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Asthma Overview

Asthma is a prolonged disorder of  the lungs. It excites airway routes 
and leads to morphological changes to narrow down the passage. 
This narrowing creates difficulty in breathing leading to uneasiness. 
Extreme asthma manifests as ruckus talking or being dynamic. 
The condition is termed as interminable respiratory sickness. 
Global initiative for asthma[1] defined Asthma as “a heterogeneous 
disease, usually characterized by chronic airway inflammation. It is 
defined by the history of  respiratory symptoms such as, wheeze, 
shortness of  breath, chest tightness, and cough that vary over time 
and intensity together with variable expiratory airflow limitation. 
The airflow limitation may later become persistent”.

The asthma condition is manifested as episodes of  breathlessness, 
wheezing, etc., In response to exposure to certain allergens 

and the symptoms may subside with time. However, repeated 
episodes of  asthma may also prove fatal, if  not managed properly. 
The symptoms of  the diseases are curable with medication.[2] 
Asthma is believed to be a multifactorial disorder affected not 
only by genetic predisposition but also by environmental factors.

Asthma Epidemiology

Asthma is a serious ailment. Asthma causes ~339 million cases 
throughout the world in a year and nearly 1000 deaths in a day.[3] 
Almost 18% of  the world population is at risk of  the disease. As 
per GINA estimates,[1] 100 million more cases would be added 
by the year 2025. Nearly, 25 million Americans are at risk of  the 
disease. ~2 million clinical visits in America are attributed to the 
disease. The countries categorized as a low‑and‑middle‑income 
group by the World Health Organization are the worst in the 
case of  asthma‑related deaths.[4]

Nearly, 6% of  Indian children and 2% of  adults are 
presented with asthma symptoms per year in a population of  
1.31 billion.[4] Underreporting and misdiagnosis of  asthma 
are important contributors to variations in the number of  
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asthma cases reported by various workers.[5] “Indian Study on 
Epidemiology of  Asthma, Respiratory Symptoms, and Chronic 
Bronchitis” (INSEARCH) reported a prevalence rate of  was 
carried out in the adult population and to be 2.05% during 
2007‑09, with an estimated burden of  about 17.23 million in 
2011.[6] The National Family Health Survey had predicted asthma 
at ~2% during 2005‑06.[6]

The year‑wise asthma cases curve is exponential.[4] The rise in 
the asthma cases each year was related to decreased exposure to 
microbes in early life. However, the hypotheses failed to explain 
the high number of  cases in New York that have a higher 
microbial burden.[7] Another hypothesis held the deteriorating 
quality of  air responsible for the exponentiality of  the asthma 
curve.[8] Exposure to smoke, dust, pollen, or any other allergen, 
or high humid weather trigger asthmatic reactions and the 
condition may be delayed by preventing the exposure.[5] Asthma 
is widely penetrated in rural areas.[9] The asthma cases are largely 
under‑reported. Further, misdiagnosis of  the disease further 
complicated the assessment of  the true cases.[5]

Asthma Diagnosis

The initial diagnosis of  asthma relies on the symptomatic 
identification of  characters, such as wheeze, shortness of  breath, 
chest tightness, and cough. The presence of  two or more of  
these symptoms may be considered as indicative of  asthma. The 
intensity of  these symptoms may vary with time and may worsen 
with viral infections, cold, exposure to allergens, and at night. 
The symptom‑based diagnosis of  asthma warrants confirmation 
by other tests.

The asthma‑diagnostic spirometry test involves observing and 
subsequent recording of  the forced vital capacity (FVC) and 
forced expiratory volume (FEV) of  lungs. The measurement 
is carried out before and after inhaling a bronchodilator like 
albuterol. The FEV1/FVC ratio less than 0.75 in adults, whereas 
less than 0.85 may be used as diagnostic for asthma. Further, 
bronchodilator reversibility verifies the results. The diagnostic 
tool for asthma includes peak flow tests, methacholine challenge, 
imaging tests, allergy testing, nitric oxide test, sputum eosinophils, 
provocative testing for exercise, and cold‑induced asthma.

Asthma Pathophysiology

Asthma is an exaggerated immune response. Its development 
involves complex pathophysiology comprising of  various 
immunological and morphological changes. Several allergens, 
such as cockroach residues, spores, and pollens or non‑allergic 
causes like tobacco smoke, cold air, and viral infection induce the 
onset of  inflammatory reactions of  asthma. These inflammatory 
reactions are mediated by type‑2 helper T cells eventually causing 
breathlessness due to temporary narrowing of  airways.[10]

T‑helper cells, upon induction, secrete interleukins (IL‑4, IL‑5, 
and IL‑13), and other cytokines such as interferon (IFN‑g), 

thereby, promote immunoglobulin E (IgE) synthesis. Besides 
IgE, histamines and cysteinyl leukotriene are also involved in 
mediating allergic reactions.

The prime focus of  asthma research is always adaptive 
immunity, though innate immunity is also being explored for 
its role in asthma.[11] Unlike adaptive immune responses, innate 
immunity has been reported in invertebrates[12,13] and plants[14] 
as well. Innate immunity lacks specificity and memory. The 
non‑self‑recognition mechanisms rely on pathogen‑associated 
molecular patterns (PAMPs) on the microbe surface.[15] The 
innate immunity is also involved in the regulation of  the adaptive 
immune response.[16]

Toll‑like receptors
Toll‑like receptors (TLRs) are important innate immune 
receptors that recognize specific PAMP ligands on the surface 
of  the invading microbe, such as lipopolysaccharides (LPS), 
peptidoglycans, etc.[17] TLR‑4, for example, specifically binds 
Gram‑negative bacteria surface molecule, LPS.

Protective action of lipopolysaccharides
Exposure to LPS in an early stage of  life confers a certain degree 
of  tolerance to asthma.[18] LPS exposure to adults including as an 
occupational hazard makes them prone to asthma.[18] Inhalation 
of  LPS causes asthma in mice.[19] Even low concentrations of  LPS 
can induce or aggravate asthma symptoms in sensitive adults.[20] 
However, when LPS was administered as an adjuvant along with 
an allergen induces a weak allergic reaction in animals compared 
with the allergen alone.[21] LPS stimulates the secretion of  TLR‑4. 
TLR‑2, and TLR‑4 were found to downregulate the intensity of  
an allergic reaction.[22] The response seems to be affected by the 
genetic makeup and environment. The TLR‑2, however, was 
found to be associated with the onset of  allergic inflammation 
as well as airway hyper‑responsiveness in a murine model.[23]

NOD Proteins and asthma
Nucleotide‑binding oligomerization domain (NOD) proteins 
are the receptor proteins located in the cytoplasm of  a cell.[24] 
Human beings have two NOD proteins namely NOD‑1 and 
NOD‑2. Of  these, the NOD1 gene is physically located in 
a chromosome region that is strongly linked with asthma.[25] 
Moreover, the mutation at this locus compromises the ability 
of  the host to have protection from asthma which is otherwise 
natural in the subjects raised in a farm.[18] A study on German 
adults, the mutation in this gene was found correlated with highly 
frequent atopy and asthma.[26]

Tumor necrosis factor‑alpha
Tumor necrosis factor (TNF) exists majorly as TNF‑α and 
TNF‑β with 35% sequence homology and similar receptors. 
TNF‑α, a type II membrane protein, is attached by a signal 
anchor transmembrane domain.[27] TNF‑α is secreted by 
macrophages, T cell, mast cell, and epithelial cells.[28] The release 
of  TNF‑α involves the activity of  TNF‑α converting enzyme 
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that cleaves the transmembrane signal anchor (TACE).[27] The 
cytokines such as IL‑1, GMCSF, and IFN‑γ boosts the TNF‑α 
secretion in monocytes/macrophages. The eosinophils are also 
known to secrete TNF‑α.[29]

Role of antigen‑presenting cells in asthma
Dendritic cells mediate the regulation of  the acquired immune 
response via the presentation of  the antigen to the T cells.[30] 
The dendritic cells have their origin in CD34+ bone marrow 
progenitor cells or CD14+ monocytes. Upon differentiation 
three types of  immature dendritic cells viz., Langerhan’s cells, 
myeloid cells, and plasmacytoid cells arise. These immature 
cells are capable of  antigen presentation that in turn acts as 
a deciding factor for their maturation. The maturation of  
the dendritic cells is mediated by cytokines, activated T cells 
expressing CD40 and other PAMPs on the surface. The event is 
accompanied by reduced endocytosis with increased expression 
of  co‑stimulatory molecules, such as CD40, CD80, and CD86 
on the surface of  the dendritic cells along with the proteins that 
are part of  major histocompatibility complex‑II. In the case, if  
these co‑stimulatory molecules are not over‑expressed and the 
allergen binds to the immature dendritic cells, the tolerance to 
the allergen takes place.[31]

The tolerance to the ovalbumin in the lungs during its nasal 
injection is mediated via interleukin 10 (IL10) and led to the 
production of  CD4+T regulatory cells. The regulatory T cells 
further secrete IL10.[32] The action of  T‑regulatory cells, leading 
to a decrease in airway hyperresponsiveness, requires APCs 
displaying CD80, and CD86 ligands.[33] The number of  dendritic 
cells in the airways is known to increase in numbers in case of  
asthma. Moreover, the decrease in the number can reverse the 
symptoms up to a large extent.[20]

Cytokines
Structural cells such as epithelial and endothelial cells as well 
as the myocytes of  airways secrete various mediators of  the 
pathophysiology of  asthma.[34] The numbers of  mediators 
identified have exceeded 50. Of  the 50 inflammatory mediators 
identified, the cytokines organize, perpetuate, and strengthen the 
inflammatory reaction in asthma.[35]

The cytokines are small secretory proteins usually with their 
molecular weight smaller than 80kDa and are usually modified by 
glycosylation. The cytokines are involved in the signaling during 
inflammation of  the airways in the case of  asthma.[36] Cytokines 
regulate cell‑mediated immunity.[37] The activity of  cytokine is 
concentration‑dependent[38] and is effective in picomoles.[39] The 
cytokines include lymphokines, pro‑inflammatory and inhibitory 
cytokines, chemokines, and growth factors.

In the case of  allergen‑induced asthma, the activated 
CD4+ T cells led to a higher concentration of  Th2 cytokines, 
such as interleukin‑4, IL‑5, IL‑13 than that of  the Th1 cytokines. 
However, the role of  Th‑1 cytokines in promoting asthma cannot 

be ruled out completely.[26] Type‑2 immunity plays an important 
role in the pathophysiology of  asthma. Among the three type‑2 
cytokines (i.e., IL‑4, IL‑5, and IL‑13), IL‑13 plays an important 
role. In experimental mice model, the interleukin alone is capable 
of  manifesting asthma‑like symptoms, moreover, its silencing 
reverses the inflammation.[40] The IL‑13 acts on goblet cells and 
is also involved in the upregulation of  the hyperresponsiveness 
of  the airways.[41]

The Th17 has also been implicated in the airway inflammation 
in the case of  a rodent model.[42,43] The Th1 suppresses the Th2 
cells by secreting interferon‑gamma, whereas Th2 secretes IL‑4 
to suppress Th1. The Th17 secretes IL‑10 to suppress both the 
Th1 and Th2.[44]

Interleukin‑17
Interleukin‑17 is a 155‑residue long homodimer protein of  
nearly 35kDa molecular weight. The two monomers of  the 
interleukin are bonded by a disulfide bridge.IL‑17 is produced 
and is secreted by CD4+ T cells. The role of  the Th17 subset of  
T‑helper cells in asthma has been investigated.[43] The IL‑17 is not 
directly involved in the pathophysiology of  Asthma, though it 
stimulates the production of  other cytokines involved in asthma 
pathophysiology. The IL‑17 of  CD4+ T cell origin induces 
IL‑6 secretion by fibroblasts,[45] and IL‑6, IL‑8, GM‑CSF, and 
PGE2 secretion by epithelial, endothelial, and fibroblastic cells.[46] 
Besides, the IL‑17 also target NF‑kB cells[45] that leads to nitric 
oxide secretion in the cartilage of  osteoarthritis patients.[47] IL‑17 
is involved in T cell proliferation[45] and of  CD34+ hematopoietic 
progenitors.[47]

The IL‑17 exhibit polymorphism in various region of  IL‑17A and 
IL17F.[48] IL‑17 interacts with dimer IL‑17RA/IL‑17F receptors 
that trigger a cascade of  signaling reactions ultimately leading to 
the secretion of  inflammatory mediators and other cytokines.[49] 
The polymorphisms in various regions of  IL‑17A and IL‑17F 
have been associated with the adult, children or infant asthma 
in various parts of  the globe.[50‑52] Recently, the polymorphism 
in the IL‑17 is associated with atopic asthma and the IgE levels 
in the serum.[53]

Phenotypic Inflammations in Asthma

The inflammation in asthma may be categorized into four types 
based upon the phenotype of  inflammation, viz., eosinophilic, 
neutrophilic, paucigranulocytic, and mixed granulocytic 
phenotype.[54] An asthma inflammation is categorized as 
eosinophilic asthma when sputum of  the patient has higher 
than 3% of  eosinophils; neutrophilic asthma, when the sputum 
cells are predominantly neutrophils (i.e., more than 76%); 
mixed granulocytic, when an increase in the proportion of  both 
types of  the inflammatory cells are observed in the sputum 
sample; and paucigranulocytic asthma, when none of  the two 
inflammatory cells increase beyond a threshold level. The increase 
in the eosinophils levels is related to adaptive immune response 
involving mainly interleukin‑4, IL‑5, IL‑9, and IL‑13. Whereas, 
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neutrophil cell elevation is related to an innate immune response 
in response to immunogens or allergen such as air pollutants.[55] 
In the case of  the paucigranulocytic asthma methacholine triggers 
hyperresponsiveness.

Corticoid steroid administration via inhalation is therapeutic for 
eosinophilic asthma and reduces the percentage of  eosinophils 
in sputum to a greater degree,[56] downregulate the secretion of  
type 2 cytokines from lymphocytes[57] and eotaxin from epithelial 
cells.[58] The therapy, however, is not that effective for combating 
the neutrophilic asthma.

Diagnostic Biomarkers

Biomarkers Definitions Working Group (2001) defined biomarker 
as “a characteristic that is objectively measured and evaluated as 
an indicator of  normal biologic processes, pathogenic processes, 
or pharmacologic responses to a therapeutic intervention.” 
The diagnosis of  the respiratory diseases involves an analysis 
of  sputum or blood samples and the biomolecules are usually 
molecules or chemicals involved in the immune/allergic reactions.

The biological molecules/chemicals that act as a putative 
diagnostic of  asthma are either type‑2 inflammation‑related 
or type‑2 inflammation‑independent markers.[59] The type‑2 
inflammation‑related markers are cytokine secreted by type‑2 T 
helper cells such as interleukin‑4, IL‑5, and IL‑13. In addition, 
eosinophil count in blood and sputum, fraction of  elevated 
NO levels of  breath and periostin levels in blood serum, 
and Dipeptidyl peptidase‑4 in lung epithelia are also type‑2 
inflammation‑related biomarkers for asthma.[59] The type‑2 
inflammation‑independent markers includes interleukin‑6, IL‑17, 
C‑reactive proteins, and neutrophil count in sputum.

Type‑2 inflammation‑related diagnostic marker
Eosinophil count
The eosinophil cells, being responsive to corticoid treatment, 
were considered potential diagnostic markers for  COPD 
(Chronic Obstructive Pulmonary Disease).[60] The sputum 
sample from a patient exhibiting two or more symptoms of  
asthma is checked for eosinophil count as a diagnosis of  asthma. 
1—2% of  eosinophil per total inflammatory cells are considered 
normal.[61] Asthma induces the sputum eosinophil count.[62] 
Sputum eosinophil levels of  more than 2% are correlated with 
decreased lung function as well.[63] The percent eosinophil 
count is also sensitive to corticosteroids, which may directly or 
indirectly influence its levels in sputum.[64,65] The corticosteroids 
were found to subside allergen‑induced sputum eosinophils.[64,65] 
The lowering of  allergen‑induced sputum eosinophil levels upon 
inhalation of  corticosteroids is being used for the diagnosis of  
asthma.[66,67]

Serum eosinophil count elevates in COPDs and blood eosinophil 
count more than 150 cells per microliter is used as markers in 
clinical trials by several authors.[68] The serum eosinophil level, 
however, shows no correlation with the asthma‑induced sputum 

eosinophil levels.[63] Antibodies raised against IL‑5 receptors 
counter elevated sputum as well as serum eosinophil count.[69]

Fractional exhaled nitric oxide (FENO) concentration
Nitric oxide synthase exists as a constitutive enzyme in two 
isoforms, viz., nNOS, and eNOS in a healthy individual. Both 
the constitutive isoforms are induced in case of  inflammatory 
reactions of  asthma.[70] Nitric oxide synthesized from NOS 
has a mixed role in asthma.[71] NO may act as a bronchodilator, 
vasodilator, and may play some role in plasma extravasation.[34] 
NO plays diverse roles in the pathophysiology of  asthma that 
includes recruitment of  the cells involved in inflammation,[72] 
hyperresponsiveness of  airways,[73] and airways remodeling.[74]

Nitric oxide is a part of  the expiratory mixture of  gases of  a 
healthy human being.[75] The proportion of  NO in exhaled gases 
increases in the case of  asthma.[76] Moreover, corticoid treatment 
reverses the upregulation of  NO in the expiratory gases in 
asthmatic patients, whereas, the corticoids have no effect on the 
expiratory NO of  healthy subjects.[77]

The level of  nasal nitric oxide (nNO) can be used using 
Chemiluminescence based analyzer. Higher than 50 parts per 
billion of  FENO in adults and more than 35 ppb in children 
is indicative of  airway eosinophilia and steroid‑responsive 
inflammation.[78] The increased proportion of  the exhaled 
NO is directly proportional to the inflammation reaction, 
the method thus can be used to detect most‑reactive and 
worst asthma phenotype.[79] However, no correlation is found 
between exhaled NO and the number of  sputum eosinophils.[80] 
FENO less than 25 ppb in adults and less than 20 ppb in 
children indicate symptomatic asthma without eosinophilic 
inflammation.[78]

Periostin
Periostin is a FAS1 domain‑containing protein located in the 
extracellular matrix that plays an important role in the allergic 
inflammation including asthma.[81] The periostin is inducible 
by IL‑13 and mediates hyperresponsiveness of  the airways.[82] 
The IL‑13 induced expression of  periostin is countered by 
corticosteroid treatment, upon which the level of  the periostin 
decreases.[83] The exact role of  periostin in asthma pathogenesis 
is still controversial yet it was proposed as a strong biomarker 
for sputum and tissue eosinophilia.[84]

Dipeptidyl peptidase‑4
Dipeptidyl peptidase‑4 is another asthma inducible protein 
secretion of  which is triggered by IL‑13.[85] Inhibition of  
the protein deter the transport of  CD4+ cells in the CD26 
deficient rat model of  asthma[86] and the deficiency of  the 
protein is also linked with the reduction in eosinophilic airways 
inflammation.[87] The expression of  the gene encoding DPP4 
in the airways was reported to be positively correlated with the 
production of  nitric oxide/nitric oxide synthase in the asthma 
patients.[88]
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Other biomarkers of Type‑2 related inflammation
Immunoglobin E
For atopic asthma, IgE level in serum acts as an important 
biomarker of  an allergic reaction. Serum IgE levels elevate upon 
interaction with an allergen and the immunoglobin was associated 
with the eosinophilic inflammation esp., Th‑2 high inflammation.[89] 
Immunoglobin E synthesis is mediated by Th2 cytokines.[90] The 
estimation of  serum IgE levels is mandatory to be estimated in case 
of  severe asthma. In addition, the IgE levels, along with IL‑5 and 
IL‑13 are also reported to elevate in the sputum of  an asthmatic 
patient with type‑2 eosinophilic inflammation.[91]

Soluble mediators of sputum
The proteins derived out of  eosinophil cells are important 
markers of  inflammation that includes cationic proteins,[92] 
neurotoxin,[62] and peroxidase.[93] The eosinophilic inflammation 
of  asthma is associated with increased levels of  eotaxin‑2,[94] 
cytokines IL‑5 and GM‑CSF.[92] Another important cytokine 
that is upregulated in the sputum of  type 2 inflammation‑related 
asthma is IL‑13. The upregulation of  IL‑13 in sputum in the 
case of  type‑2 related inflammation is negatively correlated with 
methacholine. The ratio of  IL‑4: TNF‑alpha can also serve as a 
marker to diagnose eosinophilic asthma.[95] In addition, the nitric 
oxide metabolites also respond by accumulating in sputum in case 
of  eosinophilic inflammation, moreover, the level reverses upon 
treatment.[96] In the case of  severe refractory asthma, sputum 
osteopontin was found to be induced strongly,[97] while the level 
of  sputum angiopoietins‑1 was weakly affected.[98]

Volatile profile
Gases like ethane have been reported to be associated with 
severe asthma.[99] The volatile profile of  asthmatic patients as 
a diagnostic tool has been proposed,[100] however, it still needs 
validation, before being implemented.[101]

Type‑2 inflammation‑independent diagnostic 
markers
Neutrophil in sputum samples
The neutrophil count in the sputum sample of  a healthy 
individual remains at a median 37% per inflammatory cells. The 
sputum neutrophil count increases upon smoking and exposure 
to pollutants and toxins.[61] The neutrophils in the sputum of  
asthmatic patients when increases beyond 76%, it is classified 
as neutrophilic inflammation.[54] Neutrophilic inflammation 
is related to severe exacerbations.[102] The sputum neutrophil 
count is an antagonist to the FEV1/FVC ratio,[54] pre‑ and 
post‑bronchodilator FEV1.[103] Sputum neutrophil count is 
associated either with impaired lung function or inhalation 
therapy of  corticosteroids.[104]

Interleukin‑8
IL‑8 is responsive to severe asthma[105] and it mediates the 
activation of  neutrophils.[106] The upregulation of  the interleukin 
has been reported at the transcript level in the sputum[107] and 
at the protein level in the soluble fraction of  sputum.[108] The 

upregulation of  the IL‑8 is correlated with the neutrophil level in 
sputum samples.[109] Moreover, the expression of  two receptors 
of  IL‑8 viz., CXCR1, and CXCR2 was also upregulated.[108] The 
antagonist to the CXCR2 receptor provides relief  to LPS‑induced 
inflammation in healthy adults.[110]

Tumor necrosis factor‑alpha
The TNF‑alpha seems to play an important role in severe 
refractory asthma.[111,112] The transcript levels of  the gene 
encoding TNF‑α are induced in the case of  neutrophilic 
inflammation which was not true in the case of  paucigranulocytic 
inflammation.[107] The action of  TNF‑α is a result of  the 
transcription of  several genes including IL‑1β, IL‑6, IL‑8, and 
TNF‑α.[111] The inhalation of  TNF‑α even in case of  mild asthma 
triggers airway hyperresponsiveness associated with increase 
neutrophils and eosinophils.[113]

Other markers of type‑2 inflammation‑independent 
asthma
The level of  myeloperoxidase and neutrophil elastase are reported 
to be induced in the sputum upon the activation of  neutrophil 
cells in the patients of  asthma.[105,106,114] Neutrophilic asthma also 
induces the transcript of  TLR‑2 and TLR‑4 and the receptor may 
be used to distinguish neutrophilic asthma from other types.[114,115] 
Similarly, the levels of  C‑reactive protein and IL‑6 in plasma also 
elevates vis‑a‑vis that of  other types of  asthma.[108]

Th‑17 Cytokines
Th17 cells are important cells participating in the pathophysiology 
of  asthma via mediating airway hyperresponsiveness involving 
both eosinophils and neutrophils.[116,117] The Th‑17 cytokines 
include interleukin‑17A through IL‑17F. The number of  Th17 
cells increases in the case of  allergic inflammation, thereby 
increase the production of  Th17 cytokines.[118]

The cytokine family IL17 was related to various diseases. Increased 
rates of  IL17 have been documented in chronic inflammatory 
disorders, inflamed bacterial infection tissue,[119] arthritis patient 
synovial fluid,[120] and asthmatic patient bronchoalveolar lavage 
fluid.[121] The IL‑17 high phenotype was shown to induce genes 
that resemble those that appears in response to psoriasis[122,123] 
a disease closely associated with the asthma.

These interleukins have been demonstrated to mediate the 
synthesis of  IL‑6 and IL‑8 in vitro.[42] Moreover, the transcript 
formation for gene encoding IL‑17 was found to be associated 
with the IL‑8 transcript and also the neutrophil count in the 
sputum samples.[124] The IL‑17 immunity is proposed as an 
alternative immunity in case of  the suppression of  type 2 
immunity.[122] However, their coexistence in the blood T cells is 
possible.[122,125]

Studies on severe asthma revealed that the interleukin‑17 is responsive 
to the disease and induction in its expression has been reported 
from the sputum, BAL samples, and bronchial biopsies upon 
induction.[124,126] Even in laboratory animal models of  asthma, IL‑17 
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cytokine is reported to be inducible upon allergen challenge and is 
involved in recruiting neutrophils using its receptor, IL‑17RA.[127]

The interleukin‑17A and IL‑17F were reported to upregulate in 
airway tissues at the protein of  an asthma patient[128] and recruit 
neutrophils.[42] Similarly, the level of  IL‑17A was also found to 
upregulate in the serum[129,130] lungs, and BAL fluid of  asthma 
patients.[131] Moreover, the comparative levels of  the IL‑17A in 
the blood serum of  the smoker asthma patients were higher 
than that of  the serum of  the non‑smoker asthmatic patients.[129] 
The level of  both the smoker and non‑smoker asthma patients 
was higher than the healthy control samples. Smoking is known 
to alter the epithelium barrier, the function that is regulated by 
the interleukin IL‑17.[122] The transcript of  both IL‑17A was 
reported to be induced in the asthma patients as compared with 
the corresponding healthy control subjects.[132]

Upregulated levels of  both the IL‑17A and IL‑17F in airways 
showed a strong association with neutrophilic inflammation and 
the severity of  the condition.[128,133] Besides these two important 
cytokines, IL‑25 (IL‑17E) is an important component of  a 
cascade of  events ultimately leading to the secretion of  cytokines 
IL‑4, IL‑5, and IL‑13.[134] More importantly, the gene expression 
signature related to IL‑17 has been reported in the case of  severe 
asthma. This signature was orthogonal to the type‑2 related 
inflammation.[135] Though, the two pathways can be associated 
with the blood T cells.[122]

Inhibiting the interleukin Il‑17 adversely affects the inflammation 
of  the airways, hyperresponsiveness of  the lungs, and the secrete 
of  Th2 cytokines.[127] Antithetically, the role of  IL‑17 in the 
pathophysiology of  asthma became dubious when anti‑IL17RA 
monoclonal antibody, Brodalumab is administered to the 
patients manifesting moderate to severe asthma symptoms in 
a randomized, double‑blind, placebo‑controlled study and the 
asthma symptoms did not subside.[136]

Immunoglobin E synthesis is accompanied by an increase 
in the Th17 cells.[118] Interleukin‑17 is an important cytokine 
secreted by Th17 cells. Both IL‑17A and IgE were found to 
have elevated levels in patients with severe asthma.[137] The 
cytokine, IL‑17A level was found to have a positive correlation 
with immunoglobin E.[129]

IL‑17A may be useful as a diagnostic marker for patients 
with symptomatic asthma to identify the role of  these 
biomarkers in patients.[129,137] The genes encoding the IL‑17 
proteins exhibit polymorphism in populations. These different 
populations exhibit changes in the gene sequence based on 
SNPs in between. These gene populations exhibit differing 
tendencies for the development of  asthma after bronchiolitis 
in infants.[52] An allele with residue ‘A’ in the region, rs2275913 
of  IL‑17A,[138] and T alleles of  region rs1974226 and rs279548 
of  IL17A[53] were reported to confer susceptibility to asthma 
in individuals.

IL17 levels above 20 pg/mL were considered to be a risk factor 
for serious asthma.[139] IL‑17 may serve as an important biomarker 
to distinguish atopic and nonatopic asthma.[2] The IL‑17 assays 
may be incorporated in the routine practice of  the primary care 
physicians while dealing with the severe asthma especially in the 
case of  infant asthma.

Transcription Factors, GATA‑3 and FOX‑P3 
during the Progression of Asthma

The transcription factor, GATA‑3 is found to elevate in the 
blood serum in case of  asthma.[129] However, the reverse was 
true for FOX‑P3, the serum levels of  which was found lower 
in the asthma patients than in the corresponding controls. The 
GATA‑3 was positively correlated with the IgE levels in the 
serum while the FOX‑P3 was negatively correlated. Moreover, the 
serum levels of  the transcription factor GATA‑3 were found to 
be higher in the smoker asthma patients than in the non‑smoker 
patients.[129] These two transcription factors may act as mediators/
protectors of  the asthmatic reaction and their use as biomarker 
candidates for detecting asthma needs further study.[140]

Conclusion

Asthma is a serious problem. The seriousness of  asthma disorder 
is compounded by underreporting and misdiagnosis. The 
diagnosis of  the disorder relies upon symptomatic manifestation 
and serum and sputum analysis of  biomarkers. Interleukin‑17 
seems to be an important biomarker of  asthma. Serum IL‑17 
levels are already in use for the diagnosis of  the disorder. 
Development of  the molecular tools enabled us to devise more 
sensitive diagnostic tools. The expression of  IL‑17A at transcript 
level can be used to devise a suitable RT‑PCR based test for the 
diagnosis of  asthma.
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