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Introduction: Competing risks arise when subjects are exposed to multiple mutually exclusive failure events,
and the occurrence of one failure hinders the occurrence of other failure events. In the presence of competing
risks, it is important to use methods accounting for competing events because failure to account for these
events might result in misleading inferences.

Methods and Objective: Using data from a multisite retrospective observational longitudinal study done in
Ethiopia, we performed sensitivity analyses using Fine-Gray model, Cause-specific Cox (Cox-CSH) model,
Cause-specific Accelerated Failure Time (CS-AFT) model, accounting for death as a competing risk to deter-
mine baseline covariates that are associated with a composite of unfavourable retention in care outcomes in
people living with Human Immune Virus who were on both Isoniazid preventive therapy (IPT) and antiretrovi-
ral therapy (ART). Non-cause specific (non-CSH) model that does not account for competing risk was also per-
formed. The composite outcome comprises of loss to follow-up, stopped treatment and death. Age, World
Health Organisation (WHO) stage, gender, and CD4 count were the considered baseline covariates.

Results: We included 3578 patients in our analysis. WHO stage III-or-IV was significantly associated with the
composite of unfavourable outcomes, Sub-hazard ratio (SHR) = 1.31, 95% confidence interval (CI):1.04-1.65
for the sub-distribution hazard model, hazard ratio [HR] = 1.31, 95% CI:1.05-1.65, for the Cox-CSH model,
and HR = 0.81, 95% CI:0.69-0.96, for the CS-AFT model. Gender and WHO stage were found to be signifi-
cantly associated with the composite of unfavourable outcomes, HR = 1.56, 95% CI:1.27-1.90, HR = 1.28,
95% CI: 1.06-1.55 for males and WHO stage III-or-IV, respectively for the non-CSH model.

Conclusions: Results show that WHO stage III-or-1V is significantly associated with unfavourable outcomes. The
results from competing risk models were consistent. However, results obtained from the non-CSH model were
inconsistent with those obtained from competing risk analysis models.

1. Introduction

Competing risks arise when subjects are exposed to multiple mutu-
ally exclusive causes of failure and failure due to one cause precludes
the occurrence of failure from other causes. A competing risk is de-
fined as an event that prevents the observation of an event of interest
or that in principle modifies the probability of occurrence of the out-

come of interest in the study [12]. Death is one of the common com-
peting risks in health studies, as the occurrence of an event of interest
will not be observed once the participant is dead. For instance, in our
study, death precludes the occurrence of other unfavourable retention
in care outcomes such as loss to follow-up or stopped treatment
among people living with HIV (PLHIV). The death event competes
with observing other events under investigation, and it prevents us
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from knowing when an individual would have experienced another
unfavourable retention in care outcome had they been alive.

Typically, time to event data are usually analysed using standard
survival analysis techniques such as the Kaplan Meier curve and the
Cox proportional hazard model to estimate the effect of treatment and
risk factors on the hazard of the outcome of interest. These methods
assume non-informative censoring and failures from competing risks
are treated as censored [2]. However, in the competing risks para-
digm, the occurrence of competing events can result in informative
censoring [2-6]. Failure to account for competing events may reduce
statistical power, overestimate probability of outcomes of interest and
result in biased inferences [7,8,9].

Accordingly, extended survival techniques to account for compet-
ing risks have been developed, such as the sub-distribution hazards
model by Fine and Gray [10] and cause-specific models suggested by
Prentice at al [11]. Cause-specific models are appropriate if the inter-
est is in understanding etiological questions. This model is modelled
via an appropriate time-to-event model to estimate the effect of co-
variates on the cause-specific hazard function keeping other events
failing as censored. For example, the application through a Cox-
proportional hazard model, or estimating the effect of covariates on
the cumulative incidence function (CIF) via the accelerated failure
time framework [1]. In the presence of competing risks, an unbiased
estimator of the cause-specific event probabilities can be obtained by
using its CIF [12,13].

On the other hand, most studies also report composite outcomes
with the aim to account for competing risks [7,14]. Lunn-McNeill in-
troduced an approach of combining all failure types in one outcome
called a composite outcome in the presences of competing risks [15].
The composite outcome is a combination of multiple individual out-
comes into a single endpoint. Combining individual outcomes into
composite outcomes can increase the overall event rate and the statis-
tical power for a study because of higher event rates [16,17]. Ideally,
a composite outcome comprises of outcomes that in principle are as-
sumed to have similar importance, similar relative frequencies of oc-
currence, similar underlying etiology, similar precision of measure-
ment, and similar magnitude and direction of the treatment effects
[14,18]. Composite outcomes are deemed appropriate when the treat-
ment effect across individual outcomes within a composite outcome is
homogeneous [7,9]. However, if it is designed to quantify risk bene-
fits or capture competing risks, the assumption of homogeneous treat-
ment effect across individual components can be relaxed [14].

While there exist, a wide-ranging literature comparing traditional
survival models and competing risks models, literature comparing
these methods with application to empirical data are scares. In addi-
tion, there is a lack of articles focusing on composite outcomes in the
application of competing risk models. Majority of articles focused on
the application of clinical trials data [8,18-22]. As a result, this study
aims to compare time-to-event models by analysing a composite out-
come in the presence of death as a competing risk. Since death as a
competing risk was not accounted for in the main study, we re-
analysed data from the TB breakthrough observational longitudinal
study using competing risk analyses to determine baseline covariates
associated with the composite of unfavourable retention in care out-
comes among people living with HIV who were on IPT plus ART,
while explicitly accounting for death and allowing for within-hospital
clustering.

We employed the Fine and Gray model in the primary analysis. In
addition, we performed sensitivity analyses using cause-specific mod-
els through the Cox proportional hazard model, accelerated failure
time model, and a Cox-proportional (non-cause-specific hazard) model
to assess robustness of the findings. Performing sensitivity analyses is
an essential step in analysis of health studies to assess the robustness
or consistency of the results under different models, or assumptions to
establish credibility of study findings [23,24].
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2. Methods

The dataset used in this study is publicly available through the
PLOS ONE policy, and comprehensive details on the selection of study
participants that provided data analysed in this study are described
elsewhere [5]. The following is a brief description of the study design,
population, setting, exposure variables and outcomes, data collection
procedures and ethical consideration.

2.1. Study design, population and setting

This study is a secondary analysis of a multisite retrospective ob-
servational longitudinal study that was done in Ethiopia involving
n = 4484 participants with HIV, for a period of nine years (from the
year 2005-2014) who were initiated on IPT [5]. The main study
aimed to assess the magnitude and factors associated with tuberculo-
sis breakthrough among people living with HIV who were initiated on
IPT.

The study includes People Living with HIV (PLHIV) from three re-
gions in Ethiopia: Addis Ababa, Gambella, and Southern Nations Na-
tionalities and Peoples (SNNP) region. These regions were selected be-
cause they used a similar data management system. The population
consists of 35 hospitals in these regions from which 11 hospitals were
randomly selected for the sample. PLHIV visited the 11 randomly se-
lected hospitals between September 2005 and October 2013 and were
included in the sample. The main study was approved by the National
Research Ethics Review Committee (NRERC) of Ethiopia and no in-
formed consent was required because patient's information was ex-
tracted from non-identifiable and non-linked databases.

2.2. Sample size

As per the rule of thumb, a minimum of 10 events per explanatory
variable is efficient to avoid model overfitting, however, when per-
forming sensitivity analysis this rule may be relaxed [25]. In our
study, there were at least 10 unfavourable retention in care outcomes
per predictor variable, and we performed sensitivity analyses. There-
fore, by the rule of thumb, a sample size of 3578 patients (Fig. 1) who
were on both IPT and ART is adequate to fit our models.

2.3. Inclusion criteria

Only individuals who did not have tuberculosis (TB) were initiated
on IPT. Last status was only recorded for patients who were on both
IPT plus ART in order to understand retention in care, therefore, only
patients who were on both IPT and ART were included in our analy-
sis.

2.4. Study measurements

2.4.1. Explanatory and exposure variables

The following baseline characteristics and clinic data were ex-
tracted from the databases: patient age, gender, baseline WHO Stage,
and baseline CD4 count. The time from starting IPT to the last obser-
vation was also recorded. All covariates collected were dichotomised
in the primary study.

2.4.2. Composite outcome variable

The primary outcome of our study was defined as a composite of
unfavourable retention in care outcomes, which comprises of loss to
follow-up or stopped treatment or death as per the primary study [5].
These outcomes were measured during the last visit to understand re-
tention in care. No multiple unfavourable outcomes were recorded per
subject. In addition, no missingness of the outcome nor covariates
were observed in our data.
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Fig. 1. Study participant's flow diagram.

2.5. Ethics

The data used in this study was obtained from non-identifiable and
non-linked databases and no informed consent was required. In addi-
tion, it is publicly available for use. The study was approved for ex-
emption of ethics review by the Stellenbosch Human Research Ethics
Committee (HREC) under Project ID 10953 and Ethics Reference
Number X19/08/029.

2.6. Statistical methods

2.6.1. Fine-Gray sub-distribution hazard model

Fine and Gray [10] introduced a semi-parametric regression analy-
sis used to estimate the effects of treatment and covariates in the pres-
ence of competing risks called sub-distribution hazard model. This
model is used when the interest is in answering prognostic questions.
That is, it models the probability of an event happening. Fine-Gray
sub-distribution hazard model estimates the effects of covariates on
the sub-distribution hazard function. The sub-distribution hazard
function shows the instantaneous rate of occurrence of the event of in-
terest at time t for subjects who are either event free or have experi-
enced the competing event before time t. The crude incidence of the
occurrence of the jth event while accounting for competing risks is es-
timated using the cumulative incidence function F(t) also referred to
as sub distribution function. Fj(t) is the cumulative probability of fail-
ure from a cause j prior to time t in the presence of competing risks
and it describes the incidence of the occurrence of an event while ac-
counting for competing risks. The cumulative incidence function is
given by F;(t) = P [T <t, J=j]|. The sub-distribution hazard function
is mathematically defined as

P[i<T <t+At, J=j| (T>DUT<tnJ#)] J=1,..j, where T is time
At £l - s e/

to failure, and J is the type of event for that subject.

sd —
A0 = AI;I—?O

2.6.2. Cox cause-specific (Cox-CSH) regression model

The cause specific model is a semi-parametric model introduced by
Kalbfleish and Prentice 2002 used to analyse time to event data in the
presence of competing risks [26] in order to address etiological or bi-
ological questions. The CSH model estimates the effect of covariates
on the cause-specific hazard function. The estimation of the effect of
covariates on the cause-specific hazard functions is modelled via an
appropriate standard time to event model. For example, the applica-
tion of a cox-proportional hazard model, and an accelerated failure
time model were used in this study. In the presence of competing
risks, an unbiased estimator of the cause-specific event probabilities
can be obtained by using its cumulative incidence functions (CIFs)
[12,13]. The CIF of the cause-specific hazards is defined as the proba-
bility of failing from the event of interest by time t while still at risk
of failing from other competing events. Mathematically, it is defined
as Fi(="r [T <t J= j]. The cause-specific hazard function for the
P[T<t+At, J=j|T>t]
v =)
from competing events are treated as censored. Hazard ratios ob-

tained from this model are interpreted as the association with the rate
of the event, in this case the association between the covariate and
the rate of the unfavourable retention in care outcomes.

jth failure is given by Aj‘.‘s o= Alimo =1,..,j. Failures
1—

2.6.3. Cause-specific AFT (CS-AFT) model

Cause-specific AFT is a linear competing risks regression model
used to analyse time to event data in the presence of competing risks
[26]. The AFT model is used to assess the effect of covariates on mean
survival time [1]. Typically, when using cause-specific hazard models
in the presence of competing risks, there is no direct effect of covari-
ates on the failure time. Furthermore, failure due to all other causes
expect for the events of interest are treated as censored. This model is
mathematically written as log(T|Z2) = ajZ’ + ¢, where T denote the
latent failure time due to the unfavourable outcome j, a; denote a vec-
tor of parameters estimates measuring the crude covariate effects on
the failure time of the unfavourable outcome j only, Z denote a vector



N. Haushona et al.

of covariates, and ¢; denote an error term with an unspecified distrib-
ution function.

2.6.4. Non-cause-specific hazard (non-CSH) model

The Cox proportional hazard model is a semi-parametric model
used to assess the effect of treatment and covariates on a single event
of interest [27]. It is represented by a hazard function, baseline haz-
ard function and the covariates, and it is mathematically represented
as h(t) = ho(t) exp(f X), where A(t) is the hazard function, hy(t) is the
baseline hazard function which is left unspecified, $ is a column vec-
tor of the regression coefficients, and X is a column vector of the co-
variates. The Cox regression model assumes that there is the propor-
tionality of the hazard rate. Proportional hazards mean that the haz-
ard ratio is constant over time such that the effect of a covariate is the
same at all points in time. Typically, when multiple outcomes are
combined in a composite outcome, it is deemed appropriate to per-
form a non-cause-specific hazard model to estimate the effect of co-
variates on the unfavourable outcomes by combining all outcomes
without censoring patients who experienced the competing event.

2.7. Statistical analyses

Descriptive statistics for participants' baseline characteristics were
presented as frequencies and percentages. In all the analyses, partici-
pants’ age categorized <15 years and > 15 years; gender, WHO Stage
categorized I or II, and IIl or IV, and CD4 cell count categorized
<100, 100-349, and >349 were considered as covariates. In addi-
tion, a graphical examination using cumulative incidence function
curves were used to estimate the incidence of unfavourable retention
in care outcomes at any time point between baseline and time t.

For the primary analysis, a multivariable Fine and Gray sub-
distribution hazard model was performed to assess the baseline co-
variates associated with the composite of unfavourable retention in
care outcomes, while accounting for death as a competing risk and al-
lowing for within hospital clustering. Also, sensitivity analyses were
performed using Cox-CSH, AFT model and a non-cause-specific hazard
model (where we combined all the three unfavourable retention in
care outcomes). Hazard ratios (HR), corresponding 95% confidence
intervals (CIs) and associated p-values were reported for all the mod-
els.

Graphical examinations based on Schoenfeld residuals were used
to check for the assumption of proportional hazards. In addition, a
confirmatory test was performed by including an interaction between
time and the covariates in the model using a tvc (time varying covari-
ates) option in STATA. The tvc option is used together with texp to
create interactions of the predictors and a function of survival time in
the model. Covariates violating the proportional hazard assumption
i.e. covariates with a p-value of less than 0.05 under the tvc function
were included in the models as time-varying covariates. The criteria
for statistical significance was set at 0.05 for all tests. All analyses
were performed in STATA Version 15.1 (Stata Corp., College Station,
TX) and cumulative incidence functions graphical display for the com-
posite endpoint, and the individual components of the composite were
done in R-version 3.61.

3. Results
3.1. Baseline characteristics

Descriptive statistics for baseline covariates of participants who
were on IPT plus ART against their last status are shown in Table 1.
Briefly, 3212 (89.8%) participants had favourable retention in care,
and 366 (10.2%) patients had one of the unfavourable retention in
care outcomes (loss to follow up or stop treatment or death) at last
visit or observation. The unfavourable retention in care composite

Contemporary Clinical Trials Communications 19 (2020) 100639

Table 1
Baseline characteristics of patients on IPT plus ART (n = 3578).

Baseline Subcategories Favourable outcome Unfavourable outcome
covariates (n = 3212) (n = 366)
Age (years)n <15 292 (94.81) 16 (5.19)
(%)
2920 (89.30) 350 (10.70)
>15
Gender n (%) Male 1165 (87.14) 172 (12.86)
Female 2047 (91.34) 194 (8.66)
WHO Stagen IorII 1495 (91.33) 142 (8.67)
(%)
III or IV 1717 (88.46) 224 (11.54)
CD4 Countn <100 701 (88.62) 90 (11.38)
(%)
100-349 2278 (89.83) 258 (10.17)
>350 233 (92.83) 18 (7.17)

WHO- World Health Organisation, CD4cluster of differentiation 4.

outcome comprises of death (66), stopped treatment (2) and loss to
follow-up (298). Unfavourable outcomes were frequently recorded
among adults (age > 15 years) (10.7%), and only 5.19% was recorded
among children (age<15 years). There was a minor discrepancy in
the occurrence of unfavourable outcomes by gender. Furthermore,
11.54% of patients with WHO stage III or IV had unfavourable reten-
tion in care outcomes, and 8.67%of patients with WHO stage I or II
had unfavourable outcomes. 11.38% patients who had less than 100
CD4 cells per cubic millimeter of blood had unfavourable retention in
care outcomes. The median follow-up time to the last status was 3.16
years.

Fig. 2 shows the CIF curves of loss to follow up, stopped treatment,
and death, along with the CIF curve for the composite outcome of all
the unfavourable retention in care outcomes. The cumulative inci-
dence of the composite outcome is equal to the sum of all the cumula-
tive incidences of all the cause-specific unfavourable retention in care
outcomes.

3.2. Primary analysis: Fine and Gray sub-distribution hazard model

Results from the sub distribution hazard model are presented in
Fig. 3. CD4 cell count violated the assumption of proportional hazards
i.e. under the tvc option CD4 count had a p-value = 0.001 which is
less than 0.05, indicating the violation of proportional hazards. As a
result, we included an interaction between CD4 cell count and sur-
vival time in order to account for the violation of the proportional
hazards assumption. A significant difference in the risk of un-
favourable retention in care outcomes between WHO stages was ob-
served. The estimated adjusted SHR and associated 95% confidence

| — Losstofollow up (CIF)
© _| — Stopped treatment(CIF)
v © —— Death (CIF)
§ _| — Allunfavourable (1-KM)/Sum of three CIFs
il
£ 5+
L
=
Z _
p |
E S
O
o |
o

T T T T T
0 2 4 6 8

Survival time (years)

Fig. 2. Cumulative incidence functions, and KM Kaplan-Meier. WHO- World
Health Organisation, CD4~cluster of differentiation 4, CI- Confidence Interval.
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| Hazard

Characteristic | Ratio (95% Cl)  P-value
Sub distribution hazard model
Age: >=15 years —_— 1.03 (0.63, 1.70) 0.897
Gender: Male —— 1.38 (0.99, 1.94) 0.059
WHO stage: Il or IV —— 1.33 (1.05, 1.68) 0.017
CD#4 cell count:100-349 > 1.07 (0.99, 1.16) 0.100
CD4 cell count:>349 - 0.97 (0.78, 1.21) 0.807
Cox cause-specific hazard model
Age: >=15 years —_—— 1.04 (0.63, 1.72) 0.876
Gender: Male ——— 1.40 (1.01, 1.95) 0.0500
WHO stage: lll or IV —— 1.33 (1.05, 1.68) 0.016
CD4 cell count:100-349 - 1.07 (0.98, 1.16) 0.126
CD#4 cell count:>349 - 0.98 (0.79, 1.20) 0.816
Cause-specific AFT model
Age: >=15 years —_—— 1.05(0.73, 1.52) 0.783
Gender: Male I 0.77 (0.59, 1.01) 0.061
WHO stage: Il or IV - 0.81 (0.69, 0.96) 0.016
CD#4 cell count:100-349 e o 0.98 (0.77, 1.25) 0.882
CD#4 cell count:>349 -—— 1.28 (0.87, 1.88) 0.214
Non-cause specific model
Age: >=15 years —1—— 1.28 (0.77, 2.01) 0.313
Gender: Male —— 1.56 (1.29, 1.90) <0.001
WHO stage: Ill or IV —— 1.28 (1.05, 1.55) 0.012
CD4 cell count:100-349 > 1.04 (0.95, 1.14) 0.374
CD4 cell count:>349 - 1.00 (0.85, 1.17) 0.978

I I

5 1 3]

Decreasing Risk

Increasing Risk

WHO- World Health Organisation, CD4- cluster of differentiation 4, CI- Confidence Interval

Fig. 3. Forest plot for baseline covariates based on different models.

interval was 1.33(1.05-1.68) for WHO stage III or IV compared to
WHO stage I or II after controlling for sex, age and CD4 cell count in
the model. WHO stage III or IV was significantly associated with a
33% increase in the incidence of unfavourable retention in care out-
comes in subject who had favourable outcomes or experienced the
competing event (death). There was an insignificant increase in the
incidence of unfavourable retention in care outcomes among adults
( > 15 years) than in children among individuals who had favourable
outcomes or who died. The interaction between CD4 cell count and
time was insignificant. There was no evidence that the effect of an in-
crease in CD4 cell count levels decreased the incidence of un-
favourable outcomes over time in both models. Lastly, there was no
significance difference in unfavourable retention in care outcomes be-
tween males and females.

3.3. Sensitivity analyses

Fig. 3 shows results obtained from three multivariable sensitivity
analyses models. CD4 cell count violated the assumption of propor-
tional hazards i.e. under the tvc option CD4 count had a p-
value = 0.001 which is less than 0.05, indicating the violation of pro-
portional hazards. As a result, we included an interaction between
CD4 cell count and survival time in all models.

WHO stage III or IV was significantly associated with the compos-
ite of unfavourable retention in care outcomes in both CS models, ad-
justed HR = 1.33, 95% CI: 1.06-1.68, p-value = 0.016, HR = 0.81,

95% CI: 0.69-0.96, p-value 0.016 for the Cox-CSH and CS-AFT
model, respectively. From the Cox-CSH model, WHO stage III or IV is
significantly associated with a 33.2% increase in the incidence of un-
favourable retention in care outcomes among patients who were hav-
ing favourable retention in care outcomes. WHO stage III or IV was
significantly associated with 18% decrease in the mean survival to un-
favourable retention in care outcomes in those who were currently
having favourable retention in care outcomes for the CS-AFT model.

Age, sex, and CD4 cell count were not significantly associated with
the unfavourable retention outcomes as they were observed with p-
values equal to or greater than 0.05 (Fig. 3).

Similarly, age group, sex and CD4 cell count were not significantly
associated with the unfavourable outcomes for the CS-AFT model ad-
justed HR = 1.05, 95% CI: 0.73-1.52, p-value 0.783 for adults
(age > 15 years); adjusted HR 0.77, 95% CI: 0.59-1.01, p-
value = 0.061 for males compared to females; adjusted HR = 0.98,
95% CI: 0.77; 1.25, p-value = 0.88 and adjusted HR = 0.78, 95% CI:
0.87-1.88, p-value = 0.21 for CD4 cell count 100-349, and>350, re-
spectively.

Additionally, the non-CSH model shows being Male and WHO
stage III or IV to be significantly associated with the composite of the
unfavourable retention in care outcomes after controlling age and
CD4 cell count in the model. Males were more likely to have un-
favourable retention in care outcomes (loss to follow up, stopped
treatment or death) as compared to females (adjusted HR 1.56,
95% CI: 1.29-1.90, p-value<0.001). Patients with WHO stage IIV or
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IV were significantly more likely to have unfavourable retention in
care outcomes as compared to those with WHO stage I or II.

4. Discussion

We performed competing risk analyses to determine baseline co-
variates that are associated with a composite of unfavourable reten-
tion in care outcomes (stopped treatment or loss to follow up or
death) among people living with HIV who were on both IPT and ART,
accounting for death as a competing risk. Competing analyses (sub-
distribution hazard model and CS models) showed that WHO stage III
or IV is significantly associated with an increase in the incidence of
unfavourable retention in care outcomes. The AFT model shows that
WHO stage III or 1V is significantly associated with a reduction in sur-
vival mean time of unfavourable retention in care outcomes among
individuals who are currently having favourable retention in care out-
comes. Additionally, gender was significantly associated with un-
favourable retention in care outcomes from the non-CSH model.

Findings from three competing risk analyses were consistent. How-
ever, results obtained from the CS-AFT model has effect estimates go-
ing in the opposite direction of those obtained in the sub-distribution
hazard model, and Cox-CSH model. This is due to the fact that AFT
models measures the effect of covariates on the survival mean time of
the outcome instead of hazard ratio contrary to the sub-distribution
hazard model and Cox-CSH hazards models [1]. Effect of covariates
obtained from the AFT models are interpreted as time ratios and the
ratio denotes the acceleration factor. A time ratio less than one im-
plies that the event is more likely to happen, similarly to when the
hazard ratio is greater than. These models reached the same conclu-
sion though a negative correlation between the AFT, Cox-CSH and the
sub-distribution hazard model is observed. Results from sub-
distribution hazard model, Cox-CSH, and non-CSH model were
roughly similar. CSH and sub-distribution hazard yields similar results
when there are few events or when a covariate only affects one of the
cause-specific hazards [13].

Moreover, findings from competing risk models were not in agree-
ment with results from the non-CSH model, which showed both gen-
der and WHO stage to be significantly associated with unfavourable
retention in care outcomes. A composite outcome of all failure events
is deemed appropriate to capture competing risks without censoring
individuals who experience competing event.

However, results from the non-CSH model were not consistent
with those obtained from the Fine and Gray sub-distribution hazard
model and CSH models because of the difference in baseline charac-
teristics of participants that were significantly associated with un-
favourable retention in care outcome. Therefore, estimates from the
non-CSH model might not be the most accurate in this case hence the
results from the non-CSH model need to be interpreted with thought-
fulness. Our findings are consistent with those found in Dignam JJ et
al. [22], that when the rate of competing events is low, the two com-
peting risk models tends to have similar results. Additionally, this was
also confirmed that when the incidence of the competing events is
small, there will be minimal bias after performing traditional survival
methods that ignores competing events, however, bias escalates as the
incidence of the competing risks increases [28].

There were some limitations to our study. The major limitation of
our study is bias resulting from residuals of loss to follow-up out-
comes that might have been classified as outcome of interest since we
could not confirm whether individuals who are lost to follow up are
dead or not because we utilised secondary data. The non-discreteness
of death from lost to follow up might have overestimated the proba-
bility of the outcome of interest and underestimate the probability of
those who died. Another significant limitation is that our study used
empirical data for analysis, thus any conclusion made from this study
may not mirror findings in other settings hence results from this study
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cannot be generalised to other population. Additionally, the use of
secondary data could not spare us on limitations that arises from the
use of existing records such as residual confounding when crucial
variables that needed to be accounted for in the analysis are omitted
during data collection. Also, the aim of the study was to explore the
performance of models via these data not to make clinical conclu-
sions. Our study will contribute to literature to help researchers iden-
tify effective modelling approaches in competing risk settings to en-
able unbiased inferences.

Literature around the paradigm of competing risks in comparison
to traditional time to event models found that ignoring competing
risks may lead to an overestimation of cumulative incidence and
hence leading to misleading results [2,4,6,21,22,26,29-32]. Consider-
ing the fact that competing risks arises in most studies be it observa-
tional studies were routine data is collected at health facilities or in
clinical trials were patients are subjected to multiple outcomes, com-
parison of time to event models catering for different scenarios such
as competing events are infrequently applied to empirical data. Also,
rarely composite outcomes are considered. This paper offers an empir-
ical comparison of such methods with an application to empirical data
focusing on composite outcomes and it will help researchers around
this area with analysis as well as provide a grasp of how to interpret
results from various competing risks models. Our study will contribute
to literature to help researchers identify effective modelling ap-
proaches in competing risk settings, particularly when analysing sur-
vival data from observational studies as this literature is limited as op-
posed to literature focusing on data from randomised clinical trials.

5. Conclusions

In both competing risk analyses, we found evidence that WHO
stage was found to be significantly associated with the composite of
unfavourable retention in care outcomes. However, we did not find
any significant effect of gender, age and CD4 cell count on the un-
favourable retention in care outcomes was found in these analyses.
Non-competing risk analysis showed evidence of gender being associ-
ated with unfavourable outcomes, in addition to the WHO stage. Re-
sults from competing risk analyses were consistent, however, not in
agreement with those obtained from the non-CSH model. Therefore,
results from the non-CSH model need to be interpreted with caution.
We have provided an empirical comparison of the results from differ-
ent models. These models may result into different results as they ad-
dress different research questions, cause specific addresses etiological
questions, while sub-distribution addresses prognostic questions;
hence it is advisable to perform both models in the presence of com-
peting risks to ensure valid inferences. In conclusion, the model
choice must be guided by the type of research question to be ad-
dressed.
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