperature data from specific anatomical areas.
Most literature in the field requires the clinicians to manually
extract these data using area demarcation tools. )is opera-
tion is subjective, may lead to nonrepeatable results, and is
also very lengthy, especially for a large number of images and
ROIs. Furthermore, the temperatures considered for such
studies are averaged over large regions. )is work proposes a
set of algorithms to automate temperature extraction form
local regions of interest. A success rate of around 90% was
obtained for each algorithm, with minimal user intervention.
In addition to the automation of the data extraction process,
the algorithms also provide a significant reduction in the time
required for the operation. )e context for the algorithms is
the detection of early signs of complications in the diabetic
foot but can be extended to any application which requires
temperature data from the same regions in the hands, shins,
or feet. Future work should aim to enhance the algorithm to
reduce the number of missed ROIs and to reduce the manual
intervention required in the ROI extraction process.
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