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Abstract: The lotus (Nelumbo nucifera Gaertn.) leaf is a typical homologous ingredient of medicine and
food with lipid-lowering and weight-loss effects. In the present study, lotus leaves were fermented by
two probiotics, Enterococcus faecium WEFA23 and Enterococcus hirae WEHI01, and the anti-adipogenic
effect of Enterococcus fermented lotus leaf supernatant (FLLS) was evaluated in 3T3-L1 preadipocytes
with the aim of exploring whether its anti-obesity ability will be enhanced after fermentation with
Enterococcus and to dig out the potential corresponding mechanism. The FLLS fermented by E. hirae
WEHI01 (FLLS-WEHI01) was selected and further investigated for its ability to inhibit obesity in vivo
in high-fat diet (HFD)-induced obese rats (male, 110 ± 5 g, 4 weeks old) due to its superior inhibitory
effect on adipogenesis and lipid accumulation (inhibition rate of up to 56.17%) in 3T3-L1 cells
(p = 0.008 for WEHI01-L, p < 0.001 for WEHI01-H). We found that the oral administration of both the
low and high doses of FLLS-WEHI01 could achieve some effects, namely decreasing body weight
(p < 0.001), epididymal fat mass, adipocyte cell size, LDL-C levels (p = 0.89, 0.02, respectively), liver
TC levels (p < 0.001, p = 0.01, respectively), and TG levels (p = 0.2137, p = 0.0464, respectively), fasting
blood glucose (p = 0.1585, p = 0.0009), and improved insulin resistance (p = 0.33, 0.01, respectively) in
rats of the model group. Moreover, the administration of both high and low doses of FLLS-WEHI01
decreased the transcription levels of adipogenic transcription factors and corresponding genes such
as Pparγ (p < 0.001), Cebpα (p < 0.001), Acc (p < 0.001), and Fas (p < 0.001) by at least three times. These
results indicate that FLLS-WEHI01 can potentially be developed as an healthy, anti-obesity foodstuff.

Keywords: lotus leaf; Enterococcus; fermentation; adipogenesis; anti-obesity; dietary supplement;
functional foods

1. Introduction

Obesity has proven to be one of the largest public health concerns worldwide because
it is a fundamental contributing factor to many chronic metabolic diseases including type
2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, and
different types of cancer [1]. Obesity is attributed to a disruption in the balance between
energy absorption and expenditure; and cellular development is related to the growth of
adipose tissue comprising both cellular hypertrophy—which leads to an increase in cell
size—and hyperplasia—which leads to an increase in cell number—where cell hypertrophy
is primarily determined by adipogenesis. The 3T3-L1 cell line is the known model used
to investigate adipogenesis and the differentiation of preadipocytes [2]. Adipogenesis is a
complex process modulated by a variety of transcription factors, such as the peroxisome pro-
liferator activated receptor γ (PPAR γ), CCAA/enhancer binding protein (C/EBP) family
members, and sterol regulatory element binding protein 1c (SREBP-1c); they also regulate
the expression of downstream target genes involved in adipogenesis, such as acetyl CoA
carboxylase (ACC) and fatty acid synthase (FAS) [3], which lead to morphological changes
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and lipid accumulation within cells. Multiple therapeutic methods with which to treat
obesity (defined by body mass index and indicated where BMI > 30 (https://www.who.int/
europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations) (ac-
cessed on 6 May 2010) are accessible, such as lifestyle interventions, formula diets, drugs,
and bariatric surgery. Concrete approaches used to reduce body mass vary from person
to person and from purpose to purpose; the above strategies can be applied in combina-
tion or individually. Generally speaking, for pre-obese (BMI of 25–<30 kg/m2) people,
it is suggested that they plan how to change their eating habits and do more exercise to
achieve a permanent reduction of 5–10% in weight. The above modulation of nutrients
and exercise is also applicable for grade I obesity (BMI 30–<35 kg/m2), but the use of
a formula diet is more often recommended and refers to dietary foods used for special
medical purposes, such as obesity treatment, and usually, industrially produced nutrients
with a milk protein or soy protein base, which serve as complete or partial replacements
of meals to reduce a parent’s initial weight. Moreover, drugs for reducing body weight
such as orlistat, rimonabant, and sibutramine, are also an adjunctive measure for obesity
therapy in the patients mentioned above. Further, when patients had a BMI > 35 kg/m2 and
even >40 kg/m2, either multimodal conservative therapy (weight reduction programs) or
bariatric surgery were suggested to reduce their body mass [4–6]. However, these therapies
are often accompanied with negative side effects, such as poor-effect-induced repeated
obesity as well as discomfort to other organs, such as the spleen, kidney, and stomach [7].
Recently, functional foods (such as natural plant products) have attracted much attention
for their numerous beneficial effects, such as their anti-obesity effect and their replacement
of, or coordination with, drugs [8–10]. For instance, tea, such as green tea, dark tea, and
oolong tea, was proven to achieve an anti-obesity effect over a long period of time; Liu et al.
further compared these and demonstrated that all of these modulated the gut flora in terms
of both diversity and structure, which are closely associated with related indices of obese
hosts via Spearman’s correlation analysis [11]. Additionally, radix Pueraria lobata (RP) was
proven to inhibit the development of diet-induced obesity, the mechanism of which might
be related to the enhancement of energy metabolism and the activation of PGC-1α as well
as AMPK in the skeletal muscle [12]. Moreover, the anti-obesity effect of functional foods
fermented with LAB has also received much attention. For example, the oral administration
of Lactobacillus plantarum-BL2-fermented garlic extract reduced body weight and mass of
epididymal-, retroperitoneal-, as well as mesenteric adipose tissue in HFD C57BL/6J male
mice, on account of the fact that LAFGE can inhibit lipogenesis by down-regulating the
transcription and translation levels of Pparγ, Cebpα, and lipogenic proteins [13].

Nelumbo nucifera Gaertn., commonly known as lotus, sacred lotus, Indian lotus, water
lily, and Chinese water lily, is famous for its extensive usage as a dietary and medici-
nal plant that is widely distributed throughout East Asia. It has been a long time since
the leaves, roots, seeds, and other parts have been used as food. As a traditional herbal
medicine, the lotus, particularly the leaves, extract, fractions, and other constituents, has
been proven to have diverse applications in both biology and pharmacology, i.e., antiox-
idant, antibacterial, antiviral, antifungal, immunomodulation, anti-inflammatory, anti-
diarrheal, anti-thrombotic, anti-diabetic, cholesterol-lowering, anti-obesity, and anti-cancer
properties [14–21], due to multiple bioactive compounds, including flavonoids, polyphe-
nols, steroids, phenolic acids, polysaccharides, alkaloids, terpenoids, fatty acids, and gly-
cosides [14,15,18,22,23]. In Asia, lotus leaves are usually applied as a functional food [24]
and as a supplement with which to treat obesity. During the last several decades, many
researchers have explored the probiotic characteristics of lotus leaves in regards to obe-
sity [16,17,21,22,25,26], for these, some mechanisms of action are clear. To provide a specific
example, Wang et al. reported that nuciferine (NUC) could inhibit the development of
obesity, which might be accounted for by the fact that it can regulate the composition and
potential capacity of intestinal microbiota, improve the function of the intestinal barrier,
and prevent chronic low-grade inflammation [27]. In summary, the inhibitory effect of
lotus leaves and their extract mainly impair the intestinal absorption of carbohydrates as
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well as lipids and increases energy expenditure, which may relieve chronic inflammation
through ameliorating intestinal integrity and may modulate the gut microflora via specific
metabolites such as short chain fatty acids. However, there are few reports on the anti-
obesity effect of fermented lotus leaves, with only some researchers having demonstrated
that bioactive substances such as the total phenol and flavone content, as well as a variety
of low-molecular-weight metabolites, were increased after fermentation [28,29].

Enterococcus spp., belonging to LAB, are present in plenty of fermented foods and also
within the guts of humans and animals [30] and have shown a wide range of beneficial
properties [31–33], including an inhibitive effect on obesity [34,35]. Our previous studies
have demonstrated that probiotics, Enterococcus faecium WEFA23 and Enterococcus hirae
WEHI01, from healthy infants’ feces [36] were found to have the property of ameliorating
obesity [37] and fermenting lotus leaves enhances their biological activities [38]. As such,
we performed the fermentation of lotus leaves using E. faecium WEFA23 as well as E. hirae
WEHI01 and examined the anti-obesity effect of them in vitro and in vivo, with the aim
of demonstrating whether the anti-obesity capacity of lotus leaves will be enhanced after
fermentation with Enterococcus. Thereafter, we dig out the potential and corresponding
mechanisms by which to provide a foundation for the application of lotus leaves as a
dietary complement to prevent and attenuate obesity.

2. Materials and Methods
2.1. Bacteria Strains and Culture Conditions

Enterococcus faecium WEFA23 and Enterococcus hirae WEHI01 were cultured in Brain
Heart Infusion (BHI) broth (Oxoid, UK) anaerobicly at 37 ◦C.

2.2. Preparation of Enterococcus Fermented Lotus Leaf Supernatant (FLLS)

Cultures of E. faecium WEFA23 and E. hirae WEHI01 were centrifuged at conditions
of 6000 rpm, 8 min, and 4 ◦C to harvest the bacterial pellets; afterwards, they were re-
suspended (5 × 108 CFU/mL) after being washed with PBS (Solarbio, Beijing, China)
three times.

The fermentation of lotus leaf (LL) (lotus leaf was purchased from the Taobao ap-
plication, and the link is https://m.tb.cn/h.UY2KvgW?tk=TBWz2wkdERJ CZ0001, and
they grow naturally at the end of June and early July each year in the Weishan Lake, a
fault lake located in the south of Weishan County, Jining City, Shandong Province, China)
was performed by applying a traditional artisan method. Briefly, LL was crushed after
drying and trimming, and was sieved through 80 mesh. Then, 2.5 g or 5 g LL of pow-
der and 25 mL of distilled water were added into a conical flask prior to autoclaving at
121 ◦C for 15 min. Afterwards, 1 mL of a bacterial suspension of E. faecium WEFA23 or
E. hirae WEHI01 was inoculated, followed by the adding of sterile distilled water to a total
amount of 50 mL. LL without a bacterial inoculation was used as the control. Samples
were anaerobically cultured at 37 ◦C for 24 h; Enterococcus fermented lotus leaf supernatant
(FLLS; FLLS fermented by E. faecium WEFA23 and E. hirae WEHI01, named FLLS-WEFA23
and FLLS-WEHI01, respectively) and non-fermented lotus leaf supernatant (NFLLS) were
obtained through centrifugation (6000 rpm at 4 ◦C for 20 min) and filtration. Finally,
6 samples were obtained, as follows: low concentration (50 mg/mL) of FLLS-WEFA23
and FLLS-WEHI01 (named WEFA23-L and WEHI01-L, respectively), high concentration
(100 mg/mL) of FLLS-WEFA23 and FLLS-WEHI01 (named WEFA23-H and WEHI01-H,
respectively), a low concentration (50 mg/mL) of NFLLS (named NFL-L), and a high
concentration (100 mg/mL) of NFLLS (named NFL-H).

2.3. Cell Culture and Differentiation

The mouse 3T3-L1 preadipocytes were cultured in Dulbecco’s Modified Eagle Medium
(DMEM; Solarbio, Beijing, China) supplemented with a 10% (v/v) fetal bovine serum (FBS,
PAN, Edenbach, Germany) and 1% penicillin-streptomycin mixture of antibiotics (Solarbio,
Beijing, China) in a humidified atmosphere of 5% CO2 at 37 ◦C.
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Adipocyte differentiation was performed as described by Lee [39]. Briefly, 2.5 × 104

3T3-L1 preadipocyte cells were seeded into 24-well plates and incubated untill post-
confluence for 48 h (defined as day 0 after 48 h post-confluence); they were then stimulated
with fresh DMEM (with 10% FBS) and an adipocyte differentiation cocktail (MDI; 0.5 mm
IBMX, 10 µg/mL insulin and 1 µM dexamethasone) (Solarbio, Beijing, China) for another
48 h, followed by incubation with DMEM (10% FBS and 10 µg/mL insulin). The induction
was considered successful until the formation of lipid droplets was observed; during this
period, DMEM containing 10% FBS was changed every 48 h.

2.4. Cell Viability Assay

The cytotoxic effect of Enterococcus fermented lotus leaf supernatant on 3T3-L1
preadipocytes was measuring with a Counting Kit-8 (CCK-8; Beyotime, Shanghai, China),
as was the case in previous assays with some modifications [40]. The seeding of 5 × 104 cells
into 96-well plates was carried out, and then incubated for 24 h. Additionally, the cells
were then treated with 1 µL of FLLS or NFLLS and incubated for 48 h, followed by another
1 h of incubation with new media containing 10 µL of CCK-8 solution. After incubation,
the absorbance was measured at 450 nm and cell viability was calculated as follows:

The cell viability% = (OD (sample + cells)—OD medium)/(OD cells—OD medium) × 100.

2.5. Oil Red O Staining

The Oil Red O method is a well-known method by which to measure intracellular
lipid accumulation [41]. Briefly, 3T3-L1 adipocytes undergoing differentiation were treated
with 10 µL of FLLS or NFLLS on day 0, referred to in Section 2.3, after which the cells were
stained, fixed, and observed by using a light microscope (Olympus, Tokyo, Japan). Finally,
their absorbance was measured at 530 nm after being dissolved in isopropanol.

2.6. Animals and Experimental Design

Forty-eight male Sprague Dawley (SD) rats (110 ± 5 g, 4 weeks old) were housed in
groups (eight rats were housed in a big cage that allowed them to move, and there was a
total of six cages) in a standard plastic cage with a 12 h light/dark cycle and a controlled
relative temperature of 23 ± 2 ◦C, in addition to the controlled relative humidity of 45–65%.
The protocols of animal experiments in this paper were approved by the Animal Care
Review Committee of the Nanchang University School of Medicine (Approval No. 0064257).
The animal diagram was designed as follows: after acclimation for about seven days (rats
were given the normal standard food during this period): (1) normal diet (ND): rats were
given a normal diet and 0.9% saline; (2) high-fat diet (HFD): rats were given a high-fat diet,
consisting of 66.5% basic feed, 20% sucrose, 10% lard, 2.5% cholesterol, and 1% cholate
(Hunan slake Jingda experimental animal Co., Ltd.), as well as 0.9% saline; (3) NFL-L: rats
were given the HFD and 1 mL of 50 mg/mL NFLLS (50 mg/kg BW/day); (4) NFL-H: rats
were given the HFD and 1 mL of 100 mg/mL NFLLS (100 mg/kg BW/day); (5) WEHI01-L:
rats were given the HFD and 1 mL of 50 mg/mL FLLS-WEHI01 (50 mg/kg BW/day);
and (6) WEHI01-H: rats were given the HFD and 1 mL of 100 mg/mL FLLS-WEHI01
(100 mg/kg BW/day). Rats were given their corresponding diets for 5 weeks. The weights
of the rats were recorded every day during this period.

2.7. Biochemical Analysis

The oral glucose tolerance test (OGTT) was performed after a 30-day intervention.
After 12 h’s fasting, rats were orally gavaged with 2 g/kg BW of glucose, and caudal veins
were used to collect blood samples at times of 0, 15, 30, 60, 90, and 120 min. Blood glucose
was measured using a Sinocare Safe AQ Smart Blood Glucose Meter (Sinocare, Changsha,
China). On the last day, the fasting glucose content was measured using an enzyme kit
(Nanjing Jiancheng, Nanjing, China), and fasting plasma insulin was analyzed using a rat
insulin ELISA kit (Nanjing Jiancheng, Nanjing, China). The homeostasis model assessment
of insulin resistance (HOMA-IR) was calculated as described by Matthews [42]. Serum TC,
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TG, LDL-C, and HDL-C levels were detected using assay kits (Nanjing Jiancheng, Nanjing,
China) according to the manufacturer’s instructions.

2.8. Hepatic TC and TG

Liver tissue was homogenized into a mixture (0.5 g of liver tissue in 4.5 mL of absolute
ethanol). Liver TC and TG levels were detected via the method described above.

2.9. Histopathology Examination

The analysis of the histopathology of the rats’ tissues (liver and epididymal adipose)
was carried out as previous described with some modifications [43]. For Oil Red O staining,
there only existed differences in the dyestuff, and the procedure remained the same.

2.10. RT-qPCR

The total RNA from 3T3-L1 cells and epididymal adipose tissue was extracted using
the TRIzol-Reagent (TaKaRa, Dalian, China) according to the manufacturer’s instructions.
Reverse transcription and quantitative real-time PCR were performed in the same man-
ner as that described in our previous experiment [38]. The primers used are listed in
Supplementary Table S1.

2.11. Statistical Analysis

The data and the normal distribution of the data (the p of a Shapiro–Wilk normality
greater than 0.05 were thought to conform to normal distribution) were analyzed using
GraphPad Prism 7 statistical software. The results were expressed as the mean ± standard
deviation (SD). All of the data passed the verification of normal distribution and were
analyzed via a one-way analysis of variance and Tukey’s multiple comparisons test, used
for comparisons between-groups, while the others were analyzed via non-parametric test.
The p-values of less than 0.05 were considered statistically significant.

3. Results
3.1. Effect of FLLS on the Viability of 3T3-L1 Preadipocytes

Whether fermented lotus leaf supernatant (FLLS) exhibited any toxicity on 3T3-L1
preadipocytes was the first object of study. WEFA23-L, WEFA23-H, WEHI01-L, WEHI01-H,
NFL-L, and NFL-H exhibited no significant effect on the cell viability of cells compared with
the control, as presented in Figure 1, suggesting that both fermented lotus leaf supernatant
FLLS and non-fermented lotus leaf supernatant (NFLLS) are not cytotoxic to cells.
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3.2. Effect of FLLS on Intracellular Lipid Accumulation in 3T3-L1 Preadipocytes

To investigate the influence of FLLS on preadipocyte differentiation, the differences in
lipid droplet formation induced by the adipocyte differentiation cocktail were compared.
As shown in Figure 2, cells treated with FLLS showed a significant decrease in lipid
content along with doses regarding the control group, in which the WEFA23-L, WEFA23-H,
WEHI01-L, and WEHI01-H groups were reduced to 79.02% (p = 0.04), 56.57% (p < 0.001),
73.57% (p = 0.008), and 56.17% (p < 0.001), respectively. However, NFLLS showed no
significant effect on the intracellular lipid accumulation compared with the control. These
results demonstrated that FLLS fermented by both E. faecium WEFA23 and E. hirae WEHI01
could effectively inhibit lipid accumulation in cells.
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Figure 2. Effect of FLLS-WEFA23 and FLLS-WEHI01 on intracellular lipid accumulation in 3T3-
L1 preadipocytes. (a) Representative images of lipid droplets which were measured by Oil Red
O staining. Cells were treated with the Enterococcus-fermented lotus leaf supernatant (FLLS) and
non-fermented lotus leaf supernatant (NFLLS) (10×). (b) Quantification of relative lipid content
expressed as a percentage. Values were expressed as mean ± SD (n = 3). * p < 0.05, ** p < 0.01, and
*** p < 0.001 vs. Control.

3.3. Effects of FLLS on the Adipogenesis of 3T3-L1 Preadipocytes

To analyze the effects of FLLS on the adipogenesis of 3T3-L1, the transcription levels
of C/EBP family members, such as C/EBPα and C/EBPβ, and their downstream target
genes, i.e., ACC and FAS, were investigated by RT-qPCR. As shown in Figure 3a,b, the
mRNA level of Cebpα significantly decreased after treatment with WEHI01-H (p = 0.0166).
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Similarly, the Cebpβ mRNA level also significantly decreased after being treated by WEFA23-
H (p < 0.001), WEHI01-L (p = 0.023), and WEHI01-H (p = 0.0195). For lipogenic genes
(Figure 3c,d), WEFA23-L (p = 0.005), WEFA23-H (p = 0.008), and WEHI01-H (p < 0.001)
significantly decreased the mRNA level of Fas, while only WEFA23-H (p = 0.01) and
WEHI01-L (p = 0.004) showed a significant inhibitory effect on Acc mRNA expression.
However, NFL-L and NFL-H showed no significant effect on the mRNA expression of the
test adipogenic genes compared with the control. Taken together, these results suggested
that both FLLS-WEFA23 and FLLS-WEHI01 suppressed effects on adipogenesis and lipid
accumulation in cells, with FLLS-WEHI01 having stronger impact, and therefore, selected
for the investigation of its lipid-lowering effect in vivo.
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3.4. Effect of FLLS-WEHI01 on Body Weight in Obese Rats

In order to determine the corresponding effect of FLLS-WEHI01 in vivo, an HFD-
induced obese rat model was established. As shown in Figure 4a, during the feeding
period, rats in the model group were significantly heavier compared to the control group.
In contrast with the model group, the NFL-H (p = 0.03), WEHI01-L (p = 0.02), and WEHI01-
H (p < 0.001) groups achieved a significant decrease in body weight in as early as the second
week, while NFL-L achieved a significant decrease from the next week (p < 0.001). Till the
end of this period, treatments with both NFL-L and WEHI01-H decreased the body weight
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of rats (p < 0.05) relevant to the model group (Figure 4b). Moreover, HFD feed significantly
increased the liver weight (p < 0.001) and epididymis fat mass (p = 0.0104) in regard to
the ND group, while the administration of WEHI01-L (p = 0.0331) and WEHI01-H led to
a significant decrease in liver weight (p = 0.0338) (Table 1) and, only the latter decreased
epididymal fat mass (p = 0.028) (Table 1) in rats fed the HFD diet. While both administration
of WEHI01-L and WEHI01-H had no effect on the weight of the spleen and kidney as well
as the food intake of rats.
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Table 1. Effect of FLLS-WEHI01 on liver, epididymis, kidney, and spleen fat weight as well as food
intake in HFD-induced obese mice.

Weight (g) ND HFD NFL-L NFL-H WEHI01-L WEHI01-H

Liver 11.13 ± 0.93 *** 20.37 ± 3.10 20.31 ± 1.63 20.42 ± 2.50 18.08 ± 1.26 * 16.78 ± 0.77 *
Epididymis fat 2.15 ± 0.68 * 4.69 ± 1.15 3.83 ± 1.45 3.72 ± 1.22 3.30 ± 0.96 2.84 ± 0.64 *

Kidney 2.11 ± 0.19 2.31 ± 0.22 2.31 ± 0.11 2.24 ± 0.16 2.09 ± 0.18 2.10 ± 0.21
Spleen 0.59 ± 0.09 0.89 ± 0.20 1.00 ± 0.31 1.01 ± 0.19 0.87 ± 0.11 0.95 ± 0.22

Food intake 20.99 ± 1.48 19.90 ± 2.37 20.06 ± 2.76 19.87 ± 3.22 19.06 ± 3.42 19.80 ± 2.39

Values presented are the mean ± SD (n = 7/group). * p < 0.05 and *** p < 0.001 vs. HFD.

3.5. Effect of FLLS-WEHI01 on the Glucose and Insulin Level in Obese Rats

To analyze the influence of FLLS-WEHI01 on glucose and insulin in obese rats, the
OGTT and HOMA-IR in all groups were measured. As shown in Figure 5, the glucose tol-
erance of rats was improved significantly by the WEHI01-L treatment compared with HFD
treatment (p = 0.03) (Figure 5a), and the fasting blood glucose was improved dramatically
with a value of 8.11 mM by WEHI01-H (p = 0.0179) (Figure 5b). As for fasting insulin, there
was no significant difference treatments with an ND or HFD (Figure 5c). However, the
HOMA-IR index was significantly increased in the model group (p < 0.001), and only the
administration of WEHI01-H effectively reduced the level, from a value of 25.31 to 15.19
(p = 0.001) (Figure 5d).
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model assessment insulin resistance (HOMA-IR), calculated by fasting glucose content (mmol/L)
× Fasting insulin content (mIU/L)/22.5. Values were expressed as mean ± SD (n = 6). * p < 0.05,
** p < 0.01, and *** p < 0.001 vs. HFD group.

3.6. Effects of FLLS-WEHI01 on the Lipid Levels of the Serum and Liver in Obese Rats

The levels of biomedical substances in the serum and liver were determined at 5 weeks
of administration as presented in Figure 6. The contents of serum TC (p = 0.0352), TG
(p = 0.0375), LDL-C (p < 0.001), liver TC (p < 0.001), and TG (p = 0.0005) were significantly
higher when rats were treated with an HFD compared to normal diet, while the serum
HDL-C level was significantly converse (p < 0.001). On the contrary, the administration of
WEHI01-H significantly decreased the levels of LDL-C (p = 0.02), liver TC (p = 0.01), and
TG (p = 0.0464) in rats fed an HFD diet. However, WEHI01-L administration could only
significantly decrease liver TC (p < 0.001) levels and achieve a reduced trend, similar to the
normal group in serum and liver TG levels. However, the administration of NFL-L and
NFL-H could only significantly reduce the levels of serum TG (p < 0.001).
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3.7. Effects of FLLS-WEHI01 on the Histopathology of Liver and Epididymis Tissue in Obese Rats

After 5 weeks of oral administration, morphological analyses of the rats’ livers via
H&E staining showed that hepatocytes in the HFD group became larger, with severe fatty
lesions and the accumulation of lipid droplets in the cytoplasm (Figure 7a). Consistently,
staining with Oil Red O showed that hepatocytes in the HFD group were full of lipid
droplets (Figure 7b). The administration of NFL-L, NFL-H, WEHI01-L, and WEHI01-
H could alleviate the HFD-induced hepatic accumulation of lipid droplets, injury, and
doses. Among them, the WEHI01-H group had the best effect on reducing steatosis and
hepatic lipid accumulation. In addition, analyses of rats’ epididymal adipose tissues via
the H&E staining showed that adipocyte hypertrophy in the HFD group, that is, the sizes
of adipocytes, was appreciably larger in the model group than in the control group. While
the NFL-L, NFL-H, WEHI01-L, and WEHI01-H treatment considerably decreased the sizes
of adipocytes compared with the HFD group (Figure 7c), these results suggested that the
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weight gain in obese rats is the result of adipocytic fat accumulation and the expansion
of adipose tissue, and further, the administration of FLLS-WEHI01 and NFLLS could
ameliorate the HFD-induced adipocytic hypertrophy, in which FLLS-WEHI01 exhibited a
stronger effect.
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3.8. Effect of FLLS-WEHI01 on the Expression of Adipogenic Genes in Epididymal Adipose Tissue

To explore the deep effect of the lipid-lowering effects of FLLS-WEHI01, the tran-
scription expression levels of Pparγ, Cebpα, Fas, and Acc in the epididymal adipose tissue
were examined by RT-qPCR. As shown in Figure 8, after 5 weeks of the administration of
NFL-L, NFL-H, WEHI01-L, and WEHI01-H, the mRNA levels of Cebpα, Pparγ, Fas, and
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Acc in adipose tissue were significantly decreased regarding the HFD group (p < 0.001),
which indicates that FLLS-WEHI01 and NFLLS ameliorated the HFD-induced obesity by
inhibiting adipogenesis and lipogenesis in obese rats.
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of obese rats (n = 3). The mRNA level of (a) Cebpα, (b) Pparγ, (c) Fas, and (d) Acc. The β-actin gene
was used as reference gene. Values were expressed as mean ± SD (n = 3)., ** p < 0.01, and *** p < 0.001
vs. HFD group.

4. Discussion

The lotus has a history of more than 1000 years as a traditional herb. In recent
decades, the lotus has attracted much attention from the scientific circle, and in-depth
research has been carried out to evaluate the biological and pharmacological activities of
multiple ingredients. Therein, the lotus leaf proved to have diverse biomedical applications,
including anti-obesity, due to their numerous bioactive compounds. However, little was
known about the function of lotus leaf after fermentation. Our previous study [38] showed
that the fermentation of lotus leaf using E. faecium WEFA23 and E. hirae WEHI01 could
enhance its antibacterial and antioxidant activities. This being the case, we performed the
fermentation of lotus leaf by E. faecium WEFA23 and E. hirae WEHI01 and evaluated the
anti-obesity effect of Enterococcus-fermented lotus leaf supernatant (FLLS).

We analyzed the effect of experimental samples on cell viability by using a CCK-8
kit, which was carried out to ensure the reliability of the following assay. The results of
this showed that all of the experimental groups were not toxic to cells compared to the
control. Contrary to our findings, Choi et al. demonstrated that the viability of 3T3-L1
preadipocyte cells was reduced when treated with a 1000 µg/mL extract of fermented white
sword bean by Bacillus subtilis [44], suggesting that lotus was safer and more applicable.
Furthermore, FLLS significantly reduced the lipid concentration (p < 0.05) and inhibited
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differentiation and adipogenesis in vitro, along with the dose level, while NFLLS showed
no significant effect. Similarly, So KH et al. showed that fermented soybean FS extract
(50 µg/mL) achieved a better inhibition effect on both the differentiation of adipocytes
and the accumulation of fat during the differentiation of 3T3-L1 cells than nonfermented
soybean (NFS) extract [45]. These results indicated that fermentation with lactic acid
bacteria could be beneficial to the probiotic characteristics of anti-obesity, which might be
because fermentation contributed to the release of bio-active substances. Interestingly, we
measured the corresponding substances before and after fermentation with Enterococcus,
and the results showed that the number of both crude polysaccharides and short chain
acids increased after fermentation (data were not shown), which might be part of the reason
why FLLS performed better than NFLLS.

Adipogenesis is a complicated process that involves many transcription factors, en-
zymes, and proteins, such as the key regulators of preadipocyte differentiation, such as
ACC and FAS, which are pivotal in the synthesis of fatty acids, such as the synthesis of
triglycerides and phospholipids [46], as well as acetyl coenzyme a and malonyl coenzyme
a synthesis, into long-chain fatty acids [47], respectively. Therefore, the modulation of
corresponding genes might be another reason. Our in vitro results demonstrate that FLLS
could significantly down-regulate the mRNA levels of Cebpα, Cebpβ, Acc, and Fas in 3T3-L1
cells, which were consistent with Hwang’s study, which showed that Bacillus subtilis fer-
mented soy bean extract inhibited lipid accumulation in 3T3-L1 cells through decreasing
C/EBPα expression [48]. In addition, Kim demonstrated that fermented Laminaria japonica
inhibited 3T3 cell adipocyte differentiation, due to the inhibition of the mRNA expression
of C/EBP-α/β and PPAR-γ [49]. Moreover, it has been reported that fermented Platycodon
grandiflorum (FPG) inhibited lipid accumulation in 3T3-L1 adipocytes via the regulation
of PPARγ, C/EBPα, as well as fatty acid binding protein 4 (FABP4) [50]. Referring to
the literature, we deduce that future research on apodosis biomarkers at both the mRNA
and protein levels may better clarify the mechanism of action, which is a limitation of
our research.

To further understand the potential mechanisms of the inhibitory effect of FLLS in vivo,
an HFD-induced obese rat model was established, and FLLS-WEHI01 was selected for
evaluation based on its stronger adipogenesis inhibition effect. Our results showed that the
administration of a high concentration (100 mg/mL) of FLLS-WEHI01 (WEHI01-H) could
significantly decrease weight gain, as well as epididymal fat mass, liver weight, and the
hypertrophy of white fat in the epididymis in the HFD-induced obese rats, suggesting that
WEHI01-H administration could effectively suppress fat accumulation, which is consistent
with the results in vitro. As is well-known, obesity causes adipocyte proliferation, and
hypertrophy, as well as an increase in the metabolism of adipocytes, thereby reducing the
insulin sensitivity of skeletal muscle and producing insulin resistance, and thus, inducing
type two diabetes [51]. The disordering of lipid metabolism, such as decreasing insulin
resistance or increasing the release of adipokines, will further increase free fatty acids,
which results in increasing fatty acids in the liver and TG accumulation in hepatocytes [52].
On the other hand, insulin resistance and elevated serum TG as well as cholesterol levels are
often accompanied by hepatic steatosis, which leads to lipid metabolism disorders [53,54].
Based on our results, we found that the administration of FLLS-WEHI01 could effectively
improve hyperglycemia and the insulin resistance of obese rats, as well as reduce the levels
of biochemical substances in the serum and liver of obese rats. Furthermore, we found
that WEHI01-H could alleviate liver injury, liver cell fibrosis, and lipid accumulation in
hepatocytes through staining. Combined, these results suggest that the administration
of WEHI01-H could effectively reduce blood glucose and regulate blood lipid disorder.
Similarly, the fermentation broth of a Gegen Qinlian decoction reduced the levels of bio-
chemical substances in the serum of T2DM rats and regulated abnormal glucose as well
as lipid metabolism [55]. Hu et al. found that LAB-fermented Moringa leaf reduced liver
lipid accumulation and inhibited inflammation in obese mice [56]. Moreover, our in vivo
analysis of the modulation of relative genes suggested that WEHI01-H could alleviate
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hyperlipidemia, hepatic steatosis, and lipid metabolism disorders, which is consistent
with previous reports that Lactobacillus plantarum BL2-fermented garlic extract significantly
reduced the serum TG and TC levels of obese mice and that the mRNA level as well as
protein levels of related genes were all down regulated [13].

Besides the above, there still remain many scientific problems concerning the probiotic
effects of FLLS-WEHI01 on obesity which need to be further studied for elucidation. Firstly,
the effect of lotus leaf-fermented supernatant on obesity explored in this study was only
examined at the phenomenon level; therefore, more experiments are needed to further
explore the specific mechanisms. Secondly, we used SD rats as the model organisms with
which to explore the functional characteristic of FLLS-WEHI01, which indeed could not
fully reflect the effect on the human body. Therefore, further studies are needed to elucidate
the biological effects of FLLS-WEHI01 on obesity-related disorders and to clarify its effect
on the health of human.

5. Conclusions

Figure 9 shows a schematic image of fermented lotus leaf treatment for inhibiting obesity
in HFD-induced obese rat.The oral administration of FLLS-WEHI01 significantly decreased
body weight, epididymal fat mass, TC and TG in liver, LDL-C levels, and fasting blood
glucose, in addition to improving insulin resistance in HFD-induced obese rats, which might
have occurred through the modulation of adipogenic transcription factors, such as Pparγ,
Cebpα, Acc, and Fas. Therefore, the results suggested that FLLS-WEHI01 could potentially be
applied as a dietary supplement for the prevention and attenuation of obesity.
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