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Abstract 

Objectives: Efforts to restore tropical peat swamp forests in Indonesia face huge challenges of potential failures due 
to socio-economic factors and ecological dynamics attributed to lack of knowledge on the adaptive mechanisms 
of potential tree species such as Kapur (Dryobalanops aromatica C.F.Gaertn Syn. Dryobalanops sumatrensis J.F. Gme-
lin A.J.G.H Kostermans). This species is a multi-purpose tree that, commonly grows in mineral soils, but also in peat 
swamp as previously reported, which raised a fundamental question regarding the molecular mechanism of this 
adaptation. Therefore, a dataset was created aiming to detect candidates of adaptive genes in D. aromatica seedlings, 
cultivated in two contrasting potting media, namely mineral soil and peat media, based on RNA Sequencing Tran-
scriptome Analysis.

Data description: The RNA transcriptome data of D. aromatica’s seedlings derived from young leaves of three 
one-year-old seedlings, raised in each dry mineral soil media and peat media, were generated by using Illumina 
HiSeq 4000 platform in NovogenAIT, Singapore. The acquired data, as the first transcriptome dataset for D. aromatica, 
is of a great importance in understanding molecular mechanism and responses of the involved genes of D. aromatica 
to the contrasting, growing potting media conditions that could also be useful to generate molecular markers.
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Objective
The past genetic research on Dryobalanops aromatica 
focused on pattern of genetic variation and population 
structure in North-eastern Borneo, Sumatera, and the 
Malay Peninsula using nuclear microsatellite markers 
[1]. The investigated ecosystem types for all populations 
were from mineral soil forest types, in which D. aromat-
ica could be found abundantly on deep, humid, yellow, 

sandy soils with a propensity for ridges [2]. However, it 
was recently discovered that this species also grows in 
peat swamp forest, as found in Singkil Wildlife Reserve 
(Suaka Margasatwa Singkil), Aceh, Sumatera. According 
to this finding, the former investigation was then concen-
trated on how to understand life-history characteristics 
such as comparing shoot cuttings ability of D. aromatica 
in peat and coco peat media [3]. In addition, due to lack 
of in-depth investigation of adaptive genetic variation 
of this species grown in mineral soil and peat media, an 
experiment was carried out through RNA sequencing 
(RNA-Seq) transcriptome analysis. Studies on adaptive 
genetic analysis using RNA-Seq in tropical forest trees 
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have previously been reported, such as research on Sho-
rea balangeran adaptation grown in mineral and peat 
potting media [4] and gall-rust infected and uninfected 
trees of Falcataria moluccana [5]. Considering potential 
application of transcriptome analysis on forest trees, sim-
ilar research was also conducted on D. aromatica. Objec-
tive of the research was to detect candidates of adaptive 
genes in D. aromatica seedlings, grown in two contrast-
ing potting media, namely mineral soil and peat media. 
The findings were expected to provide more accurate 
information on molecular adaptive mechanism for prac-
tical use to support rehabilitation and conservation of 
degraded peat swamp forests in Indonesia. Results of the 
study are presented in Table 1.

Data description
Dryobalanops aromatica’s seedlings, collected from Lae 
Kombih Forest Park, Aceh, Sumatera and transported 
to greenhouse of Department of Silviculture, IPB Uni-
versity, Bogor, were treated under two contrasting types 
of potting (diameter 10 cm) fine media, i.e., mineral soil 

(n = 3 seedlings) and peat (n = 3 seedlings) with regular 
watering. Peat media was classified as fibric peat, which 
has pH of 4.0 and 135.32% water content, whereas min-
eral soil media is classified as clay loam soil which has pH 
of 5.0 and 32.09% water content. Total RNA from young 
leaves collected from three one-year-old seedlings cul-
tivated in each mineral soil media and peat media were 
extracted by using Plant Total RNA Mini Kit (Geneaid 
Biotech Ltd), following manufacturer’s instructions. The 
integrity and quantity of extracted-RNA were measured 
by using NanoDrop ND-1000 spectrophotometer and 
Agilent 2100 Bioanalyzer.

The RNA sequencing was undertaken using Illumina 
HiSeq  4000 (Novogene-AIT, Singapore) that produced 
pre-processing reads, which afterwards became subjects 
to discard the library adaptors and low-quality reads 
below Q < 30 (data set 1). The clean reads were de novo 
assembled by Trinity 2.3.2 [6], and the redundant tran-
scripts were removed using CAP3, cd-hit-est, and corset 
1.08, respectively [7–9]. Sequencing the yielded 221 mil-
lion reads produced total 114,268 contigs. The contigs 

Table 1 Overview of data files/data sets

Label Name of data file/data set File types
(file extension)

Data repository and identifier (DOI 
or accession number)

Data file 1 Transcriptome assembly contigs Fasta file (.fasta) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5 [19]

Data file 2 Summary for alignment of clean reads to 
reference transcriptome

Document file (.docx) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 3 Functional annotation from non-redundant 
nucleotide NCBI

BLAST output in txt/-outfmt 6 option (.txt) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 4 Functional annotation from non-redundant 
protein NCBI

BLAST output in XML/-outfmt 5 option (.xml) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 5 Functional annotation from protein sequence 
database of SwissProt

BLAST output in XML/-outfmt 5 option (.xml) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 6 Functional annotation from protein sequence 
database of TrEMBL

BLAST output in txt/-outfmt 6 option (.txt) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 7 Statistics related to contig length distribution 
and the Blast results: e-value distribution, 
contig similarity distribution, top-hit spe-
cies distribution

PNG files in compressed file (.zip) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 8 Functional annotation from Complete TREP 
nucleotide database

BLAST output in txt/-outfmt 6 option (.txt) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 9 Functional annotation from Hypothetical 
TREP protein database

BLAST output in txt/-outfmt 6 option (.txt) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 10 Assessing transcriptome assembly and 
annotation completeness with single-copy 
orthologs by BUSCO

BUSCO output in txt (.txt) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 11 Gene Ontology and KEGG analysis Blast2GO file (.b2g) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 12 Open Reading Frames (ORFs) prediction Fasta File (.fasta) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data file 13 Results of microsatellite region finding Misa file (.txt) Figshare https ://doi.org/10.6084/m9.figsh 
are.12326 177.v5

Data set 1 Raw RNA‐seq. reads and assembled contigs Fastq files (.fastq) DNA Data Base of Japan (https ://ident ifier 
s.org/insdc .sra:DRP00 5979 [20]
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ranged from 201 to 50,886 base pairs with N50 of 1970 bp 
(data file 1). To assess the quality of transcriptome refer-
ence, clean reads were mapped to reference using Bow-
tie2 [10] (Data file 2).

The functional annotation of contigs was performed 
using BLAST + 2.7.1 program against the NCBI nr (data 
file 3), NCBI nt (data file 4) (downloaded by 6th Octo-
ber 2018 and subjected to Euphyllophyta) and SwissProt 
(data file 5) and TrEMBL (data file 6) (downloaded by 3rd 
January 2020) databases with an E-value cutoff of  10−5 
[11, 12]. Statistics of transcriptome reference were ana-
lyzed using Blast2GO 5.2 [13] that produced statistics of 
length distribution and Blast results with NCBI nr as fol-
lows: e-value distribution, contig similarity distribution 
and top-hit species distribution (data file 7). Functional 
analysis showed that 80,507 (70.45%) indicated signifi-
cant matches with NCBI nr as well as 59,353 (51,94%) in 
the SwissProt database. The transposon sequence analy-
sis was analyzed using BLAST program with TREP data-
base [14] (data file 8, data file 9). Transcriptome reference 
was assessed using Busco v.3.2 [15] under Maser platform 
[16] (data file 10). The SwissProt-annotated contigs were 
used to analyze GO and KEGG pathways using Blast2GO 
5.2 (data file 11).

To predict ORFs, the contigs were analyzed using 
TransDecoder 5.5.0 [17] (data file 12). A total of 84,175 
contigs was identified as ORFs with 5′prime partial of 
13,430 (15,95%), 3′prime partial of 8574 (10,19%) and 
complete ORFs type of 57,306 (68,08%). Contigs con-
taining microsatellite were extracted by using the MISA 
program [18], with minimum repeats such as: 10 for one 
base, 6 for two bases, and 5 for 3, 4, 5, and 6 bases; and 
the interruptions between sites of microsatellite were 100 
bases. The microsatellite motifs containing contigs were 
summed up to 39,025 (data file 13).

Limitations
The seedlings were not collected directly from the field 
due to the lack of natural regeneration and remarkably 
lengthy distance. Rather, seedlings were treated in two 
types of potting media (i.e. mineral and peat) grown in 
the green house with regular maintenance. Furthermore, 
RNA extraction samples were obtained from the leaves, 
only leaving other plant parts to be analyzed for better 
comparisons due to already established RNA extraction 
methods for the leaves. The extraction was also carried 
out solely once during sampling point in order to meet 
the sufficient replicates.
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