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The availability of genomic datasets in association with clinical, phenotypic, and drug sensitivity information represents an
invaluable source for potential therapeutic applications, supporting the identification of new drug sensitivity biomarkers and
pharmacological targets. Drug discovery and precision oncology can largely benefit from the integration of treatment molecular
discriminants obtained from cell line models and clinical tumor samples; however this task demands comprehensive analysis
approaches for the discovery of underlying data connections. Here we introduce PATRI (Platform for the Analysis of TRanslational
Integrated data), a standalone tool accessible through a user-friendly graphical interface, conceived for the identification of
treatment sensitivity biomarkers from user-provided genomics data, associated with information on sample characteristics. PATRI
streamlines a translational analysis workflow: first, baseline genomics signatures are statistically identified, differentiating treatment
sensitive from resistant preclinical models; then, these signatures are used for the prediction of treatment sensitivity in clinical
samples, via random forest categorization of clinical genomics datasets and statistical evaluation of the relative phenotypic features.
The sameworkflow can also be applied across distinct clinical datasets.The ease of use of the PATRI tool is illustratedwith validation
analysis examples, performed with sensitivity data for drug treatments with known molecular discriminants.

1. Introduction

The recognition of cancer as a genetic disease has raised
in recent years huge “omics” efforts that have generated
extensive molecular information on cancer cell lines and
tumor samples, along with clinical characterization and
drug sensitivity information. These data are often accessi-
ble through public resources, such as CCLE [1, 2], TCGA
Research Network [3], ExpO [4], and ICGC [5], to name
a few. As a consequence, a number of initiatives, often at
global scale, have taken advantage of this unprecedented
opportunity, such as the Cancer Therapeutics Response
Portal (CTRP) [6–8], linking publicly available cancer cell

line features to small-molecule sensitivity for the discovery of
patient-matched cancer therapeutics, or the i2b2 (Informatics
for Integrating Biology and the Bedside)-tranSMART Foun-
dation, a platform and a community aimed at integrating
clinical and translational research data, providing “open-
source, open-data” resources for precision medicine [9, 10].
In translational research, treatment sensitivity biomarkers are
key to decision-making, for the identification and definition
of patient populations susceptible to therapy benefits. In
recent years, the search for biomarkers has indeed raised
a huge community effort [1–3, 11–15] and a stimulating
debate around the drug sensitivity issue [16–20]. Cancer
cell lines can recapitulate many of the molecular alterations
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driving tumor drug sensitivity [11]: for this reason, molecular
characterization of experimental preclinical models has been
widely used in support to all phases of drug discovery and
development, for the identification of potential targets and
for the exploration of several molecular aspects, such as
drug sensitivity contexts, mechanisms of action, or issues
in treatment responsiveness. Correlation between multiple
baseline cancer genomics data and relative drug sensitivity
has been explored in a number of public resources, such
as CellMiner [12, 21], Genomics Drug Sensitivity in cancer
(GDSC) [13, 22], or CancerDP [23, 24], where data can
be enriched for compound and/or cell line numerosity but
cannot be extended to user-supplied genomics or compound
sensitivity data, which would be fundamental for new drug
development.

Biomarkers resulting from the complex task of comple-
menting cancer preclinical findings with clinical knowledge
have found application as prognostic or diagnostic indicators,
favoring the design of companion diagnostics for targeted
drugs and facilitating therapeutic developments [28]. This
is the case, for instance, of KRAS gene mutations in the
observed resistance to cetuximab and panitumumab treat-
ment in colorectal cancers samples [29, 30] or of rear-
ranged Abl in the sensitivity to imatinib in acute myeloid
leukemia [31] and of afatinib, gefitinib, and erlotinib in
EGFR mutated tumors [32, 33]. Other examples are the
sensitivity to vemurafenib in BRAF mutated tumors [34]
or to lapatinib in amplified/overexpressed Her2 (ERBB2)
positive tumors [35], as well as the sensitivity to inhibitors
of ALK, ROS1, and TRK (NTRK1-2-3) in tumors harboring
activating rearrangements of these kinases [36, 37]. Indeed,
gene rearrangements with kinase catalytic domains often
result in the anomalous overexpression of kinase targets,
driven by the partner gene, which can be identified by protein
or RNA expression analysis as indirect readout [38, 39].
Especially in the targeted drug field, determination of patient
eligibility for a certain treatment is sometimes only possible
by performing a specific molecular assay on clinical spec-
imens; however, other peculiar phenotypic characteristics
measured in treatment susceptible individuals might be used
to aid in the process of patient population selection. An
example is the frequent association of the presence of ALK
rearrangements in lung tumorswith patients’ young age,male
gender, and nonsmoking history [40, 41].

The aim of our work was to provide a flexible and quick
solution to streamline an analysis workflow for the search of
potential treatment biomarkers across preclinical and clinical
datasets and to make it accessible for application to user-
provided genomics and treatment sensitivity data. For this
purpose, we designed the “Platform for the Analysis of
TRanslational Integrated data” (PATRI) tool, requiring data
imported by users and integrating this workflowwith an intu-
itive user-friendly graphical interface. First, drug response
information is required to set up statistical analyses for the
identification of potential drug sensitivity baseline genomic
traits in cell lines (“Translational” workflow) or in tumor
samples (“Clinical” workflow); lists of resulting relevant
markers can then be used to predict genomics responsiveness
in annotated datasets of tumor samples, which are stratified

into putative “Sensitive” or “Resistant” populations by the
algorithm and correlated with the respective relevant clinical
characteristics.

PATRI is conceived for basic end-users and is freely
distributed as a virtual machine, portable on Windows,
Linux, andMacOS platforms.The PATRI tool is accessible for
open download at https://www.parametricdesign.bio/.

2. Materials and Methods

2.1. PATRI Database and Structure Implementation. In
PATRI, the Database Management System (DBMS) imple-
mentation was based on MariaDB. The database schema
(Suppl. Fig. 1) was designed to include cross-referenced
tables for Cell Line and Clinical Sample genomics data
(gene expression, somatic mutation, and copy number)
and respective sample annotations, each with fixed and
customizable fields. Upload of data input was predisposed as
tab-delimited text files, previously formatted to mirror the
destination tables. Detailed descriptions and instructions
can be found in the PATRI Platform User’s Guide (Suppl. File)
and in the PATRI Platform Installation and Configuration
Guide (Suppl. File) downloadable documents. Export of
analysis results was enabled as tab-delimited text files.
All PATRI functions were made accessible through a web
graphical user interface developed using Joomla and Zend
Frameworks. Statistical analysis libraries from CRAN [42]
and Bioconductor R [43, 44] were integrated and interactive
graphing functions were introduced using Google Charts
[45]. PATRI is provided for download at https://www
.parametricdesign.bio/ as an Oracle VM Virtual Box file,
populated with an artificial demonstration dataset, which
can be removed and replaced with the desired data following
instructions in the PATRI Platform User’s Guide (Suppl.
File).

2.2. Statistical Methods. The PATRI tool integrates selected
libraries from CRAN [42] and Bioconductor R [43] for
the statistical analysis of molecular data, according to the
different genomics data types. Before statistical analysis of
defined “Sensitive” versus “Resistant” sample groups, com-
plexity reduction of the input genomics data is performed via
a stepwise filtering procedure to remove background noise,
i.e., all genes with no significant variation across samples.
Briefly, all the genes appearing constant across conditions are
removed from the data (i.e., nevermutated or alwaysmutated
genes; all genes with identical “loss”, “normal”, or “gain”
copy number type definition across samples; all genes with
log2 expression below a user-selectable threshold value). In
addition, a calculation of a point-biserial Pearson’s correlation
between sensitive/resistant cell lines or clinical samples and
each gene is also applied, followed by removal of poorly
correlated genes (default absolute value cut-off: 0.1).

For all accepted data types, i.e., gene expression, copy
number, and mutation, a custom implementation of the
Elastic Net algorithm [46] originally used in Barretina J
et al. [1] was included, applicable if both “Sensitive” and
“Resistant” groups are composed of a minimum of 4 sam-
ples each. The Elastic Net is a regularization and variable
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selectionmethod favoring the selection of strongly correlated
predictors, particularly useful for data matrices in which the
number of features (genes) ismuch bigger than the number of
subjects (samples). The relative robustness of a selected gene
is represented by the final ranking, reported as the percentage
of times a molecular feature is retained in the model across
100 runs, accompanied by the average beta value across runs.
Additionally, for the detection of differentially expressed
genes, we introduced testing procedures such as ANOVA
and Limma [47], particularly suited for small sample groups
[48]; ANOVA was included also for copy number analysis.
Resulting p values and log2 fold changemeasures are reported
and used to rank the molecular features. For the detection
of mutated genes, statistical tests based on hypergeometric
distribution and odds ratio measures were also implemented.
The above algorithms can be applied starting from cell line
genomics data (“Translational” workflow) or from tumor
sample genomics data (“Clinical” workflow).

Buttons and slide bars are provided to enable sorting
andmanual filtering of the obtained gene lists, differentiating
“Sensitive” and “Resistant” cell lines or clinical samples, based
on statistical significance or fold change differences. Putative
“biomarker” gene lists can then be quickly evaluated in the
available annotated clinical sample data to categorize them
into predicted “biomarker sensitive” or “biomarker resistant”
cases and to extract relevantly differentiating clinical descrip-
tive parameters in a single button click. First, a reversed classi-
fication algorithm based on “random forest” [49] is launched,
applying amajority voting approach to assign clinical samples
to the most likely category (“Sensitive” or “Resistant”), based
on the status of the candidate biomarkers of the starting
filtered gene list. One hundred thousand classification trees
are run in parallel, using the entire spectrum of identified
biomarkers for the random forest classification model. Then,
the resulting “Sensitive” and “Resistant” assigned clinical
samples are immediately tested for association with specific
patient clinical annotations with a two-tail nonparametric
Mann–Whitney test for continuous variables (like age, num-
ber of cigarettes, etc.) and a multiple-category Chi-square
test for categorical variables (tumor subtype, grade, etc.).
Associated clinical features are displayed in a table, ranked
based on significance p values: visualization of each tested
variable is enabled as a boxplot or a barplot, respectively.
A heatmap, clustered both on molecular features and on
samples, is reported with clustering distances calculated with
Hamming distance for mutations and with Ward’s method
for copy number and gene expression. For available time-to-
event survival data, a separate classical two-tail log-rank test
between predicted sensitive and resistant samples can be run,
with visualization via Kaplan-Meier survival curves.

2.3. Cell Line Compound Treatment. Cell lines were grown in
the appropriate culture media as recommended by vendors
and treated with increasing doses of the tested compounds.
Drug sensitivity data were expressed as the micromolar
concentration of the compound at which cell proliferation
is reduced by 50% (IC50). All cell lines were authenticated
by STR analysis (AmpFlSTR� Identifiler� PCRAmplification
Kit, Applied Biosystems, Foster City, CA, USA) using the

GeneMarker HID v 2.4.0 software (Soft Genetics, State
College, PA, USA) and comparative analysis was performed
with CLIFF (Cell Line Identity Finding by Fingerprinting,
[50]).

2.4. Datasets and Analysis Workflows for PATRI Validation.
Genomics data for 1036 cell lines were imported from CCLE
[51]; mutation data were converted into binary information
(wild type or mutated genes); cell line compound sen-
sitivity was assessed in-house. Annotated TCGA clinical
genomic datasets [3], comprising gene expression, copy
number, mutation data, and clinical sample descriptions,
were obtained from cBioportal [52, 53] for breast cancer
(Breast Invasive Carcinoma (TCGA, “Provisional”), 1017
samples) andmelanoma (SkinCutaneousMelanoma (TCGA,
“Provisional”), 478 samples); none of the datasets contained
treatment response information for the considered drugs.
Two lymphoma gene expression datasets for 20 (GSE14879)
and 130 (GSE19069) samples, respectively, were downloaded
from Gene Expression Omnibus (GEO) [54], with clinical
annotations derived from the respective descriptive publi-
cations [25, 26]; the two datasets were not merged due to
the discrepancy of the available clinical sample information
and were utilized to test the “Clinical” analysis workflow.
Txt tables were created with cell line names and the respec-
tive “Sensitive” or “Resistant” labels, assigned based on a
threshold IC50 of 1 𝜇M for all the tested compounds. For
the lymphoma GEO14879 clinical dataset, no entrectinib
treatment response could be available, so drug sensitivity was
presumed for the 5 ALK-positive samples, arbitrarily defined
as “Sensitive” responders to ALK inhibition only to simulate a
“Clinical” workflow analysis. Statistical analysis was launched
on the selected cell lines or clinical samples using all the
algorithms in PATRI for all the available genomics data types;
only the relevantmolecular signature results, filtered based on
the indicated p value and/or log fold change thresholds, are
discussed in the manuscript. The filtered lists were then used
to categorize the indicated clinical samples into “Sensitive”
and “Resistant” and to explore the resulting statistically
relevant sample annotations, ranked based on significance (p
value).

3. Results and Discussion

3.1. Design and Implementation of PATRI. The identifica-
tion of sensitivity markers implicated in cancer treatment
response is fundamental to support patient population defi-
nition in the clinics and is well established for a number of
approved kinase inhibitors drugs that are selectively active
in tumors harboring activating mutations or rearrangements
of their target genes, such as vemurafenib in BRAF mutated
tumors [34], lapatinib in amplified/overexpressed ERBB2
(Her2) positive tumors [35], and entrectinib in ALK rear-
ranged tumors [37]. We focused on building an intuitive tool
for use in drug discovery pipelines to immediately link rele-
vant molecular markers from cell line drug treatment models
with clinical features associated with tumor sample genomics
data, for the quick exploration of potential population ther-
apeutical biomarkers. For this purpose, we have developed
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Figure 1: PATRI graphical user interface: welcome and login page. Screenshot of the PATRI welcome and login home page. See also text
and Supplementary File.

PATRI (Platform for the Analysis of TRanslational Integrated
data), an open-source tool offering a flexible genomic data
integration resource to basic end-users for the identification
of predictive biomarkers of differential sensitivity to drugs
or any other treatments, such as siRNA or CRISPR-Cas9,
starting from user-provided data. Central to the design was
the ease of use, through an intuitive graphical user interface,
based on a simple workflow of streamlined data analysis,
extraction, and visualization procedures, directly correlating
biomarkers identified in cell line or tumor sample genomics
data to clinical information, aided by the introduction of
mouseover and pop-up interactive options. PATRI is a web-
based application (Figure 1) with a client-server architecture,
as detailed in the PATRI Installation and Configuration
Guide (Suppl. File), built on a relational database supporting
data mining activities. The downloadable tool is initially
populated with a “test” database for demonstration purposes
that can be removed and replaced with the desired data. Free
codes and analysis packages were utilized for the implemen-
tation of all PATRI components to enable distribution as an
open-source tool and, possibly, custom code implementation.

Figure 2 schematically illustrates the conceptual “Trans-
lational” and “Clinical” workflows in PATRI, with full func-
tionalities detailed in Suppl. Fig. 2-7 and in the PATRI
Platform User’s Guide (Suppl. File). A “Translational” work-
flow is available to obtain putative treatment biomarkers
starting from cell line genomics data that can be used to
categorize clinical samples into “biomarker sensitive” and
“biomarker resistant” samples and to simultaneously obtain
significantly correlated clinical characteristics for patient
stratification (Figure 2(a)). Similarly, starting from clinical
genomic datasets (“Clinical” workflow, Figure 2(b)), PATRI
allows analysis and correlation of putative treatment response
genomics markers from a test tumor sample population to
the clinical characteristics of a second clinical sample cohort.
Briefly, after import of the desired baseline (pretreatment)

genomics data for cell line models and clinical samples, users
will define opposite groups of “Sensitive” and “Resistant”
cell lines or “responder” and “nonresponder” tumor samples
based on available treatment sensitivity information. PATRI
automatically retrieves and associates the genomics data and
descriptions to the list of provided samples. By a mouse
click, single or multiple predefined statistical tests can be
chosen and launched for analysis of the selected sets of
gene expression, copy number, and gene variant analyses
data (Suppl. Fig. 3-4), including the Elastic Net option
[1, 46] for all the three types of data. The resulting lists
of significant sensitivity biomarker genes are displayed in
separate tabs with sorting buttons and slide bars, allowing
data filtering; the tool also enables quick export of results and
graphical visualization through different charting options
supporting mouseover and zooming functions (Suppl. Fig.
5), such as interactive Volcano plots, dendrograms, or scatter
plots integrating data by color shades and dot sizes. Filtered
sensitivity biomarkers obtained at this point for cell lines
can be immediately connected to clinical data imported
into PATRI, to investigate the presence of molecularly dis-
criminated clinical subpopulations: one mouse click starts
simultaneous classification of clinical tumor samples, based
on the respective molecular status of the selected filtered
biomarkers, as potentially “Resistant” or “Sensitive” to the
drug, via an adaptation of the random forest classifier
algorithm [49], together with a stratification of associated
clinical sample characteristics, ranked based on statistical
significance (Suppl. Fig. 6-7). Graphical representation and
data export upon mouse clicking allow exploration of the
identified clinical features associated with tumor genomics
data (Suppl. Fig. 7) and permit rapid identification of par-
ticularly discriminating clinical features potentially defining
patient subpopulations, which might be used in support of
patient selection for clinical trials. Thanks to the flexibility
of sample description fields in the PATRI database, along
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Figure 2: PATRI analysis workflows. Schematic representation of the PATRI tool analysis workflows. (a) “Translational” workflow (black
arrows), executing a statistical identification of candidate baseline genomics biomarkers starting from defined treatment “Sensitive” versus
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with cell lines or clinical samples, the tool might similarly
accept data from patient-derived cancer models, such as
PDXs and PDOs (patient-derived xenografts and organoids,
respectively) that more closely mirror the architecture and

cellular heterogeneity of human tumors [55–57], increas-
ingly available with associated clinical/genomic data sets
and annotations thanks to a number of recent international
initiatives (e.g., Human Cancer Model Initiative (HCMI)
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[58], EurOPDX Consortium [59], or Public Repository of
Xenografts (PRoXe) [60], to name a few) [61–63].

3.2. Validation of PATRI. For the validation of the tool, we
generated in-house cell growth inhibition sensitivity data
(IC50) on panels of cancer cell lines treated with the well-
known targeted drugs lapatinib, vemurafenib, or entrectinib
and tested PATRI for the ability to identify significant
treatment sensitivity-related molecular markers through the
“Translational” workflow (Figure 2(a)), using data from
CCLE [1, 51], TCGA [3], and Gene Expression Omnibus
(GEO) [54] resources.

Lapatinib [35] is a dual EGFR and ERBB2 inhibitor,
currently approved in the clinics for the treatment of ERBB2
amplified breast cancers in combination with capecitabine or
letrozole [64]. In our analysis, ERBB2 kinase gene amplifica-
tion and overexpression were correctly identified by PATRI
within a group of lapatinib sensitive versus resistant breast
cancer cell lines (Figure 3(a)) tested in our labs. Concomitant
amplification and overexpression of a number of additional
genes, correlating with lapatinib treatment sensitivity, were
also observed (Figures 3(b) and 3(c)). Many of these genes,
such as GRB7, PGAP3, STARD3, and MIEN1, have been
reported to be coamplified and overexpressed with ERBB2
in breast tumors in the “ERBB2 amplicon”, located on the
long arm of chromosome 17 (17q12), neighboring the ERBB2
coding sequence [65–68]. STRING analysis [27] of the 17
differentially expressed genes in Figure 3(b) (obtained by
ANOVA expression analysis, p value>10∧-4, log2 FC> |1.5|)
revealed a considerable number of known or predicted pro-
tein interactions, supporting the functional interconnections
in the selected list (not shown). Using the “Translational”
workflow implemented in PATRI, the above marker list was
used to categorize potentially “Sensitive” or “Resistant” cases
in a panel of breast cancer clinical samples from TCGA data
collectionwith the respective associated clinical feature anno-
tations via random forest classification. In the resulting breast
sample hierarchical analysis heatmap, most of the predicted
“Sensitive” breast cancer samples were clustered in a compact
group (Figure 3(d)), characterized by a strong enrichment in
Her2 positive tumors asmeasured by immunohistochemistry
(IHC levels = 3+) (Figure 3(e)) having more than 90% cells
positive to Her2 staining (not shown), both characteristics
clearly associated with ERBB2 overexpression. In addition,
chromosome 17 amplification (chromosome 17 signal ratio
value) was also among the top ranking clinical annotations
differentiating predicted “Sensitive” and “Resistant” samples
in the breast cancer dataset (Figure 3(f)). Gene lists obtained
from gene expression or copy number alternative analysis
algorithms (ANOVA and Elastic Net for both copy number
and gene expression, Limma for gene expression) and with
different filtering thresholds could all identify groups of
“Sensitive” breast cancer samples significantly enriched in
Her2 IHC-positive tumors and with marked chromosome
17 amplification among the top ranking clinical reported
features in the breast cancer dataset. Interestingly, this result
was observed also with the Elastic Net copy number list
(not shown), which did not include ERBB2 among the most
significant differential genes. This observation prompted us

to test the robustness of the obtained gene signatures after
removal of the ERBB2 gene from all the previously evaluated
biomarker gene lists. Though with a lower p value, the
predictive power was still retained, with a strongly significant
enrichment inHer2 IHC-positive and chromosome 17 ampli-
fied samples among the predicted “Sensitive” (not shown),
likely driven by the other overexpressed and amplified genes
from the “ERBB2 amplicon” included in the signature.

Vemurafenib (Zelboraf) is a B-Raf inhibitor approved
for the treatment of late-stage melanoma. It selectively
inhibits melanoma cells harboring the V600E BRAF acti-
vating mutation, being inactive on WT BRAF cells [34].
Using the PATRI workflow, statistical mutation analysis in
a small panel of melanoma cell lines showing differential
sensitivity to vemurafenib (Figure 4(a)), provided a list of
29 mutated genes (filtered p value>0.1, log10 odds ratio>
|1|), among which mutated BRAF was the only feature
common to the 3 highly sensitive melanoma cell lines, but
also present in the resistant RPMI-7951, harboring a V600E
BRAF mutated gene (Figure 4(b)). This cell line has been
previously described as a B-Raf inhibitor resistant cell line
[69], likely due to a reactivation of theMEKpathway, inwhich
a combined treatment with the AS703026 MEK inhibitor
and the PLX4032 BRAF inhibitor could actually overcome
this resistance phenotype [69]. In 2 out of 3 BRAF mutated
sensitive cell lines, we concomitantly observed a mutation
in MutS Homolog 3 (MSH3), a gene participating in the
mismatch repair (MMR) system. Indeed, BRAF mutations
have been observed to frequently occur in colorectal tumors
cases with MSI characterized by deficient DNA mismatch
repair (dMMR) [70]. Besides, we found the ALPK2 kinase to
be preferentially mutated in BRAF wt-vemurafenib resistant
melanoma cell lines;mutations inALPK2have been proposed
to be involved in cutaneous melanoma [71]. Due to the
low number of starting cell line samples and the limited
concordance of the identified mutational profiles, we focused
only on the aboveBRAF,MSH3, andALPK2mutations for the
execution of the “Translational” workflow on a set of clinical
genomics data for about 470 melanoma samples from the
TCGAdatabase [52].Hierarchical clustering evaluation of the
melanoma samples showed a group of predicted “Sensitive”
melanoma samples with mutated BRAF and WT ALPK2;
only a small fraction of melanoma samples showed mutated
MSH3 without a clear clustering pattern (Figure 4(c)). In the
majority of melanoma samples, BRAF and ALPK2 molecu-
lar alterations appeared to be mutually exclusive; however
ALPK2 has been reported among genes that are mutated
in significantly higher proportion of melanoma cell lines
than in melanoma tumors [72]. We repeated the melanoma
clinical analysis using only BRAF for sample classification:
the resulting “Sensitive” melanoma group was enriched in
primary tumor samples derived from “trunk” rather than
other excision sites and from patients with an average lower
age as compared to predicted “Resistant” patients (54.3 versus
60.3, Figure 4(d)), in agreement with reported literature [73,
74].

We then considered a panel of lymphoma cell lines
formerly tested in our labs for sensitivity to entrectinib
([37] and Figure 5(a)), a new TRKs/ALK/ROS1 inhibitor
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Cell name Lapatinib 
IC50 (uM) Group

HCC1954 <0.010 SENSITIVE
SK-BR-3 <0.010 SENSITIVE
ZR-75-30 <0.010 SENSITIVE
AU-565 0.025 SENSITIVE
BT-474 0.193 SENSITIVE
UACC-812 0.918 SENSITIVE
HCC202 0.945 SENSITIVE
MDA-MB-231 6.150 RESISTANT
MDA-MB-436 6.233 RESISTANT
HCC1395 6.312 RESISTANT
BT-549 6.572 RESISTANT
HCC1806 6.789 RESISTANT
CAL-51 7.790 RESISTANT
EFM-19 8.567 RESISTANT
BT-483 9.544 RESISTANT
KPL-1 >10 RESISTANT
MDA-MB-134-VI >10 RESISTANT
T47D >10 RESISTANT
MCF7 >10 RESISTANT
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Figure 3: “Translational” analysis of lapatinib sensitivity in breast cancer cell lines and clinical samples. Results of PATRI “Translational”
analysis workflow performed on a panel of breast cancer cell lines sensitive or resistant to lapatinib treatment and on a panel of 1017 TCGA
breast cancer clinical samples. (a) List of treated breast cell lines with respective lapatinib IC50 values. A threshold of 1𝜇M was chosen
to define “Sensitive” and “Resistant” cell lines. (b) Heatmap dendrogram of 17 markers differentiating lapatinib sensitive versus resistant
breast cell lines, obtained by ANOVA gene expression analysis (p value>10−4, log2 FC>|1.5|). Significantly high or low expressed genes are
highlighted in red and green, respectively. (c) Scatter plot visualization of the identified genes in the different cell lines, combining dot size,
representing magnitude of copy number values, and dot color shades, ranging from low (green) to high (red) gene expression values. (d)
Heatmap representing hierarchical cluster analysis via random forest categorization of the predicted “Sensitive” or “Resistant” 1071 breast
cancer samples, based on the selected genes (with the exception of TMEM35B, not represented in the clinical dataset; sample IDs could not
be represented on the lower part of the graph). (e-f) Top ranking of significant clinical features (where available) associated with TCGA
breast cancer samples, classified as potentially “Sensitive” or “Resistant”. (e) Histogram representing distribution of clinically evaluated Her2
immunohistochemistry levels (0-3+) in the predicted “Sensitive” and “Resistant” clinical sample groups.The displayed data correspond to the
column “Her2 IHC score” in the TCGA Breast Invasive Carcinoma “Provisional” Clinical Data annotation file. (f) Box plot representing the
clinically assessed average signal value for chromosome 17 amplification in predicted “Sensitive” (4.28) and “Resistant” (1.32) clinical sample
groups. The displayed data correspond to the column “Her2 cent 17 ratio” in the TCGA Breast Invasive Carcinoma “Provisional” Clinical
Data annotation file.

currently showing great promise in phase I/II clinical trials
on tumors driven by rearrangements of one of these kinases
[37, 75]. The panel included 4 anaplastic large cell lymphoma
(ALCL) cell lines, all harboring the nucleophosmin NPM-
ALK rearrangement [76], and all extremely sensitive to
treatment with entrectinib. In the PATRI gene expression
analysis of the 4 sensitive versus 7 resistant lymphoma cell
lines with Limma, ALK resulted as the most statistically
significant overexpressed kinase (Figures 5(b) and 5(c)). The

most differentially expressed genes (p value<10−7, logFC>
|5|, Figures 5(b) and 5(c)) found in the entrectinib sensitive
lymphoma cell lines were subjected to STRING analysis
[27] and resulted to be significantly networked with ALK
(Figure 5(d)) and found to be transcriptionally regulated
in ALK activated pathways [[26, 77–80] and reviewed in
[81, 82]]. “Translational” analysis of these markers in two
distinct gene expression clinical non-Hodgkin’s lymphoma
datasets (GSE14879, 20 samples [25], and GSE19069, 130
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Figure 4: “Translational” analysis of vemurafenib sensitivity in melanoma cell lines and clinical samples. Results of PATRI
“Translational” analysis workflow performed on a panel of melanoma cell lines sensitive or resistant to vemurafenib treatment and on a
panel of 478 TCGAmelanoma clinical samples. (a) List of melanoma cell lines with respective vemurafenib IC50 values. A threshold of 1𝜇M
was chosen to define “Sensitive” and “Resistant” cell lines. (b) Heatmap dendrogram for the results of PATRI odds ratio mutational analysis in
“Sensitive” versus “Resistant” melanoma cell lines. Red, mutated genes; green, wild type genes. (c) Heatmap representing hierarchical cluster
mutation analysis via random forest categorization of the predicted “Sensitive” or “Resistant” 478 melanoma TCGA samples, based on 3
selected mutated genes: BRAF, MSH3, ALPK2 (sample IDs could not be represented on the lower part of the graph). (d) Box plot representing
the reported age distribution in predicted “Sensitive” (avg. 54.3) and “Resistant” (avg. 60.3) clinical melanoma sample groups. The displayed
data correspond to the column “Age” in the TCGA Skin Cutaneous Melanoma (TCGA, Provisional) Clinical Data annotation file.

samples [26]) correctly predicted and clustered the 5 ALK-
positive ALCL samples from GSE14879 (Figure 5(e)), with
immunohistochemistry positivity features for ALK (Fig-
ure 5(f)) and PRF1 (not shown) and younger age (Figure 5(g))
ranking with highest statistical significance. Interestingly, a
comparable result was achieved with a 22-gene list obtained
with ANOVA gene expression analysis (p value<10−5, logFC>
|4.5|) not containing ALK, though with a less defined

heatmap “Sensitive” versus “Resistant” cluster pattern (not
shown). In GSE14879, predicted “Sensitive” samples included
most of the ALK-positive ALCL samples and also included
5 Peripheral T-Cell lymphoma, unspecified (PTCL-NOS)
samples, however displaying again ALK-positive diagnosis
and lower age among the top ranking significant clinical
associated parameters (not shown).Mutational analysis of the
entrectinib-treated lymphoma cell line panel did not provide
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Figure 5: “Translational” analysis of entrectinib sensitivity in lymphoma cell lines and clinical samples. Results of PATRI “Translational”
analysis workflow performed on a panel of lymphoma cell lines sensitive or resistant to entrectinib treatment and on two panels of 20 and 130
lymphoma clinical samples (GSE14879 [25] and GSE19069 [26], respectively). (a) List of lymphoma cell lines with respective entrectinib IC50
values. A threshold of 1𝜇Mwas chosen to define “Sensitive” and “Resistant” cell lines. (b) Heatmap dendrogram of 26 markers differentiating
entrectinib sensitive versus resistant lymphoma cell lines, obtained by Limma gene expression analysis (p value<10−7, logFC>|5|). Significantly
high or low expressed genes are highlighted in red and green, respectively. (c) Volcano plot visualizing significance and magnitude of
gene expression differences in sensitive versus resistant conditions, with pop-up indicating ALK expression level. Significantly high or low
expressed genes (p value<0.05, logFC>|1|) are highlighted in red and green, respectively. (d) Results from STRING analysis [27] showing the
protein-protein interaction network connecting the identified genes (STRING interaction score: 0.150). (e)Heatmap representing hierarchical
cluster analysis via random forest categorization of the predicted “Sensitive” or “Resistant” GSE14879 lymphoma samples, based on the
selected genes (sample IDs are represented on the lower part of the graph). (f-g) Top ranking of significant clinical features associated with
GSE14879 lymphoma samples, classified as potentially “Sensitive” or “Resistant”. (f) Histogram representing distribution of clinically assessed
ALK immunohistochemistry (IHC) positivity (reported in [25]) in the predicted “Sensitive” and “Resistant” sample groups. (g) Box plot
representing the distribution of the reported age [25] in predicted “Sensitive” (avg. 21.6) and “Resistant” (avg. 61.3) lymphoma sample groups.
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Figure 6: Simulation of “Clinical” analysis workflow based on presumed ALK inhibitor sensitivity in lymphoma clinical samples.
Results of PATRI “Clinical” analysis workflow, simulated using two panels of lymphoma clinical samples. The 5 ALK-positive ALCL
samples in the GSE14879 dataset (sample IDs: GSM368499, GSM368506, GSM368519, GSM368565, and GSM368566) were presumed to
be ALK inhibitor responders and set as “Sensitive” samples only for validation purposes, using the PATRI available gene expression analysis
algorithms. (a) Heatmap representing hierarchical cluster analysis via random forest categorization of the predicted “Sensitive” or “Resistant”
130 samples in the lymphoma GSE19069 dataset (sample IDs could not be represented on the lower part of the graph), starting from a
filtered 17-gene expression biomarker list obtained by Limma analysis of the GSE14879 dataset (p value<10−10, logFC>|1|). (b) Histogram
representing lymphoma diagnosis distribution for the 14 predicted “Sensitive” and the 116 “Resistant” lymphoma samples from the GSE19069
dataset (ALCL, ALK+: anaplastic large cell lymphoma ALK-positive; ALCL, ALK-: anaplastic large cell lymphoma ALK-negative; PTCL-
NOS: peripheral T-cell lymphoma, unspecified; ATLL: adult T-cell leukemia/lymphoma; Angioimmunoblastic: angioimmunoblastic T-cell
lymphoma).

significant results, while copy number analysis with ANOVA
revealed only two markers with significant microalterations,
namely, TCR gamma alternate reading frame protein (TARP)
loss and ADAM metallopeptidase domain 6 pseudogene
(ADAM6) gain in entrectinib sensitive, ALK-positive cell
lines. The significance of these two markers could not be
explored using the PATRI translational workflow, since only
gene expression data were available for the same samples in
the two lymphoma clinical datasets.

The same lymphoma clinical datasets were also used
to simulate a “Clinical” workflow analysis, presuming the
5 ALK-positive ALCL samples in the GSE14879 dataset as
ALK inhibitor treatment “responder” patient samples for
validation purposes. PATRI biomarker analysis was executed
with Limma and a filtered 17-gene list (p value<10−10, logFC>
|1|) was used for exploration and sensitivity prediction in
the lymphoma GSE19069 dataset (Figure 6(a)), resulting in
the prediction of 14 “Sensitive” lymphoma samples mostly
containing ALK-positive ALCL samples, with top ranking
clinical annotations for ALK-positive ALCL diagnosis (Fig-
ure 6(b)) and younger age (not shown). The provided results
illustrate the feasibility of the PATRI “Clinical” analysis
workflow for the quick evaluation and the comparison of
“training versus test” dataset biomarker analysis correlations
for all available clinical datasets with consistent phenotypic
annotations.

4. Conclusion

In this work, we describe PATRI, a freely available standalone
tool conceived as a biomarker data analysis “starter kit”
for basic users, enabling flexible storage, analysis, and com-
plementation of preclinical and clinical baseline genomics
data for correlation with treatment sensitivity, allowing the
exploration of potential predictive therapeutical biomarkers.

The current version of the tool design, along with widely
accepted algorithms and graphical representations, intro-
duces a “Translational” workflow, supporting rapid clini-
cal evaluation of putative preclinical therapeutic response
biomarkers in annotated clinical genomics datasets, based
on random forest categorization in parallel with phenotypic
significance analysis. The same workflow can also be applied
across distinct clinical datasets (“Clinical” workflow).

We have proposed examples of use of PATRI with in-
house sensitivity data from representative targeted drugs
with well-established mutated or overexpressed biomark-
ers; however, PATRI might also be applied to support the
identification of new relevant biomarkers and indicators
of sensitivity in other types of treatments, such as RNA
interference or CRISPR/Cas9 screenings, as well as for the
evaluation of their frequency and relevance in the clinics.

The PATRI structure can be integrated with further
analysis methods, available as R packages, making the tool
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a suitable platform for future implementation of innovative
analysis approaches in biomarker discovery, such as the
integration of novel prediction algorithms [83–86], possibly
supporting also the identification of synergistic combinations
[87], or the handling of confounding factors in preclinical
cancer model variability [88]. One easy adaptation might be,
for example, the emerging promising field of the identifica-
tion of splicing gene isoforms or transcriptomics biomarkers
as novel predictors of drug response [89].
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