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Abstract: In the past decade, immunotherapies have been emerging as an effective way to treat cancer.
Among several categories of immunotherapies, immune checkpoint inhibitors (ICIs) are the most
well-known and widely used options for cancer treatment. Although several studies continue, this
treatment option has yet to be developed into a precise application in the clinical setting. Recently,
omics as a high-throughput technique for understanding the genome, transcriptome, proteome, and
metabolome has revolutionized medical research and led to integrative interpretation to advance our
understanding of biological systems. Advanced omics techniques, such as multi-omics, single-cell
omics, and typical omics approaches, have been adopted to investigate various cancer immunothera-
pies. In this review, we highlight metabolomic studies regarding the development of ICIs involved
in the discovery of targets or mechanisms of action and assessment of clinical outcomes, including
drug response and resistance and propose biomarkers. Furthermore, we also discuss the genomics,
proteomics, and advanced omics studies providing insights and comprehensive or novel approaches
for ICI development. The overview of ICI studies suggests potential strategies for the development
of other cancer immunotherapies using omics techniques in future studies.

Keywords: cancer immunotherapy; immune checkpoint inhibitor; metabolomics; omics; microbiome;
immune-related adverse events

1. Introduction

The International Agency for Research on Cancer (IARC), as a part of the World Health
Organization (WHO), announced that cancer is the second highest cause of death and
is associated with approximately 10 million deaths per year based on the WHO cancer
mortality database. To alleviate the mortality of cancer, various therapeutic agents have
been developed, ranging from chemotherapy to immunotherapy [1]. Although chemother-
apy, as the first generation of cancer therapy, has been the prevalent option for cancer
treatment with radiotherapy and surgery in the past decades, the development of tyrosine
kinase inhibitors and monoclonal antibodies for cancer, second-generation therapeutic
agents, have improved the efficiency of therapies derived by that high-specificity and
broad therapeutic window [2]. In recent decades, among several therapeutic approaches,
cancer immunotherapy is considered the third generation of cancer therapy, which can
overcome the limitations of previous approaches. Cancer immunotherapy, sometimes
called immune-oncology, directly or indirectly stimulates the host immune system to con-
trol or eliminate cancer [3]. Various strategies have been developed to evoke patients’ own
tumor immunity, such as immune checkpoint inhibitors (ICIs), immune cell therapy, and
anti-cancer vaccines, but ICIs are the most well-studied category of immunotherapies.
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‘Omics’ is a high-throughput technique for the investigation of biological systems,
including diverse molecular layers (e.g., genes, proteins, and metabolites), and supports a
large number of datasets, such as those of the genome, transcriptome, or metabolome rep-
resenting biological dynamics [4]. To date, omics-based systems biology has significantly
contributed to advances in ontology while considering its numerous applications for cancer
research, such as biomarker discovery, therapeutic target suggestions, and prognosis and
diagnosis assessment. Likewise, these omics-based platforms have developed immunother-
apy known as third-generation cancer therapy. The advantages of omics techniques include
(1) supporting reliable high-throughput datasets across several molecular layers, which
enable integration for comprehensive biological interpretations, (2) simultaneous achieve-
ment of qualification and quantification for many molecules for effective target screening,
(3) high availability and applicability using reasonable costs and labor derived from the
development of mass spectrometry and sequencing technology. Several studies regard-
ing cancer immunotherapy, especially ICIs, have applied omics and highlighted several
outcomes, such as extensive targets for drug discovery and development, determination
of mechanisms of action, pre- or post-treatment biomarkers of clinical outcomes, and
assessment of immune-related adverse events [5].

In this review, we discuss the recent application of omics techniques in the study of
immune checkpoint inhibitors and extend the knowledge of omics-based approaches to
advance our understanding of cancer immunotherapy for future studies.

2. Emerging Application of Immunotherapy for Cancer

Since the concept that the immune system can recognize and prevent carcinogenesis
at early stages was introduced in 1909 by Paul Erlich, it was incorporated into the ‘cancer
immunosurveillance’ theory by Burnet and Thomas in the middle of the 19th century [6].
The controversial theory was based on several studies conducted in various cancer models,
providing evidence either confirming or opposing the theory. Following continuous studies,
the theory was developed into the concept of ‘cancer immune-editing,’ in that the immune
system demonstrates not only host-protection but also tumor-sculpting effects on cancer
development [7]. Diverse components of the immune system protect the host against
nascent cancer development or improve tumor escape or both by cancer immune-editing [8].
The process is divided into three phases, including elimination, equilibrium, and escape [9].
In the elimination phase, the immune system is able to destroy the tumor through the action
of NK, CD4+, and CD8+ cells. However, equilibrium between immune system components
and tumor cells leads to the failure of tumor suppression at the second stage. Finally, the
tumor acquires immune evasion abilities and becomes detectable in the escape phase.

Recently, the tumor microenvironment (TME), which is the surrounding environment
interacting with tumors, has been considered as an emerging field in cancer study and
re-establishes drug efficacy and therapeutic strategies in cancer immunotherapy [10]. TME
includes various components, such as blood vessels, immune cells, fibroblastic cells, and
extracellular matrix [11]. The tumor and TME interact closely, resulting in increased tumor
heterogeneity [12]. An improved understanding of the TME demonstrated that immune
cell infiltration has a high correlation with anti-cancer immune responses, and it led to
the creation of the ‘immune contexture,’ involving organization, composition, and density
of immune cell infiltrate [13]. Following the specific categories of the concept, several
therapeutic trials were conducted to suggest precision medicine [14]. These findings
demonstrated that tumor interaction with immune systems and the TME could serve as a
crucial target for cancer immunotherapy.

After the first attempt at using the immune system for cancer therapy in the late 19th
century, immune-oncology or immunotherapy has been developed continuously and has
become an anticipated field, as evidenced by the Nobel prize for physiology or medicine
being awarded T-cell to Drs. Allison and Honjo in 2018 for the discovery of T-cell immune
checkpoints, such as CTLA-4 and PD-1 [15,16]. Cancer immunotherapy, regarded as a
third-generation cancer therapy, modifies the patient’s own immune system to control
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or eliminate cancer [17]. To date, the typical types of cancer treatment are chemotherapy,
radiation therapy, surgery, and a combination of those options. However, chemotherapy,
known as a first-generation anti-cancer treatment, displays many side effects, including
fatigue, nausea, vomiting, hair loss, and pain, due to the fact that the treatment cannot
distinguish between tumor and host cells [18]. To overcome the limitation of chemotherapy,
a second-generation targeted therapy was developed to improve specificity to block cancer
growth, progression, and metastasis, followed by an extension of the therapeutic win-
dow [19]. Although this strategy increased specificity, universal application was difficult
for various types of cancer, and drug resistance occasionally occurs [20]. Meanwhile, cancer
immunotherapy activates patients’ own immune systems, which are suppressed by cancer
immune-editing, to destroy tumor cells. Thus, it has been used in diverse cancer types
without additional gene manipulation in that immune responses are under strict regulation
by immune checkpoints, and it increases the quality of treatment in accordance with the
extension of survival rate and minimized side effects [21].

Although traditional immune therapy, including tumor vaccines, cytokine therapy,
and adaptive cell transfer (ACT), has been used in specific cancers, insufficient effects and
severe toxicities of this approach escalated the need for novel cancer therapeutics [22,23].
Following general classification, by which cancer immunotherapies are divided into “inac-
tive (or passive)” and “active” according to their abilities to activate the immune system
against tumor cells, tumor-targeting monoclonal antibodies and adoptively transferred
T-cells are included in inactive immunotherapy, while anti-cancer vaccines and checkpoint
inhibitors are considered as active immunotherapy [24]. Beginning with FDA approval
for first-generation cancer immunotherapy, including sipuleucel-T (Provenge®; Dendreon)
for prostatic cancer and ipilimumab (Yervoy®; Bristol-Meyers Squibb) for melanoma,
immunotherapy has become the fastest-expanding area in cancer therapeutics [25,26]. Fur-
ther, a blockade of immune checkpoints has been developed through second-generation
immunotherapy, including PD-1 and PD-L1 antibodies following ipilimumab (CTLA-4
inhibitor) [27]. As of May 2021, eight immune checkpoint inhibitors have been approved
by the FDA (Table 1).

Table 1. FDA approvals of ICIs from January 2011 to May 2021.

Drug Name Active Ingredient Approval Date Mechanism of Action Company First Approved
Indications

Yervoy Ipilimumab 25 March 2011 CTLA-4-blocker Bristol-Myers Squibb Late-Stage Melanoma

Keytruda Pembrolizumab 4 September 2014 PD-1 blocker Merck & Co., Inc.
Advanced or
unresectable
melanoma

Opdivo Nivolumab 22 December 2014 PD-1 blocker Bristol-Myers Squibb Unresectable or
metastatic melanoma

Tecentriq Atezolizumab 18 May 2016 PD-L1 blocker Genentech Inc.

Urothelial carcinoma,
the most common

type of bladder
cancer

Bavencio Avelumab 23 March 2017 PD-L1 blocker Emd Serono Inc. Metastatic Merkel
cell carcinoma

Imfinzi Durvalumab 1 May 2017 PD-L1 blocker Astrazeneca
Locally advanced or
metastatic urothelial

carcinoma

Libtayo Cemiplimab-rwlc 28 September 2017 PD-1 blocker Regeneron
Pharmaceuticals

Cutaneous squamous
cell carcinoma

Jemperli Dostarlimab-gxly 22 April 2021 PD-1 blocker GlaxoSmithKline Endometrial cancer

CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1.
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Despite the potential for clinical benefits, low response rates and several resistance
mechanisms have not yet been resolved. A critical limitation of immunotherapies is
immune-related adverse events (irAEs), which are characterized by host immune activation
against healthy cells [28]. The mortality rate due to severe myocarditis, an irAE, was
46% in immunotherapy-treated patients who received ICIs [29]. Moreover, PD-1 and
CTLA-4 inhibitors result in the doubling of serious irAEs, although the survival rate of
patients increases [30]. Fortunately, several markers for irAEs have been suggested, but
the validation of these markers should be performed [31,32]. The insufficient characteristic
of second-generation treatments led to the emergence of new generations with various
novel therapeutic modalities based on novel strategies, which have been designed to elicit
immune responses against tumors [27,33].

Two main strategies are the activation of co-stimulatory receptors and inhibition of
immunosuppressive ligands or metabolism [33]. Agonistic monoclonal antibodies tar-
geting tumor necrosis factor receptors, such as OX40, GITR, and CD137 expressed on
several immune cells, provoke the extension of CD8+ T-cell survival, increasing tumor-
specific T-cell responses, the upregulation of NK cells, and the regulation of regulatory
T-cells [34–36]. Conversely, several studies have been reported regarding the inhibition of
immunosuppressive targets, such as VISTA (v-domain Ig suppressor of T-cell activation), a
ligand, and IDO1 (indoleamine 2,3-dioxygenase-1), an enzyme catalyzing the kynurenine
pathway as a rate-limiting step for enhancing anti-tumor T-cell responses and inhibition
of immune responses by depletion of tryptophan [37,38]. Based on the robust concept of
immunotherapy established through past decades, the latest therapeutic trends include
improvement of efficacy, management of response and toxicity, and extension of appli-
cable targets [39]. To improve the efficacy using developed immunotherapies, several
pharmaceutical and combinational strategies have been applied. Nanotechnology has
become an effective option for eliciting immune responses by expanding the therapeutic
window and enhancing vaccination or endogenous immune responses [40]. Similarly,
PEGlyation, conjugation of polyethylene glycol (PEG) polymer to proteins, has been uti-
lized to increase the half-life of cytokines in vivo [22]. Another method used to enhance
efficacy is immunotherapy combined with typical cancer therapy, such as radiotherapy
or immunomodulatory drugs [41,42]. Recent studies focus on biomarkers for immune
response, including toxicity, as well as the establishment of guidelines for irAE [43,44].
Thus, various studies are continuously performed to discover biomarkers not only for
immune responses but also for novel therapeutic targets using omics, which are most
widely used in systems biology. Furthermore, many potential drugs are under clinical
trials registered with ClinicalTrials.gov (https://clinicaltrials.gov/) (assessed on 21 May
2021) (Table 2).

Table 2. Potential immune checkpoint inhibitors under clinical trials enrolled in ClinicalTrials.gov. The search conditions
were as follows: status, recruiting and not yet recruiting studies; condition of disease, cancer; other terms, PD-1 or PD-L1 or
CTLA-4 or checkpoint.

ClinicalTrials.gov
Identifier Purpose Study Population Interventions Status Phase

1 NCT02694822 Evaluation

Advanced solid
cancers and

Advanced solid
cancers refractory

to PD-1

Drug: AGEN1884 Active, not
recruiting Phase1/2

2 NCT03989362 Combination Cancer Drug: Vopratelimab and
Ipilimumab

Active, not
recruiting Phase 2

3 NCT03515629 Combination NSCLC
Drug: REGN2810/Ipilimumab,
REGN2810/chemo/Ipilimumab,

and Pembrolizumab

Active, not
recruiting Phase 3

4 NCT04172454 Evaluation Advanced Solid
Tumors Melanoma Drug: AK104 Not yet recruiting Phase 1B/2

https://clinicaltrials.gov/
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Table 2. Cont.

ClinicalTrials.gov
Identifier Purpose Study Population Interventions Status Phase

5 NCT03527251 Combination NSCLC Drug: Ipilimumab, SHR-1210 Unknown Phase 1

6 NCT04326257 Combination HNSCC Drug: Nivolumab/Relatlimab
and Nivolumab/Ipilimumab Recruiting Phase 2

7 NCT04868708 Combination Recurrent or Metastatic
Cervical Cancer

Biological: AK104 and
Bevacizumab, Drug: Paclitaxel
and Cisplatin or Carboplatin

Not yet
recruiting Phase 2

8 NCT03430063 Combination Advanced NSCLS
Drug: SDREGN2810,

SDREGN2810/Ipilimumab, and
HDREGN2810

Active, not
recruiting Phase 2

9 NCT04140526 Combination

NSCLC/Advanced Solid
Tumor, Metastatic

Melanoma, Metastatic Head
and Neck Carcinoma,

Metastatic RCC/Metastatic
CRC, Sarcomas/Metastatic
Prostate Cancer, Ovarian
Cancer/SCLC, Metastatic

Breast Cancer

Drug: ONC-392 and
Pembrolizumab Recruiting Phase 1

10 NCT04544644 Combination NSCLC Drug: AK104/Anlotinib Not yet
recruiting Phase 2

11 NCT02403193 Evaluation and
Combination NSCLC

Drug: PBF-509_(80~640 mg),
PBF-509 (160~640 mg) +

PDR001, RP2D with ICIs naïve,
Experimental: RP2D with ICIs

treated

Active, not
recruiting Phase1/2b

12 NCT02535078 Combination Malignant Melanoma Drug: IMCgp100, Durvalumab,
Tremelimumab

Active, not
recruiting Phase 1B/2

13 NCT03388632 Combination
Metastatic Solid Tumors and

Treatment-Refractory
Cancers

Drug: rhIL-15, Ipilimumab, and
Nivolumab Recruiting Phase 1

14 NCT03608046 Combination Colorectal Neoplasms,
Malignant

Drug: Avelumab, Cetuximab
Injection, Irinotecan Recruiting Phase 2

15 NCT03040791 Expansion Prostate Cancer Drug: Nivolumab Recruiting Phase 2

16 NCT02821754 Combination

Biliary Tract Neoplasms,
Liver Cancer, HCC,

Cholangiocarcinoma, and
Bile Duct Cancer

Drug: Durvalumab and
Tremelimumab, Procedure:
TACE, RFA, Cryoablation

Recruiting Phase 2

17 NCT03019003 Combination Head and Neck Cancer Drug: Oral Decitabine and
Durvalumab Recruiting Phase 1 and

Phase 2

18 NCT03202758 Combination Metastatic CRC Drug: Durval-
umab/Tremelimumab/FOLFOX Unknown Phase 1 and

Phase 2

19 NCT02938793 Combination Cancer Drug: Durvalumab and
Tremelimumab Recruiting Phase 2

20 NCT03925246 Expansion High Grade Glioma/ Brain
Cancer Drug: Nivolumab Active, not

recruiting Phase 2

21 NCT03084471 Combination Advanced Solid
Malignancies

Biological: MEDI4736 and
MEDI4736/Tremelimumab

Active, not
recruiting Phase 3

22 NCT03608046 Combination Colorectal Neoplasms,
Malignant

Drug: Avelumab, Cetuximab
Injection, and Irinotecan Recruiting Phase 2

23 NCT03409198 Combination

Breast Cancer, Hormone
Receptor Positive Tumor,

and Metastatic Breast
Cancer

Drug: Ipilimumab, Nivolumab,
Pegylated liposomal

doxorubicin, and
Cyclophosphamide

Active, not
recruiting Phase 2

24 NCT04319224 Combination Cancer Drug: Vopratelimab,
Ipilimumab, Nivolumab Recruiting Phase 1 and

Phase 2

25 NCT03526185 Combination Metastatic Melanoma
Drug: Tumor Infiltrating

Lymphocytes and
Nivolumab/Ipilimumab

Active, not
recruiting Early Phase 1
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Table 2. Cont.

ClinicalTrials.gov
Identifier Purpose Study Population Interventions Status Phase

26 NCT03911557 Combination Tumor, Solid Drug:
Durvalumab/Tremelimumab Recruiting Phase 2

27 NCT03308396 Combination
Advanced Kidney Cancer,
Kidney Cancer, and Clear

Cell RCC

Drug: Guadecitabine,
Durvalumab

Active, not
recruiting

Phase 1 and
Phase 2

28 NCT03186326 Expansion Metastatic CRC
MSI

Drug: FOLFOX regimen,
FOLFIRI Protocol, Avelumab,

Panitumumab, Cetuximab,
Bevacizumab, and Aflibercept

Active, not
recruiting Phase 2

29 NCT03206073 Combination

CRC, Colorectal Carcinoma,
Colorectal Adenocarcinoma,

Refractory Cancer, and
Colorectal Neoplasms

Drug: Durvalumab and
Tremelimumab, Biological:

Pexa-Vec

Active, not
recruiting

Phase 1 and
Phase 2

30 NCT03373760 Combination

Recurrent Squamous Cell
Lung Carcinoma and Stage

IV Squamous Cell Lung
Carcinoma AJCC v7

Biological: Durvalumab and
Tremelimumab, Other:

Laboratory Biomarker Analysis

Active, not
recruiting Phase 2

31 NCT03959293 Combination Gastric Adenocarcinoma
and Gastric Cancer

Drug: Durvalumab,
Tremelimumab, and FOLFIRI

Protocol
Recruiting Phase 2

32 NCT03693612 Combination Neoplasms
Drug: Feladilimab,

Tremelimumab, Docetaxel,
Paclitaxel, and Cetuximab

Active, not
recruiting

Phase 1 and
Phase 2

33 NCT03755739 Administration

Hepatocarcinoma/Lung
Cancer, Melanoma/Renal
Cancer, Head and Neck

Cancer, and Pancreas
Cancer/Ovarian Cancer,

CRC/Cervical
Cancer/Breast Cancer

Drug: ICIs Recruiting Phase 2 and
Phase 3

34 NCT03033576 Combination

Advanced Melanoma,
Melanoma of Unknown

Primary, Mucosal
Melanoma, Refractory
Melanoma, Stage III

Cutaneous Melanoma AJCC
v7, Stage IIIA Cutaneous

Melanoma AJCC v7, Stage
IIIB Cutaneous Melanoma

AJCC v7, Stage IIIC
Cutaneous Melanoma AJCC

v7, Stage IV Cutaneous
Melanoma AJCC v6 and v7,

Unresectable Cutaneous
Melanoma, and

Unresectable Melanoma

Biological: Ipilimumab and
Nivolumab

Active, not
recruiting Phase 2

35 NCT02821754 Combination

Biliary Tract Neoplasms,
Liver Cancer/HCC,

Cholangiocarcinoma, and
Bile Duct Cancer

Drug: Durvalumab and
Tremelimumab, Procedure:

TACE, RFA, and Cryoablation
Recruiting Phase 2

Administration, clinical trials for comparison of efficacy following different administration; AGEN1884, anti-CTLA-4 antibody; AK104,
humanized IgG1 tetrameric PD-1/CTLA-4 bispecific antibody; chemo, chemotherapy; combination, clinical trials for novel drug combina-
tion regimen; CRC, colorectal cancer; evaluation, clinical trials for development of novel drug candidates; expansion, clinical trials for
expansion of indication; FOLFOX, combination chemotherapy made up of folinic acid, fluorouracil, and oxaliplatin; HCC, hepatocellular
carcinoma; HDREGN2810, high dose cemiplimab; HNSCC, head and neck squamous cell carcinoma; ICI, immune checkpoint inhibitor;
IMCgp100, engineered T cell receptor specific for a peptide antigen derived from the protein gp100; MEDI4736, durvalumab; NSCLC,
non-small cell lung cancer; ONC-392, a humanized anti-CTLA4 IgG1 monoclonal antibody; PBF-509, Adenosine A2a receptor antagonist;
PDR001, anti-PD-1 antibody; pexa-Vec, a thymidine kinase gene-inactivated oncolytic vaccinia virus engineered for the expression of trans-
genes encoding human granulocyte-macrophage colony-stimulating factor (GM-CSF) and beta-galactosidase; RCC, renal cell carcinoma;
REGN2810, cemiplimab; RFA, Radiofrequency ablation; rhIL-15, recombinant interleukin-15; RP2D, PBR-509 + PDR001; SCLC, small cell
lung cancer; SDREGN2810, standard dose cemiplimab; SHR-1210, anti-PD-1 antibody; TACE, Transarterial chemoembolization.
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3. Development of Omics Workflows for Cancer Immunotherapy Including ICIs

Several omics platforms that provide high-throughput information for biological
understanding have been applied to study cancer immunotherapy (Figure 1). In this section,
we will deliberate about how these approaches have contributed to the development of
ICIs and how they have given insights for future studies involving cancer immunotherapy.
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cancer immunotherapy were demonstrated with general workflows of next-generation sequencing
and mass spectrometry-based omics.

3.1. Development of Omics Technologies

Since the human mitochondrial genome was identified about 40 years ago, genetics
has been extensively applied to determine the biochemical function of the genome to
further study cancer based on human genome sequences [45]. Following the enhance-
ment of demands for high-throughput data, researchers began to realize the importance
of the ‘systems biology’ approach for systemic biological interpretation and accelerated
the development of several platforms. ‘Omics,’ as a technique to analyze large amounts
of data comprising an entire set of analytes, includes various branches, such as genomics,
transcriptomics, proteomics, metabolomics (or metabonomics), and lipidomics, and it
aims to provide molecular profiles for understanding diverse biological dynamics [46]. In
oncology, omics has been frequently used to demonstrate hallmarks, discover biomarker
candidates for diagnosis or prognosis, determine target pathways, indicate mechanisms of
drug response, and predict or assess toxicity, providing an effective method to develop ther-
apeutic intervention [47,48]. Multiple analytical platforms that support high-throughput
data derived from biological samples have been developed over the years. Microarray
and next-generation sequencing (NGS), including whole-genome sequencing (WGS) or
transcriptome sequencing, which overcame disadvantages associated with the Sanger se-
quencing method, have been broadly used for DNA and RNA samples. Exome sequencing
and epigenome sequencing were additionally developed to improve the quality of target
gene analysis. Recently, genotyping using polymerase chain reaction (PCR) or clustered reg-
ularly interspaced short palindromic repeats (CRISPR) is also applied for the development
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of cancer therapies. Moreover, the development of mass spectrometry technology and the
method of data acquisition facilitates the broad application of proteomics, metabolomics,
and lipidomics. Simultaneously, diverse tools supporting data pre-processing of raw data
(e.g., data collection and gap-filling) and post-processing workflow for interpretation (e.g.,
biomarker analysis, network analysis, and pathway enrichment analysis) have been estab-
lished [49–52]. Extensive data from several biochemical analytes are recruited to establish
databases or in silico libraries (e.g., TCGA, TCPA, LipidBlast, and FiehnLib) by several
societies or analytical teams for future studies [53–56].

3.2. Advantages of Omics-Based Systems Biology for Oncology

Omics-based systems biological approaches have several advantages in cancer study.
First, omics supports reliable high-throughput datasets over several molecular layers (e.g.,
genome, transcriptome, proteome, and metabolome), which enable the integration for com-
prehensive biological interpretations, in that it suggests alteration of metabolism, tumor
microenvironment (TME), and provides clues regarding tumor mechanisms. For example,
diffuse gastric cancers were studied by integration of proteomic and genomic analyses
and indicated an association between mRNA-protein abundance and patient survival [57].
Meanwhile, Kang et al. suggested the crucial roles of extracellular cystine in influenc-
ing the mechanism of ferroptosis in non-small cell lung cancer through stable isotope
labeling-based metabolomics [58]. Second, omics provides the simultaneous achievement
of qualitative and quantitative results for many molecules for effective therapeutic target
screening, such as biomarkers or pathways associated with pre- or post-treatment clin-
ical outcomes [59]. The clinical outcomes promote precision medicine through positive
response or prevention of unintended negative effects, such as including toxicity and
drug resistance [60,61]. Third, omics has high availability and applicability using reason-
able cost and labor derived from the continuous development of mass spectrometry and
sequencing technologies.

3.3. Recent Trends and Advanced Omics Platforms in Cancer Study

Several methodologies have been established for a systems biological approach in
oncology to overcome the limitations of typical omics study. Multi-omics, also called pan-
omics, is a biological analysis for the simultaneous integrated interpretation of multiple
omics data sets [62]. Although comprehensive interpretation based on so-called multi-
layer omics, which deduces results according to post-analysis integration, induces a better
understanding of biological phenomena than typical single omics, it is complicated and
usually conducted by knowledge-based interpretation, including the possibility of bias.
Conversely, multi-omics is performed by specialized tools used for combining different
omics data sets before further analyses [63]. Therefore, it elucidates potential causative
alterations, which may become promising targets for cancer therapy, rather than reactive
processes derived from analysis of one omics data set. Despite its powerful support for
integrational interpretation, multi-omics need a logical strategy to link each data sets based
on the evidence for causation, presenting functional associations between diverse molec-
ular levels and preventing coincidental correlation [64]. Meanwhile, mass spectrometry
imaging focuses on visualizing the spatial distribution of molecular targets to overcome the
limitations of typical sample preparation methods, which pool all molecules into the same
solvent [65]. Therefore, it is especially useful to gain this biochemical information [66].
Regarding mechanistic studies, stable isotope tracing is the most-developed technique to
demonstrate the flux of target metabolism [67]. Furthermore, the combination of stable iso-
tope tracing with other techniques, such as metabolomics or MSI, provides novel insights
for understanding cancer metabolism and drug development [68,69]. Recently, genome
engineering using the CRISPR-Cas9 system, which is the RNA-guided Cas9 nuclease from
the microbial clustered regularly interspaced short palindromic repeats, has emerged [70].
Owing to precise genome editing by this technology, genome-wide CRISPR-Cas9 knockout
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screens were developed to determine the correlation between genotype and phenotype,
connected with the development of cancer therapy [71].

3.4. Drug Development for ICIs Based on a Metabolomics Approach

According to the central dogma, genetic information in DNA has passed into protein
through RNA, and these proteins regulate the intermediates (e.g., polar metabolites and
lipids) associated with metabolic pathways, which can affect phenotypes [72]. In tumorous
circumstances, the flow is distorted by several reasons and results in the expression of
various cancer hallmarks, demonstrating cellular metabolism that has deviated from
normal conditions. Thus, identification or quantification of these intermediates is essential
to provide an understanding of metabolic reprogramming to the alteration of phenotypes
by cancer. Metabolomics, an omics field, focuses on the study of small molecules, is a high-
throughput technique for the parallel assessment of large-scale metabolites. Owing to the
remarkable development of instrumental technologies and bioinformatics, the proportion
of metabolomics contributing to the systems-level understanding of diseases has increased
in the past decades. As well as high accessibility, synergistic effects derived from the
inherent importance of the metabolome and flexible applicability based on large-scale
datasets lead to frequent use for the identification and validation of metabolic profiles,
simultaneous large-scale quantification, and functional analysis of the metabolome [73].
In addition, recent advances regarding metabolome information-based fluxomics and
stable isotope tracing enable a greater understanding of disease mechanisms, including
cancers [68,74].

Although various methods have been developed and selected by sample matrix,
chromatography-coupled mass spectrometry (MS) is the most powerful and broadly used
technique for metabolomics. Three important considerations for LC/MS- or GC/MS-based
metabolomics are sample preparation, chromatography conditions, and MS compartment.
The extraction method and solvent are selected based on the characteristic of interest, and
the ultimate goal of optimization is a reproducible technique to extract several metabo-
lites [75,76]. Meanwhile, chromatography conditions determine the separation of numerous
metabolites through interaction with stationary and mobile phases and detect metabolites
using MS in a time-dependent manner [77,78]. MS coupled with chromatography is an
important technique and is most often used in metabolomics. For detection by a mass
spectrometer, molecules must be ionized in specific ways, of which ESI and electron impact
are frequent methods in LC and GC, respectively.

Recently, metabolomic approaches have been used in several developments related
to immunotherapy and highlight changes in downstream molecules (e.g., amino acids,
nucleic acids, and lipids) as a result of aberrant upstream signals, which play important
roles for metabolic pathways directly related to the expression of crucial phenotypes. Based
on this advantage, metabolomics has been applied to investigate novel therapeutic targets
for cancer immunotherapy and identify promising metabolic biomarkers for the assessment
of post-treatment outcomes or pre-treatment predictors. Further, metabolomics methods
are continuously developed and optimized for the study of ICIs [79,80]. Furthermore, this
technique has expanded the range of biological interpretation through comprehensive in-
terpretation with other omics approaches (e.g., genomics, proteomics, transcriptomics, and
metagenomics) and suggested novel strategies for the development of immunotherapies,
such as the association between microbiota metabolites with ICI efficacy and the discovery
of immune system-related metabolic pathways (e.g., kynurenine pathway). Herein, we
summarized previous studies involving ICIs or focused on the development of ICIs among
several studies regarding cancer immunotherapy (Table 3).
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Table 3. Metabolomics-based studies related to ICIs or focusing on the development of ICIs.

Purpose Related ICIs
Sample

Methods Comments Reference
Subjects (Number) Matrix

1 Target
discovery - in vitro T-cells LC-MS/MS

PD-1 signaling results in
metabolic dysregulation, which
suggests considerable metabolic
interventions of ICIs’ efficacy.

[81]

2 Target
discovery - in vitro T-cells LC-MS/MS

Mechanistic association
between T-cell senescence and
aberrant lipid metabolism was
introduced as a novel target for

cancer immunotherapy.

[82]

3 Target
discovery -

in vitro and ex vivo (11
patients with

nivolumab and TIL
therapy)

T-cells and
TILs LC-MS/MS

Sirt2, associated with
reprogramming T-cell

metabolism, was identified as a
new target of cancer

immunotherapy.

[83]

4 Target
discovery - in vivo and patients

with glioblastoma tissue LC-MS/MS
and GC-MS

IDO1 inhibition mitigated
radiation-induced

immunosuppression in
glioblastoma.

[84]

5

Target
discovery

and
Biomarker
suggestion

Nivolumab,
Pembrolizumab

ICI-treated patients
with NSCLC (23) vs.
heathy subjects (20)

plasma LC-MS/MS

IDO1 inhibitors are a promising
treatment for NSCLC

considering IDO1 activity
seemed to a key role in the
primary resistance of ICIs.

[85]

6 Target
discovery

Anti-mouse
PC-1,

Nivolumab

in vitro, patients with
glioblastoma (4), and

patients with metastatic
melanoma (4)

tissue LC-MS/MS ICIs induced the IL4I1, which
facilitates tumor progression. [86]

7 Target
discovery Anti-PD-1

in vivo and patients
with HCC (196) vs.

healthy subjects (176)
urine LC-MS/MS

PRMT5 inhibition
demonstrated a synergistic

mechanism enhancing
anti-tumor immunity and

alleviated the resistance to ICIs.

[87]

8 Target
discovery

Anti-mouse
PD-1 in vivo tissue LC-MS/MS

nSMase2 overexpression
increased anti-PD-1 efficacy in

murine melanoma models.
[88]

9 Target
discovery - patients with breast

cancer (65) tissue MALDI-MSI

The accumulation of
PI(18:0/20:3) may affect the

PD-1-associated immune
checkpoint pathway.

[89]

10 Target
discovery - in vivo plasma LC-MS/MS

and GC-MS

KEAP1/NRF2 pathway
alteration induced

reprogramming of pentose
phosphate pathway connected
with tumorigenesis and tumor

regression by immune
checkpoint inhibition in

NSCLC.

[90]

11 Target
discovery - in vitro

Breast cancer
cells and

PDAC cells
1H-MRS

Chk-α, COX-2, and TGF-β
mediated PD-L1 regulation of

metabolism.
[91]

12 Target
discovery -

patients with breast
cancer (58) and patients

with HCC (29)

data from
previous
studies

- UCD is related to an enhanced
response to ICI therapy. [92]

13

Target
discovery

and
Biomarker
suggestion

Anti-mouse
PD-1 and

Anti-mouse
CTLA-4

in vitro and patients
with PDAC

PDAC cells,
serum, and

tissue
NMR

IL17 inhibitor enhances ICI
sensitivity, and tumor lactate
was suggested as a promising
early biomarker for efficacy of

IL17/PD-1 combination.

[93]
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Table 3. Cont.

Purpose Related ICIs
Sample

Methods Comments Reference
Subjects (Number) Matrix

14

Target
discovery

and
Biomarker
suggestion

Nivolumab

nivolumab-treated
patients with advanced

melanoma (78),
nivolumab-treated

patients with RCC (485),
and everolimus-treated
patients with RCC (349)

serum LC-MS/MS

The combination of a PD-1
inhibitor with IDO/TDO

inhibitors was suggested in that
worse overall survival associated

with simultaneous elevation of
resistance and serum

kynurenine/tryptophan ratio.

[94]

15 Biomarker
suggestion

Nivolumab
and Pem-

brolizumab

ICI-treated patients with
urological cancer (28) serum LC-MS/MS

VLCFA-containing lipids are
potential predictive biomarkers

for ICIs’ response.
[95]

16 Efficacy
evaluation

Nivolumab
and Pem-

brolizumab

ICI-treated patients with
NSCLC (19) plasma LC-MS/MS

Tryptophan metabolites may
become potential predictive

biomarkers for the efficacy of the
ICIs.

[96]

17

Biomarker
suggestion

and Efficacy
evaluation

Nivolumab
and Pem-

brolizumab

ICI-treated patients with
NSCLC (50) serum NMR

The metabolomic fingerprint of
serum is a potential biomarker for

the response of ICIs.
[97]

18 Method de-
velopment - patients with

melanoma (-) stool LC-MS/MS

A comprehensive approach to
fecal sample collection and
metabolites profiling of gut

microbiome were demonstrated.

[98]

19 Biomarker
suggestion Nivolumab

nivolumab-treated
patients with NSCLC (7),
NSCLC patients without
nivolumabtreatment (4)
vs. healthy subjects (8)

stool
GC-

MS/SPME
and NMR

Microbiota-Linked Biomarkers,
including SCFAs, were

introduced through network
analysis.

[99]

20 Efficacy
evaluation Nivolumab nivolumab-treated

patients with NSCLC (11) stool

GC-
MS/SPME

and
1H-NMR

The identification of
microbiota-linked “indicators” is

a potential strategy for the
prediction of responders, in that

gut microbiota metabolic
pathways affect the response of

ICIs.

[100]

21 Biomarker
suggestion Nivolumab nivolumab-treated

patients with NSCLC (22)
serum and

stool

GC-
MS/SPME
and NMR

An integrated parameter was
proposed to identify good
responders for nivolumab

treatment.

[101]

22 Efficacy
evaluation

Anti-mouse
PD-1, Ate-
zolizumab,
Nivolumab,

and Pem-
brolizumab

in vivo and ICI-treated
patients with NSCLC (96)
vs. healthy subjects (139)

serum and
stool LC-MS/MS

Bifidobacterium bifidum strains
make a synergistic effect with ICIs

to reduce tumor burden.
[102]

23 Efficacy
evaluation

Nivolumab,
and Pem-

brolizumab

ICI-treated patients of
multiple cancers (52)

plasma
and stool LC-MS/MS Fecal SCFA concentration may

affect PD-1 inhibitors’ efficacy. [103]

24 Efficacy
evaluation

Nivolumab,
Pem-

brolizumab,
and

Sintilimab

nivolumab-treated
patients with NSCLC (4),
pembrolizumab-treated

patients with NSCLC (42),
and sintilimab-treated

patients with NSCLC (17)

stool -

The correlation between intestinal
microbiome β-diversity and the
response of anti-PD-1 in NSCLC

was indicated.

[104]

Chk-α, choline kinase-α; COX-2, prostaglandin-endoperoxide synthase 2; HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor;
IDO, indoleamine-2,3-dioxygenase 1; IL4I1, interleukin-4-induced-1; KEAP1, Kelch-like ECH-associated protein 1; KMO, kynurenine
monooxygenase; KYNU, kynureninase; LC, liquid chromatography; MALDI, Matrix-Assisted Laser Desorption Ionization; MRS, magnetic
resonance spectroscopy; MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; NMR, nuclear magnetic resonance;
NRF2, nuclear factor erythroid-2-related factor 2; NSCLC, non-small cell lung cancer; PBMC, peripheral blood mononuclear cells; PDAC,
pancreatic ductal adenocarcinoma; PRMT5, Protein arginine N-methyltransferase 5; RCC, renal cell carcinoma; SCFA, short-chain fatty acid;
Sirt2, NAD+-dependent deacetylase; TDO, tryptophan 2,3-dioxygenase; TGF-β, Transforming growth factor β; TIL, tumor-infiltrating
lymphocytes; TN, triple-negative; UCD, urea cycle dysregulation; UV/Vis, UV-Vis spectrophotometer.
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3.4.1. Target Discovery

During the development of novel therapeutic approaches for specific diseases, in-
cluding cancer, the top priority is the identification of suitable and effective targets for
therapy. One of the key considerations for effective ICI is the dysregulated metabolism
of T-cell-mediated tumor microenvironments, and it provides novel therapeutic targets
based on the improved understanding of the interplay between functional states of T-cells
and immune metabolism. For example, Palaskas et al. conducted a mass spectrometry-
based metabolomics study in vitro to investigate metabolic alterations affected by PD-1
signaling. They demonstrated that PD-1 signaling for non-adherent primary human T-cells
prevented de novo nucleoside phosphate synthesis accompanied by decreased mTORC1
signaling, while exogenous purines and pyrimidines failed to rescue the proliferation of
PD-L1-treated cells [81]. Liu et al. reported an association between lipid metabolism and
T-cell senescence, suggesting that reprogrammed lipid metabolism was triggered by the
upregulation of PLA2G4A in cancer cells and regulatory T-cells. Using melanoma and
breast cancer in vivo models, they demonstrated enhanced therapeutic efficacy following
inhibition of PLA2G4A [82]. Moreover, another study identified the negative correlation
between response to tumor-infiltrating lymphocyte (TIL) therapy and upregulation of
Sirt2 in human TILs. This study indicated that Sirt2-deficient T-cells increased antitumor
activity resulting from upregulated oxidative phosphorylation and glycolysis, following
the enhancement of effector functions and proliferation [83]. A remarkable finding re-
garding immunotherapy indicated that tryptophan metabolites related to the kynurenine
pathway and IDO-1 activity were potential targets of novel immunotherapy. Heng et al.
performed kynurenine pathway profiling using large-scale clinical samples from patients
with several types of breast cancer. They revealed potent immunosuppression by increased
anthranilic acid and 2-hydroxylanthranilic acid derived from downregulation of kynure-
nine monooxygenase and kynureninase in triple-negative and HER2-enriched breast cancer
subtypes [105]. Furthermore, many recent studies have reported an association between the
immune checkpoint and tryptophan metabolism related to IDO-1/TDO. Some studies have
suggested IDO-1 as an indicator or potential target for combination therapy. Kesarwani
et al. recommended a combination of IDO-1 inhibitors with radiotherapy for increased
therapeutic efficacy by preventing RC-induced immunosuppression [84]. Kocher et al.
identified alterations in 67 metabolites in NSCLC patients receiving ICI treatment com-
pared with healthy controls using LC-MS/MS, indicating dysregulation of IDO activity in
patients. Based on the results, they suggested tryptophan as a promising biomarker for
ICIs [85]. Besides, the discoveries of compensatory or combinational targets for ICIs have
been continued. Sadik et al. identified that the activation of aryl hydrocarbon receptor
(AHR) reduced anti-tumor immunity, and interleukin-4-induced-1 (IL4I1) was associated
with AHR activity more than IDO-1 or TDO2 [86]. Other studies under anti-PD-1 condi-
tions were used to assess the response by drug treatment and investigate novel targets. For
example, PRMT5 inhibition demonstrated synergistic mechanisms enhancing anti-tumor
immunity and alleviated resistance to ICIs [87]. A lipidomics approach demonstrated that
the upregulation of sphingomyelin phosphodiesterase 3 by sphingomyelinase 2 (nSMase2)
is a potential strategy to overcome resistance against PD-1 inhibitors according to increased
PD-1 inhibitor efficacy following over-expression of wild-type nSMase2 in melanoma [88].

3.4.2. Discovery of Biomarkers and Efficacy Evaluation

Although there is no qualified biomarker related to cancer immunotherapy by U.S.
FDA until now, the discovery of biomarkers to evaluate outcomes post-treatment and to
predict responses pre-treatment is important for therapy development, as well as finding
novel targets. A study using metabolomics for PDAC under anti-PD-1 and anti-CTLA-4
conditions demonstrated increased sensitivity of ICIs by IL17 inhibitor resulting in pre-
vention of cytotoxic CD8 T-cell exclusion from tumors and suggested that tumor lactate
may serve as a promising early biomarker for efficacy of IL17/PD-1 combination [93].
Given that the immune mechanism is related to the kynurenine pathway and kynurenine
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to tryptophan ratio, it contributed to the development of a marker of tumor aggressive-
ness and metabolic profiling alteration in response to treatment with PD-1 inhibitors
(e.g., nivolumab and pembrolizumab). Based on the association between increased serum
kynurenine/tryptophan ratio and worse overall survival, the combination of IDO/TDO
inhibitors and PD-1 inhibitors has been advocated [94,106]. Additionally, a comprehensive
evaluation of metabolites in serum from ICI-treated patients demonstrated that very-long-
chain fatty acid (VLCFA) containing lipids predicted efficacy and therapy response [95].
Moreover, biomarkers can be used to evaluate drug efficacy. Karayama et al. analyzed
plasma from 19 ICI-treated patients with NSCLC and identified tryptophan metabolites.
Based on the interpretation of the metabolite intensities with drug response and survival
rate, they suggested tryptophan metabolites as potential predictors of ICI efficacy [96].
Another study also suggested the novel NMR-based metabolomics approach, provid-
ing metabolomic serum fingerprints for the predictive assessment of ICI efficacy, and it
showed more than 80% accuracy in 50 patients with NSCLC receiving nivolumab and
pembrolizumab treatments [97]. Regarding biomarker discovery and efficacy evaluation,
metabolomics is most frequently used to study the microbiome under ICI conditions.
Stool is a commonly used sample for microbiome studies; thus, several studies have
optimized and applied unbiased metabolomic profiling methods for fecal samples [98].
Some studies applied GC-MS/SPME-based metabolomics for the detection of volatile
organic compounds (VOCs) and NMR-based metabolomics for non-VOCs to investigate
the gut metabolome involved in nivolumab treatment for NSCLC. These studies intro-
duced metabolomic approaches and their network analysis as promising strategies for the
management of cancer patients and prediction of good responders using microbiota-linked
indicators [99,100]. In addition, another study proposed integrated parameters, including
gut metabolites and immunological molecules from serum and stool for identification of
nivolumab responders before treatment [101].

3.5. Metabolomics and Metagenomics for Identifying Interactions between the Microbiome and ICIs

Although metabolomics, including lipidomics, play key roles to evaluate the efficacy of
therapies and discover predictive biomarkers, it has been focused on studying the response
to therapy and highlighting precision medicine in studies of cancer immunotherapy, instead
of characteristics of tumor or TME, due to limitations from target molecular layers (e.g.,
metabolome and lipidome) [107]. The proportion of metabolomic approaches for ICIs is
inferior to that of genomics or transcriptomics. However, recent evidence indicated that
microbiota as a source of metabolites had been involved in various diseases, including
cancers and the immune system related to the tumor microenvironment [108]. Nevertheless,
the identification of effects driving alterations to the immune system in tumors and in
response to ICIs have not been fully understood yet due to the complexity of bacteria and
its metabolites. Fortunately, advanced metabolomics techniques allow for high-throughput
data acquisitions to understand this complexity. Given that cancer metabolism, especially
the cancer immune system, is affected by microbiota directly or metabolites produced
from bacteria indirectly, the identification of the microbiome and metabolome becomes
a priority for omics research. Therefore, metabolomics combined with metagenomics
are widely used to study the microbiome for cancer immunotherapy. Several previous
studies have demonstrated that microbial metabolites and microbiota itself influence the
efficacy of immunotherapy [109,110]. Although other omics approaches have contributed to
suggest various roles of the microbiome in modulating the response to ICIs, comprehensive
interpretation, including metagenomics and metabolomics, have been widely utilized to
discover unknown interactions between the microbiome and ICIs [111,112]. Through this
approach, specific bacterial strains or mechanisms for enhancing the efficacy of ICIs have
been studied. For example, the specific gut microbiome of nivolumab and pembrolizumab
responders was identified, while the synergistic effect of anti-PD-1 and B. bifidum strains
reportedly reduced cancer growth by modulating the production of IFN- γ by intensifying
biosynthesis of immune-stimulating metabolites [102,113]. The development of techniques
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and information regarding how the microbiome interacts with ICIs have promoted the
discovery of microbiota-linked biomarkers for response prediction of ICIs (e.g., indole,
aldehydes, and short-chain fatty acids), which could be a promising target for precision
medicine [99].

3.6. Omics Approaches for Investigating Upstream Molecular Levels of the Metabolome

In systems biological approaches for cancer immunotherapy, especially for ICIs,
proteogenomics and transcriptomics are frequently used because aberrant expression
of neoantigens, microsatellite instability (MSI), DNA repair, and TMB are closely associated
with abnormal effects of molecules from genome to proteome in the immune system. For
example, Anagnostou et al. studied the initial response of ICIs from the comparison of pre-
treatment and post-treatment, thus observing an association between genomic alteration
and loss of mutation-associated neoantigens in resistant tumors, which demonstrated de-
creased therapeutic benefits [114]. Additionally, proteomics studies involving the secretome
derived from T-cells and B-cells demonstrated specific protein signatures in the exosomes
of patients receiving PD-1 inhibitors before treatment and in tumor-associated B-cells,
suggesting that these protein signatures can be used as promising predictive markers for
PD-1 inhibitors regarding activation of PD-1+ T-cells treated with PD-1 inhibitors [115,116].
Usually, genomics, transcriptomics, and proteomics are simultaneously applied and in-
tegrated to obtain synergetic interpretation beyond individual explanations. A previous
study generated cell-type immune enrichment scores based on proteogenomic approaches,
providing gene and protein expression levels of targets containing PD-1 and evaluating
different types of glioblastoma [117]. Further, noninvasive identification methods to assess
response at the early stage of ICI treatment were recommended using pre-treatment circu-
lating tumor DNA and peripheral CD8+ T-cell levels to predict the durable clinical benefit
of patients based on whole-exome sequencing and RNA-sequencing in non-small cell lung
cancer [118]. Meanwhile, several studies reported the key roles of epigenetic markers in
oncogenesis and immune-editing [119,120]. Recently, the EPIMMUNE signature was intro-
duced by Duruisseaux et al., which encompassed specific patterns of DNA methylation
from nivolumab- or pembrolizumab-treated non-small-cell lung cancer patients and was
associated with clinical benefit [121].

Several recent studies using genomics and transcriptomics demonstrated that high MSI
and TMB correlate with tumor antigenicity and the response to immunotherapy [122,123].
Evrard et al. mentioned that deficient DNA mismatch repair (dMMR) and MSI display
heterogeneity originating from testing methods, and dMMR/MSI screening may be useful
with TMB, regarding benefits from immunotherapy in colorectal cancers [124]. Meanwhile,
Vanderwalde et al. performed MSI assays using NGS methods to highlight the relationship
between MSI, TMB, and PD-L1 using over 11,000 patients across cancer types and suggested
MSI as a marker with TMB and PD-L1 expression to determine the use of ICIs [125].
Although previous studies were not able to provide standardized TMB cutoffs among each
study and cancer types, TMB is strongly considered as an independent predictive biomarker
for the response to ICIs, while genomic techniques for reproducible TMB calculations are
in continuous development [122].

4. Multidisciplinary Approaches beyond Fundamental Omics Studies for ICIs

Studies involving ICIs have been performed not only with individual omics but
also with various other approaches. In this section, we will demonstrate how other
approaches combined with omics have contributed to more comprehensive insights into
cancer immunotherapy.

4.1. Multi-Omics and Multi-Layer Omics

Systems biology is an approach to understand the biological system at a diverse level
(e.g., genes, proteins, and metabolites) [126]. Systems biology provides a powerful premise
and promise based on multiple omics approaches generating high-throughput data sets
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for biological interpretation. Over the past decades, the development of technologies
and reduction of costs facilitate the application of omics. These trends have motivated
the use of multi-omics to improve the biological insight of research. Multi-omics or pan-
omics is a comprehensive omics approach integrating the data sets from multiple omics
(e.g., genomics, transcriptomics, proteomics, and metabolomics) to explain interactions
among omics dimensions [127]. Recently, the ‘Australian and New Zealand Metabolomics
Conference’ (ANZMET 2018) hosted a peer session on multi-omics, discussed potential
limitations of multi-omics, and recommended strategies to overcome these limitations.
Furthermore, several strategies to interpret biological meanings, such as top-down and
bottom-up data reduction integration, or post-analysis data integration approaches and
integrated data analysis approaches, were introduced [63]. Among strategies, post-analysis
data integration is widely used and includes the key features on different omics dimensions.
In contrast with data integration after analysis, integrated data analysis approaches merge
various dimensions of omics data through specialized tools, and several studies have
developed the methods and tools using different aspects [63,128].

To obtain valuable insight from massive omics information and complexity of the
disease, the optimal integration methods are situationally applied, such as pathway data
integration, network analysis, and statistical integration [64]. In oncology, the number of
studies using multi-omics has been continuously increased for drug discovery, biomarker
signature establishment for prognosis or diagnosis, and assessment of drug response. For
example, Lindskrog et al. demonstrated a framework for biomarker discovery based on
transcriptomics classification of non-muscle-invasive bladder cancer through a combination
of transcriptomics and proteomics [129]. Several data repositories (e.g., TCGA, CPTAC, and
METABRIC) about cancer established and have been frequently utilized in multi-omics [62].
Vasaikar et al. also tried to establish the LinkedOmics database containing clinical data
derived by multi-omics techniques for 23 cancer types and data from TCGA to support
multi-omics platforms for future studies [130]. Additionally, these multi-omics studies
have promoted the emergence of precision medicine, considering individual or group
variability for disease treatment and prevention [131].

A convenient way to perform comprehensive omics interpretation is the application
of established omics databases. Project HOPE (High-tech Omics-based Patient Evaluation)
is a clinical research project by the Institutional Review Board of Shizuoka Cancer Center
in Japan, including comprehensive whole-exome sequencing and gene expression profil-
ing for 1000 tumor tissues. Using HOPE, Akiyama et al. demonstrated the availability
of a multi-omics database for investigating ICI targets, in that this approach provided
seven immune response-associated genes and discovered over-expression of PD-L1 in
hypermutators [132]. In addition, 13 melanoma data, including two responders from
five nivolumab-treated patients in HOPE, were used to suggest upregulation of PD-L1
protein and increase single nucleotide variants after complete remission [133]. While using
established omics databases, often the data is integrated with results from additional exper-
iments to expand dataset types. For example, the relationship between VLCFA-containing
lipids with ICI response via upregulation of peroxisome signaling in T-cells was indicated
based on the integration of transcriptome data in TCGA with a metabolomics dataset
from urological cancer patients [95]. In addition, comprehensive interpretation by nuclear
magnetic resonance-based metabolomics, proteomic data, and TCGA provided choline
kinase-α, cylcooxygenase-2, and transforming growth factor-β as promising options for
combinatorial therapies based on ICIs [91].

Established databases can be used by extracting novel results and integrating more
than two datasets through statistics or specialized tools for meta-analysis. Integration
of TCGA and Gene Expression Omnibus (GEO) datasets involving head and neck can-
cer concluded that EGFR and PTGS2 were identified as important nodes of the immune
phenotype-related network in genetic and epigenetic levels, and EGFR inhibition was
recommended as a potential target of combination therapy for ICI non-responders [134].
Similarly, unsupervised clustering of data from 1000 patients with hepatocellular carcinoma
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from GEO, TCGA-LIHC, and ICGC classified three clusters and revealed potential predic-
tive signatures for response and prognosis assessment of anti-PD-1 and anti-CTLA-4 im-
munotherapies [135]. Moreover, a previous study established a tool to estimate ICI response
predictors using previous large-scale omics data, published ICI trials, non-immunotherapy
tumor profiles, and CRISPR screening on the web [136].

Without database utilization, various studies have applied multi-omics approaches to
investigate ICIs, including mechanisms of actions, response prediction, and target discov-
ery for combination therapy. Among diverse combinations of omics data, integration of
genomics and transcriptomics is widely used. Genomic and transcriptomic features were
used as test and validation sets, analyzed separately to represent genomic and transcrip-
tomic characteristics, or integrated before analysis [137–139]. Furthermore, transcriptomics
data is usually combined with a proteomics approach to demonstrate phenotype differences
by transcriptome-affected protein alteration [129]. However, few studies focus on ICIs
based on multi-omics, including metabolomics, indicating that the expression of tumor- or
immune-related proteins and mechanisms of action are the most effective and important
targets for cancer immunotherapy [117].

4.2. Single-Cell Omics

Given that the functions of organs are derived from comprehensive activities of
organized individual cells, identifying changes in cells caused by disease is important.
Single-cell omics techniques typically analyze specific molecular layers from the identical
individual cell and provide cellular heterogeneity, enabling a more profound understanding
of key biological mechanisms [140]. Recently, single-cell omics have developed contin-
uously, and some protocols, such as single-cell RNA sequencing, are standardized and
widely used [141]. In oncology, the complex interaction between tumor cells and the
surrounding microenvironment hampers precise investigation of cellular functions for
cancer growth and progression using omics based on bulk analysis. However, single-cell
omics can demonstrate functional differences in cellular states within a tumor, which is as-
sociated with phenotypic differences driven by particular molecular layers. The usefulness
of single-omics techniques, especially single-cell RNA sequencing, for future studies, has
been additionally improved by the Human Cell Atlas, established by an international con-
sortium, providing high-throughput data for classification and identification of cells, which
can be potentially used for data-driven interpretation of specific diseases [142]. Although
current single-cell techniques contain limitations, such as spatial information, scalability,
and PCR errors, recent developments (e.g., spatial sequencing and comprehensive joint
profiling technology) promise to overcome these limitations [143,144].

In cancer immunology, the TME is considered a complicated mixture of diverse cells
(e.g., tumor cells, stromal cells, and immune cells) and non-cellular components (e.g., sig-
naling molecules and extracellular matrix), which play key roles for anti-tumor immunity.
To date, many studies have applied single-cell omics, mainly single-cell transcriptomics,
to investigate heterogeneity and complicated cross-cellular interactions in the TME [145].
In addition, various trials have been performed to evaluate ICI treatment. Bassez et al.
analyzed clinical samples from breast cancer patients who received only anti-PD1 or neoad-
juvant chemotherapy before anti-PD1 using single-cell transcriptomics combined with
proteome profiling to understand a subset of tumors responding to ICI. This study identi-
fied the association of T-cell expansion after anti-PD1 treatment with immunophenotypes
and gene sets positively (e.g., expression of PRF1, GZMB, and CXCL13) or negatively (e.g.,
TCF7+, GZMK+ T-cells, and CX3CR1+, C3+ inhibitory macrophages) [146]. Sade-Feldman
et al. applied single-cell RNA sequencing to profile transcriptomes of more than 16,000 indi-
vidual immune cells derived from 48 patients with melanoma in a discovery set. Through
the validation set, including ex vivo and in vivo studies, they demonstrated TCF7+ CD8+
T-cells as a predictive marker for positive clinical outcomes [147]. These studies suggested
not only a strategy for discovering predictors and mechanisms of ICI action but also novel
targets for the development of cancer immunotherapies.
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5. Expanding the Knowledge of Systems Biology Studies for Cancer Immunotherapy
5.1. Evaluation of Immune-Related Adverse Events

Cancer immunotherapies have received attention as a novel generation of cancer treat-
ment. However, unexpected immune-related adverse events (irAE) have been observed
following increased use and clinical trials. A network meta-analysis using 36 phase 2 and
3 randomized trials reported that the range of probability is 54% to 76%, and the pooled
incidence is 66.4% to 86.8% for all adverse events of five ICIs (atezolizumab, nivolumab,
pembrolizumab, ipilimumab, and tremelimumab) [148]. The onset of irAEs has been re-
ported at eight days to more than one year after initial trials of ICI treatment in any organ
system [149]. ICIs induce irAEs through various mechanisms, including T-cell activation,
cross-reactivity of immune cells and healthy cells, B-cell-mediated autoantibodies, and
monoclonal antibody-mediated direct injury [150]. Several guidelines have been recom-
mended for the therapeutic management of irAEs, with steroidal treatment being suggested
as a prominent way for irAEs, excluding endocrine irAEs [151,152].

The prevention of irAEs is as important as therapeutic management. To prevent
occurrences of irAEs before cancer immunotherapy, several studies suggested diverse
biomarkers for response prediction and to determine the mechanisms of irAE as a potential
target for prevention. A multi-omics approach demonstrated that lymphocyte cytosolic
protein 1 and adenosine diphosphate dependent glucokinase might serve as biomarkers
for irAE prediction by evaluating the association between omics data and irAE reporting
odds ratios [153]. Meanwhile, Grigoriou et al. focused on transcriptomic reprogramming
of regulator T-cells in blood and suggested inflammatory Treg reprogramming as an
indicator for irAE development [154]. Another study concentrated on changes observed
in B-cell expression after ICI treatment and indicated that early changes in B-cells after
treatment may become a marker for risk of irAE in melanoma, based on single-cell RNA
sequencing [155].

5.2. Beyond ICIs

In recent decades, the success of ICI-based cancer immunotherapy verified immune
system control, resulting in anti-cancer effects and the promotion of further studies iden-
tifying novel targets or establishing various methods for immune-oncology treatment.
Although ICIs are one of the most well-established methods of immunotherapy, other
methods, including immune cell therapy, anti-cancer vaccines, and antibody-drug conju-
gates, have been developed to overcome the clinical limitation of ICIs [156]. Following this
trend, the systems biology approach using omics platforms has been widely used in the
development of these methods, as well as those involving ICIs.

The aim of the anti-cancer vaccine is the induction of T-cell responses, usually against
specific antigens from tumors [157]. Cancer vaccines combined with ICIs or other im-
munotherapy may induce their maximized effects [158]. To identify effective neoantigens,
Matsushita et al. and Robbins et al. performed whole-exosome sequencing, which identi-
fied a mutant marker of sarcoma and a potential correlation between mutated antigens from
autologous tumor cells and clinical response in melanoma [159,160]. Unlike the method
using anti-cancer vaccines, immune cell therapy using T-cell receptors (TCR), chimeric
antigen receptors (CAR), and tumor-infiltrating lymphocytes (TIL) is the treatment of
isolated immune cells from patients or genetically engineered immune cells to patients for
activating their immune systems. Integrated analysis of proteomic and transcriptomic data
sets by a specific algorithm involving acute myeloid leukemia (AML) was conducted by
Perna et al. and suggested the concepts of generalizable combinatorial targeting strategies
to uncover candidate targets for AML and other cancer studies [161]. High-throughput
techniques are also used to enhance therapeutic efficacy and aid the discovery of novel
targets. Lu et al. developed novel methods, including single-cell RNA sequencing and co-
culture techniques for tumor-infiltrating lymphocytes and autologous antigen-presenting
cells to increase the efficacy of adoptive T-cell therapy [162].
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6. Concluding Remarks

To date, numerous metabolomics- and other omics-based studies for ICIs have been
applied for the development of novel biomarkers, the evaluation or prediction of outcomes,
and the identification of mechanisms of action. Furthermore, advanced analytical high-
throughput techniques have been developed and optimized for various ICI studies. These
studies may provide valuable information for future studies involving various cancer
immunotherapy options as well as ICIs.
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ACT Adaptive cell transfer
ANOVA Analysis of variance
APLCNR Apelin receptor
C3 Complement component 3
CAR Chimeric antigen receptor
CCL Chemokine antigen receptor
CD137 Tumor necrosis factor receptor superfamily member 9 (TNFRSF9)
CD4+ cell Cluster of differentiation 4-positive cell
CD8+ cell Cluster of differentiation 8-positive cell
CRISPR Clustered regularly interspaced short palindromic repeats
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
CX3CR1 CX3C chemokine receptor
CXCL13 Chemokine (C-X-C motif) ligand 13
cyTOF Mass cytometry
dMMR Deficient DNA mismatch repair
EGFR Epidermal growth factor receptor
EI Electron impact
ESI Electrospray ionization
GC Gas chromatography
GCMB Glial Cells Missing Transcription Factor 2
GEO Gene Expression Omnibus
GITR Glucocorticoid-induced TNFR family-related gene
GZMK Granzyme K
HOPE High-tech Omics-based Patient Evaluation
IARC International Agency for Research on Cancer
ICGC International Cancer Genome Consortium
ICI Immune checkpoint inhibitor
IDO Indoleamine 2,3-dioxygenase
IFN Interferon
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IL Interleukin
IL17RA IL17 receptor A
irAE Immune-related adverse event
LC Liquid chromatography
LIHC Liver hepatocellular carcinoma
MS Mass spectrometry
MS/MS Tandem mass spectrometry
MSI Microsatellite instability
NGS Next-generation sequencing
NIST National Institute of Standards and Technology
NK Natural killer cell
nSMase2 Sphingomyelinase 2
OX40 Tumor necrosis factor receptor superfamily, member 4 (TNFRSF4)
PCA Principal component analysis
PCR Polymerase chain reaction
PD-1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
PEG Polyethylene glycol
PLA2G4A Phospholipase A2 group IVA
PLS-DA Partial least squares-discriminant analysis
POLE Polymerase epsilon
PRF1 Perforin 1
PTGS2 Prostaglandin-endoperoxide synthase 2
PTPN2 Protein Tyrosine Phosphatase Non-Receptor Type 2
TCF7 Transcription Factor 7
TCGA The Cancer Genome Atlas
TCPA The Cancer Proteome Atlas
TDO Tryptophan 2,3-dioxygenase
TMB Tumor mutation burden
TME Tumor microenvironment
VEGFA Vascular endothelial growth factor A
VISTA v-domain Ig suppressor of T-cell activation
VLCFA Very-long-chain fatty acid
VOC Volatile organic compound
WGS Whole-genome sequencing
WHO World Health Organization
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