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Rationale and Objectives: Controversy still exists on the diagnosability of diffusion

tensor imaging (DTI) for breast lesions characterization across published studies. The

clinical guideline of DTI used in the breast has not been established. This meta-analysis

aims to pool relevant evidences and evaluate the diagnostic performance of DTI in the

differential diagnosis of malignant and benign breast lesions.

Materials and Methods: The studies that assessed the diagnostic performance of

DTI parameters in the breast were searched in Embase, PubMed, and Cochrane Library

between January 2010 and September 2019. Standardized mean differences and 95%

confidence intervals of fractional anisotropy (FA), mean diffusivity (MD), and three diffusion

eigenvalues (λ1, λ2, and λ3) were calculated using Review Manager 5.2. The pooled

sensitivity, specificity, and area under the curve (AUC) were calculated with a bivariate

model. Publication bias and heterogeneity between studies were also assessed using

Stata 12.0.

Results: Sixteen eligible studies incorporating 1,636 patients were included. The

standardized mean differences indicated that breast cancers had a significantly higher

FA but lower MD, λ1, λ2, and λ3 than those of benign lesions (all P < 0.05). Subgroup

analysis indicated that invasive breast carcinoma (IBC) had a significantly lower MD value

than that of ductal carcinoma in situ (DCIS) (P = 0.02). λ1 showed the best diagnostic

accuracy with pooled sensitivity, specificity, and AUC of 93%, 92%, and 0.97, followed by

MD (AUC = 0.92, sensitivity = 87%, specificity = 83%) and FA (AUC = 0.76, sensitivity

= 70%, specificity = 70%) in the differential diagnosis of breast lesions.

Conclusion: DTI with multiple quantitative parameters was adequate to differentiate

breast cancers from benign lesions based on their biological characteristics. MD can

further distinguish IBC from DCIS. The parameters, especially λ1 and MD, should attract

our attention in clinical practice.

Keywords: diffusion tensor imaging, breast, standardized mean difference, diagnostic performance, magnetic

resonance imaging, meta-analysis
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and
the leading cause of cancer death among females in the world
based on the GLOBOCAN 2018 estimates of cancer incidence
and mortality (1). Early detection and accurately discriminating
breast cancer from benign lesions play an important role in the
determination of therapeutic regimen, which may help improve
the disease-free survival and overall survival when the patients
were diagnosed early and timely treated.

Breast MRI is the most sensitive imaging tool for breast
cancer detection and shows superiority in the dense breast
with rich glands (2). However, the specificities of conventional
sequences are modest even combined with dynamic contrast-
enhanced (DCE) MRI (3). This uncertainty may lead to
unnecessary biopsies.

In recent years, diffusion tensor imaging (DTI), an extension
of diffusion weighted imaging (DWI), has been used to
characterize breast lesions and shows promising results in
increasing diagnostic specificity (4). It can calculate the
anisotropy and directionality of water diffusion in tissues by
encoding the diffusion in six or more directions (5). The DTI
parameters including fractional anisotropy (FA), mean diffusivity
(MD), and three orthogonal diffusion coefficients (λ1, λ2, λ3)
can provide subtle information regarding microstructure and
pathophysiology of the breast, which help distinguish different
lesions. Several studies indicated that DWI-derived apparent
diffusion coefficient (ADC) values, also named MD in DTI
protocol, significantly decreased in breast cancers compared with
benign lesions, and it also increased the ability of DCE-MRI
to differentiate cancers from benign lesions (4, 6). However,
whether DTI-derived parameters have comparable diagnostic
accuracy to DWI in a large cohort of patients is still unclear.
Besides, there are still some controversies in the differentiation of
breast lesions using DTI among published studies. For instance,
most studies (5, 7, 8) showed that breast cancers have higher
FA and lower MD, λ1, λ2, and λ3 values than those of benign
lesions while Partridge et al. (9), Cakir et al. (10), and Eyal
et al. (11) reported that there was no statistical difference in FA
between malignant and benign lesions. MD but not FA, volume
ratio, and relative anisotropy values can further distinguish
invasive breast carcinoma (IBC) from ductal carcinoma in situ
(DCIS) in the study of Wang et al. (12), which decreased the
diagnostic confidence of DTI to a certain extent. Last, the most
sensitive parameters among DTI in characterizing breast lesions
were not completely consistent between studies. Therefore,
we summarized previously published results regarding the
diagnostic performance of DTI parameters in differentiating
breast cancer from benign lesions with a meta-analysis method.
The pooled outcomes may address the controversial findings

Abbreviations: DTI, diffusion tensor imaging; DWI, diffusion weighted imaging;

IBC, invasive breast carcinoma; DCIS, ductal carcinoma in situ; FA, fractional

anisotropy; λ1-3, eigenvalue; MD, mean diffusivity; FN, false negative; FP, false

positive; TN, true negative, TP, true positive; PLR, positive likelihood ratio;

NLR, negative likelihood ratio; DOR, diagnostic odds ratio; AUC, area under

the curve; I2, inconsistency index; CI, confidence interval; SMD, standardized

mean difference.

between different studies and provide more reliable information
to clinicians.

MATERIALS AND METHODS

Data Sources
Two of the authors searched for any literature regarding
differentiation between breast cancer and benign lesions using
DTI in Embase, PubMed, and Cochrane Library between January
2010 and September 2019. The formula consisted of (breast
cancer or carcinoma or malignance), (DTI, diffusion tensor
imaging) and (diagnostic performance or differentiation), with
the searching limitations in the title or abstract. We also searched
relevant references from included studies and performed manual
retrieval if necessary.

Study Selection
The inclusion criteria were as follows: (a) DTI was used to
differentiate breast cancer from benign lesions; (b) sufficient
data regarding mean and standard deviation (SD) or diagnostic
performance of DTI parameters [i.e., sensitivity, specificity, true-
positive (TP), false-negative (FN), false-positive (FP), and true-
negative (TN)] were reported or can be calculated from the
study; (c) the breast lesions were confirmed by pathology; (d)
the patients have not been treated with surgery or chemotherapy
before magnetic resonance scanning; and (e) the scores of
quality assessment based on likelihood of bias were at least 9.
The exclusion criteria were listed as follows: (a) case report,
review, letter to editor, meta-analysis, or conference abstract;
(b) preclinical studies; (c) not a breast study or primary breast
tumors; (d) without sufficient data or lack of comparisons.

Data Abstraction and Quality Assessment
Two authors extracted the basic information from each study,
which included first author, publication year, country, machine
type, b values, number of imaging directions, age of patients,
tumor diameters, and publication journal. The following data
were also extracted for calculating the pooled effects: mean value
and standard deviation of DTI parameters, TP, FN, FP, TN,
sensitivity, specificity, threshold values, and area under the curve
(AUC). If the sensitivity and specificity are not provided, we will
extract them from the receiver operating characteristic curves.
Once the numbers of benign and malignant lesions, sensitivity,
and specificity are known, we can recalculate TP, FN, FP, and
TN using the calculator from Review Manager 5.2 for further
pooling. The Revised Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2) checklist was applied to assess the quality
of included studies, with 14 criteria based on the risk of bias (13).
The criteria were judged as “Yes (low risk of bias),” “No (high
risk of bias),” or “Unclear.” We discussed or invited a statistician
to achieve a consensus when the results were controversial.

Data Synthesis
The pooled effects and 95% confidence intervals (CIs) for
each parameter were calculated using Review Manager Software
version 5.3 (Cochrane Collaboration, Oxford, UK). The Begg
test was used to evaluate the publication bias for the continuous
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variables (i.e., mean values and standard deviations) while the
Deek plots evaluated the publication bias regarding diagnostic
test with sensitivity and specificity using Stata version 12.0
(StataCorp LP, College Station, TX). Asymmetric or skewed
funnel plots indicated the potential of publication bias. P <

0.05 of Begg’s test indicated the presence of publication bias.
Inconsistency index (I2) and Cochran’s Q-tests were applied to
evaluate the degree of heterogeneity between studies, which may
originate from selected b-values, number of imaging directions,
tumor subtypes, and so on. I2 > 50% or P < 0.05 for Cochran Q-
test indicated the presence of heterogeneity, and a random-effects
model was used to calculate the pooled results. Otherwise, a fixed-
effect model was applied. As the parameters varied to some extent
among included studies, standardized mean difference (SMD)

was used to pool the continuous variables, which suggested
less heterogeneity compared with weighted mean difference
(14). Stata.12.0 was applied to calculate the pooled sensitivity,
specificity, positive likelihood ratio, negative likelihood ratio,
diagnostic odds ratio, AUC, and their 95% CIs with a bivariate
mixed-effects binary regression model. The receiver operating
characteristic curve was used to determine the diagnostic values
of FA, MD, and λ1 in the differentiation between breast cancer
and benign lesions (15). Fagan nomograms were plotted to

predict posttest probability of FA, MD, and λ1 for the diagnosis
of breast cancer.

RESULTS

Literature Search and Selection of Studies
A total of 257 potential studies were obtained after searching
the keywords in titles and abstracts from multiple databases. We
excluded 188 studies after a review of the titles and abstracts,
which consisted of reviews, meta-analysis, conference abstracts,
and preclinical animal studies. Some studies were excluded for
not a breast or diagnostic study. We downloaded and read the
full texts of the remaining 61 studies and excluded an additional
12 studies because of lack of comparisons or sufficient data.
The studies with low-quality scores that indicated high risk
of bias, treatment performed prior to examination, and the
tumors that did not originate from the breast or had not been
confirmed by pathology led to exclude 33 studies. Finally, a
total of 16 studies comprising 927 malignant and 709 benign
lesions were included in the meta-analysis. The breast cancers
mainly consisted of invasive ductal carcinoma, invasive lobular
carcinoma, DCIS, papillary carcinoma, mucinous carcinoma,
medullary carcinoma, and mixed types. The IBC included

FIGURE 1 | Flowchart of selection and exclusion process. Sixteen studies that met the inclusion criteria are eventually included. FN, false negative; FP, false positive;

TN, true negative; TP, true positive.
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all invasive subtypes of breast cancers except DCIS. The
benign lesions mainly consisted of fibroadenomas, sclerosing
adenosis, fibrosis foci, phyllodes tumors, chronic inflammations,
and normal fibroglandular tissue. A flowchart detailing the
selection process based on inclusion and exclusion criteria
is shown in Figure 1. Basic characteristics and diagnostic
performance of included studies are summarized in Tables 1,
2, respectively.

Quantitative Analysis
FA for Differentiation of Breast Lesions
FA values of breast cancer and benign lesions from 14 studies
were compared. Heterogeneity tests showed χ2

= 141.23, I2

= 91%, P < 0.001, indicating obvious heterogeneity between
studies. The forest plot of the mean value and standard
deviation of FA between breast cancer and benign lesions was

shown in Figure 2. The SMD of FA value was pooled using
a random-effects model, and the result was 0.55 (0.19, 0.92),
P = 0.003. The funnel plot was symmetric overall (Figure 3),
and no obvious publication bias was observed using Begg
test (P = 0.511).

MD for Differentiation of Breast Lesions
MDs of breast cancer and benign lesions from 14 studies were
compared. Heterogeneity tests showed χ2

= 168.23, I2 = 92%,
P < 0.001, indicating obvious heterogeneity between studies.
The forest plot of the mean value and standard deviation of
MD between breast cancer and benign lesions was shown in
Figure 4. The SMD of MD value was pooled using a random-
effectsmodel, and the result was−2.10 (−2.58,−1.63), P< 0.001.
The funnel plot was symmetric overall (Figure 3), and no obvious
publication bias was observed using Begg test (P = 0.125).

TABLE 1 | Basic characteristics of studies included in the meta-analysis.

References Year Country Malignant

(n)

Benign(n) Machine

type

b- values

(s/mm2)

Gradient

directions

Age (years) Tumor

diameters

(mm)

Journal Quality

assessment

Luo et al. (16) 2019 USA 95 143 3T Philips 0, 100, 800 6 51 (23–83) 11 (4–114) Breast Cancer

Research

13

Si et al. (17) 2016 China 35 39 3T Siemens 0, 800 20 46 (24–74) >10 Natl Med J

China

9

Jiang et al. (18) 2016 China 34 22 1.5T Siemens 0, 1000 6 47 (37–68) >10 Med Sci Monit 11

Furman-Haran

et al. (19)

2016 Israel 24 6 3T Siemens 0, 700 20 51 (38–72) 24 ± 13 J Magn Reson

Imaging

13

Cakir et al. (10) 2013 Turkey 30 25 3T Philips 0, 1,000 16 45.1 (21–73) 24.0 ± 9.76 Eur J Radiol 12

Onaygil et al. (5) 2017 Germany 45 47 3T Siemens 0, 700 30 Benign: 37.9 ±

10.8

Malignant: 51.8

± 13.6

>10 J Magn Reson

Imaging

10

Yamaguchi et al.

(20)

2016 Japan 58 22 1.5T Siemens 0, 1,000 6 Benign: 46

Malignant: 62.5

Benign: 19.5

(6–90);

Malignant:

15 (10–60)

Magn Reson

Med Sci

9

Tsougos et al. (21) 2018 Greece 42 44 3T GE 0, 600 6 53 ± 13 Benign: 17

(6–51);

Malignant:

28 (7–90)

Clin Imaging 12

Ozal et al. (22) 2018 Turkey 46 46 3T Siemens 0, 1,000 6 55.88 ± 10.92 29.26 ± 10.09 Niger J Clin

Pract

11

Abdel Razek et al.

(23)

2019 Egypt 13 17 1.5T Philips 0, 1,000 12 27–58 NA Eur J Radiol 13

Kim et al. (24) 2018 Korea 251 251 3T Siemens 0, 1,000 20 53.8 (25–83) 24 (5–95) Eur Radiol 13

Baltzer et al. (7) 2011 Germany 54 17 1.5T Siemens 0, 1,000 6 54.6 ± 15.7 >5 Eur Radiol 9

Partridge et al. (9) 2010 USA 76 29 1.5T GE 0, 600 6 53 (22–85) NA J Magn Reson

Imaging

11

Teruel et al. (8) 2016 Norway 38 34 3T Siemens 0, 700 30 46 (17–79) NA J Magn Reson

Imaging

10

Wang et al. (12) 2015 China 53 0 1.5T GE 0, 600 6 50.11 ± 10.09 NA Chin J Cancer

Res

12

Eyal et al. (11) 2012 Israel 33 20 3T Siemens 0, 700 30 Benign: 40

(26–65)

Malignant:

52 (31–78)

Benign: 12

(10–18);

Malignant:

20 (14–27)

Invest Radiol 11

NA, not available.
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TABLE 2 | Detailed information regarding diagnostic performance in each study.

Parameters References Year Sensitivity Specificity AUC TP FP FN TN Threshold

FA Si et al. (17) 2016 0.462 0.857 0.638 16 6 19 33 0.207

Jiang et al. (18) 2016 0.441 0.773 0.607 15 5 19 17 0.189

Onaygil et al. (5) 2017 0.644 0.766 0.760 29 11 16 36 0.170

Tsougos et al. (21) 2018 0.729 0.658 0.729 31 15 11 29 NA

Abdel Razek et al. (23) 2019 0.923 0.706 0.820 12 5 1 12 0.470

Baltzer et al. (7) 2011 0.796 0.647 0.770 43 6 11 11 0.194

Partridge et al. (9) 2010 0.650 0.279 0.500 49 21 27 8 0.240

Teruel et al. (8) 2016 0.868 0.824 0.896 33 6 5 28 0.104

MD Luo et al. (16) 2019 0.738 0.642 0.750 70 51 25 92 NA

Si et al. (17) 2016 0.846 0.914 0.944 30 3 5 36 1.370

Jiang et al. (18) 2016 0.824 0.909 0.897 28 2 6 20 1.017

Cakir et al. (10) 2013 1.000 0.400 0.820 30 15 0 10 1.270

Yamaguchi et al. (20) 2016 0.910 0.860 0.924 53 3 5 19 1.338

Tsougos et al. (21) 2018 0.825 0.814 0.906 35 8 7 36 NA

Baltzer et al. (7) 2011 0.870 0.882 0.894 47 2 7 15 1.160

Partridge et al. (9) 2010 0.732 0.583 0.760 56 12 20 17 1.200

Teruel et al. (8) 2016 0.941 0.947 0.968 36 2 2 32 1.330

Onaygil et al. (5) 2017 0.956 0.936 0.969 43 3 2 44 1.240

Abdel Razek et al. (23) 2019 0.769 0.824 0.860 10 3 3 14 1.100

λ1 Si et al. (17) 2016 1.000 0.971 0.987 35 1 0 38 1.393

Jiang et al. (18) 2016 0.853 0.909 0.898 29 2 5 20 1.220

Onaygil et al. (5) 2017 0.978 0.872 0.950 44 6 1 41 1.590

Tsougos et al. (21) 2018 0.825 0.814 0.906 35 8 7 36 NA

Teruel et al. (8) 2016 0.912 0.974 0.961 35 1 3 33 1.570

Eyal et al. (11) 2012 0.956 0.977 0.994 32 0 1 20 1.500

NA, not available; FA, fractional anisotropy; λ1, prime diffusion coefficient; MD, mean diffusivity; AUC, area under the curve; FN, false negative, FP, false positive; TN, true negative, TP,

true positive. Threshold values of λ1 and MD are factors of 10−3 mm2/s.

FIGURE 2 | Forest plot of the mean value and standard deviation of fractional anisotropy (FA) between breast cancer and benign lesions. The standardized mean

differences indicated that breast cancers had a significant higher FA than benign lesions.
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FIGURE 3 | Funnel plot of (A) fractional anisotropy (FA), (B) mean diffusivity (MD), (C) λ1, (D) λ2, and (E) λ3. Only λ1 showed potential publication bias.

FIGURE 4 | Forest plot of the mean value and standard deviation of mean diffusivity (MD) between breast cancer and benign lesions. The standardized mean

differences indicated that breast cancers had a significantly lower MD than benign lesions.

Prime Diffusion Eigenvalue (λ1) for Differentiation of

Breast Lesions
The λ1 values of breast cancer and benign lesions from eight
studies were compared. Heterogeneity tests showed χ2

= 136.88,
I2 = 95%, P < 0.001, indicating obvious heterogeneity between
studies. The forest plot of the mean value and standard deviation
of λ1 between breast cancer and benign lesions was shown in
Figure 5. The SMD of λ1 was pooled using a random-effects
model, and the result was −2.75 (−3.69, −1.82), P < 0.001.

The funnel plot was asymmetric, which lacked negative studies
at the right bottom (Figure 3). P = 0.009 of Begg test suggested
significant publication bias.

λ2 for Differentiation of Breast Lesions
The λ2 values of breast cancer and benign lesions from five
studies were compared. Heterogeneity tests showed χ2

= 17.04,
I2 = 77%, P = 0.002, indicating moderate heterogeneity between
studies. The forest plot of the mean value and standard deviation
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FIGURE 5 | Forest plot of the mean value and standard deviation of prime diffusion eigenvalue (λ1) between breast cancer and benign lesions. The standardized

mean differences indicated that breast cancers had a significant lower λ1 than benign lesions.

FIGURE 6 | Forest plot of the mean value and standard deviation of λ2 between breast cancer and benign lesions. The standardized mean differences indicated that

breast cancers had a significant lower λ2 than benign lesions.

of λ2 between breast cancer and benign lesions was shown in
Figure 6. The SMD of λ2 was pooled using a random-effects
model, and the result was −2.18 (−2.80, −1.56), P < 0.001. The
funnel plot was symmetric overall (Figure 3). P = 0.086 of Begg
test suggested no publication bias.

λ3 for Differentiation of Breast Lesions
The λ3 values of breast cancer and benign lesions from five
studies were compared. Heterogeneity tests showed χ2

= 13.94,
I2 = 71%, P = 0.007, indicating moderate heterogeneity between
studies. The forest plot of the mean value and standard deviation
of λ3 between breast cancer and benign lesions was shown in
Figure 7. The SMD of λ3 was pooled using a random-effects
model, and the result was −1.87 (−2.40, −1.34), P < 0.001. The
funnel plot was symmetric overall (Figure 3). P = 0.806 of Begg
test suggested no publication bias.

Subgroup Analysis of MD and FA for Differentiation

Between IBC and DCIS
Three studies for MD (9, 12, 18) and four studies for FA values
(9, 12, 18, 24) used in the differentiation between two subtypes
of breast cancer were further pooled. The SMD of MD was
−0.76 (−1.40, −0.12), P = 0.02, which indicated that IBC had
a lower MD value than that of DCIS. I2 = 64% suggested mild

heterogeneity. However, no significant difference was observed in
FA value with an SMD of 0.16 (−0.12, 0.45), P = 0.26, indicating
FA cannot further distinguish IBC fromDCIS. More studies were
necessary to draw a reliable conclusion in the future.

Diagnostic Performance of DTI Parameters
The pooled sensitivity, specificity, positive likelihood ratios
(PLRs), negative likelihood ratios (NLRs), diagnostic odds ratios,
and AUCs of FA, λ1, and MD were listed in Table 3. The
summary receiver operating characteristic curves are shown in
Figure 8. No significant publication bias was observed in Deeks’
plots for the three parameters (Figure 9). λ1 showed the highest
AUC value of 0.97, with the sensitivity and specificity of 0.93 and
0.92, followed by MD (AUC= 0.92, sensitivity= 87%, specificity
= 83%) and FA (AUC = 0.76, sensitivity = 70%, specificity =

70%) in the differential diagnosis of breast lesions.
Likelihood ratios and posttest probabilities are also relevant

for clinicians (25, 26). They provide information about the
likelihood that a patient is diagnosed with breast cancer or not
under certain parameters. Fagan’s nomograms of FA, λ1, andMD
were shown in Figure 10. We set all of the pretest probabilities at
20%. Using FA value would raise the posttest probability to 37%
when pretest positive from 20% with a PLR of 2.4 and would
reduce the posttest probability as low as 10% when negative
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FIGURE 7 | Forest plot of the mean value and standard deviation of λ3 between breast cancer and benign lesions. The standardized mean differences indicated that

breast cancers had a significant lower λ3 than benign lesions.

TABLE 3 | Pooled estimates and heterogeneity measures for FA, λ1, and MD.

Sensitivity Specificity PLR NLR DOR AUC I2

Sensitivity (%) Specificity (%)

FA 0.70 (0.57, 0.80) 0.70 (0.57, 0.81) 2.4 (1.5, 3.6) 0.43 (0.29, 0.64) 5 (3,12) 0.76 (0.72, 0.79) 75.63 76.34

λ1 0.93 (0.87, 0.97) 0.92 (0.85, 0.96) 11.3 (5.9, 21.7) 0.07 (0.04, 0.15) 151 (47, 489) 0.97 (0.95, 0.98) 60.10 52.37

MD 0.87 (0.81, 0.91) 0.83 (0.72, 0.90) 5.1 (2.9, 8.8) 0.16 (0.10, 0.24) 32 (13, 79) 0.92 (0.89, 0.94) 76.08 87.20

The data in parentheses indicate mean and 95% confidence intervals. FA, fractional anisotropy; λ1, prime diffusion coefficient; MD, mean diffusivity; PLR, positive likelihood ratio; NLR,

negative likelihood ratio; DOR, diagnostic odds ratio; AUC, area under the curve; I2, inconsistency index.

FIGURE 8 | Summary receiver operating characteristic (SROC) curve of (A) fractional anisotropy (FA), (B) λ1, and (C) mean diffusivity (MD) in the discrimination of

breast lesions. λ1 showed the largest area under the curve among the three parameters, followed by MD and FA.

with an NLR of 0.43. In our study, diagnosing breast cancer is

regarded as a positive event and corresponds to a higher FA,
while diagnosing benign lesion is regarded as a negative event
and corresponds to a lower FA. This suggests that the diagnostic
tendency of breast cancer will significantly increase to 37% with
the help of FA value (a higher FA) compared with the condition
without the prompt of FA value whose diagnostic probability was
set at 20% beforehand. On the contrary, the lower the posttest
probability is when a negative event occurs (the DTI shows a
lower FA), the higher probability for diagnosing benign lesions
will be. Similarly, the posttest probability of MD reached 56%
with a PLR of 5.1 and would reduce the posttest probability as
low as 4% when negative with an NLR of 0.16. The posttest

probability of λ1 reached 74% with a PLR of 11.3 and would
reduce the posttest probability as low as 2% when negative
with an NLR of 0.16, indicating that it has the best predictive
ability to diagnose breast cancer or benign lesions depending
on its value. The results suggested that DTI parameters were
helpful for increasing the accuracy in detecting breast cancer and
also indicated that λ1 was the most valuable parameter in the
characterization of breast lesions.

DISCUSSION

DTI characterizes tissue microstructure and water diffusion
directionality by performing diffusion sensitization in multiple
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FIGURE 9 | Deeks’ funnel plot for (A) fractional anisotropy (FA), (B) λ1, and (C) mean diffusivity (MD). No publication bias was indicated in the three parameters.

orientations (27). It can evaluate tumor invasiveness of
glioblastoma, and the fiber-tracking based neuronavigation has
been successfully used in preoperative surgical planning (28–30).
However, the clinical guideline of DTI used in the breast has
not been established. Therefore, we performed a meta-analysis
to pool relevant evidences that assessed the diagnostic accuracy
of DTI for breast lesion detection. This study showed reliable
results and promising prospects for clinical application of DTI
in the breast.

In this meta-analysis, the SMD indicated that breast cancers
had a higher FA but lower MD, λ1, λ2, and λ3 than those of
benign lesions. MD and FA in breast lesions had been reported to
be significantly correlated to tissue cellularity, and breast cancer
had a higher cellularity than benign lesions (31). The observed
reduction of diffusion coefficients may result from the higher
cellularity of cancerous tissues, which would restrict the diffusion
activity of water molecules in the extracellular compartment.
Besides, blockage of the ducts and lobules by cancer cells may also
contribute to the decrease of diffusion coefficients in all directions
(19). FA reflects the degree of preferred directionality to water
motion and can show the microstructures and arrangements
of tissues. Previous study demonstrated a positive correlation
between FA and tumor cell density in glioblastomas (32). Besides,
complicated and disordered structures with regional hemorrhage
or liquefactive necrosis were more easily seen in cancerous
tissues, which may enhance the diffusion of water molecules in
certain directions while reduced in others in the more disordered
microstructures of cancerous tissues (23). This partly explained
the increase of anisotropy in breast cancer. In the study of Luo
et al. (16), they reported that higher FA was associated with
malignancy for masses and benign non-masses, which suggested
that DTI anisotropy metrics must be considered in the context
with lesion type for diagnostic purposes. Theoretically, water
diffusion in the fibrous connective tissues, glandular tissues,
and cysts, which are major components of benign lesions in
the breast, is close to isotropic (19). It is worth noting that
a larger area of liquefactive necrosis more easily occurs in a
highly aggressive and large tumor, which may result in a loss
of organization of the breast parenchyma in cancerous tissues,

and in reverse reduce the anisotropy to a certain extent in breast
cancer, as well as the difference of FA between breast cancer
and benign lesions. It may be the reason that FA reported in
some of the included studies cannot distinguish breast cancer
from benign lesions (9, 18, 19). FA also performed a moderate
diagnostic value, with the lowest AUC of 0.76 among the three
parameters. In our study, λ1 showed a higher AUC than FA and
MD in the differentiation of breast lesions. Fagan’s nomograms
also suggested that λ1 had a higher posttest probability with a
PLR of 11.3 and a lower posttest probability when negative with
an NLR of 0.16. The measurement of MD is non-directional
and unable to reveal three-dimensional diffusion mobility, which
may result from the disordered structure. In normal breast
tissue, the ducts, vessels, and other parenchyma around them
are arranged in a relatively parallel pattern and have their
main diffused direction. As a result, the water molecule moves
mainly along the primary axis in the extracellular space and
demonstrates anisotropy. As a number of diffusion gradients
were applied in DTI, it can uniquely determine a specific three-
dimensional ellipsoid tensor unit in each pixel, within which the
diffusion ability in any direction can be accurately calculated
(18). Therefore, DTI-derived λ1, which were calculated from
three-dimensional tissue volumes, displayed superior diagnostic
performance compared to MD. Most importantly, DTI-derived
parameters showed a much higher specificity (as high as 92%)
in detecting breast cancer compared to DCE-MRI alone, whose
specificity was reported to be only 71% in a previous meta-
analysis (6).

In clinical practice, systemic treatments such as
chemotherapy, biotherapy, and radiotherapy are needed in
addition to surgery to control local recurrence and distant
metastasis for most patients with IBC. Inspiringly, the pooled
results suggested that MD can further distinguish IBC from
DCIS. Wang et al. (12) reported that invasive carcinomas had a
higher cellular density and more crowded extracellular matrix
than DCIS that inhibited water movement. Besides, interstitial
fibrosis as a result of a desmoplastic reaction was observed in the
stroma of IBC, which led to a decrease of MD in IBC. However,
FA failed to identify the subtle difference between them. In the
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FIGURE 10 | Fagan’s nomogram of (A) fractional anisotropy (FA), (B) λ1, and (C) mean diffusivity (MD).

study of Jiang et al. (18), they found that DCIS has great variation
in tumor grade and cellularity, and some high-grade DCIS has
relatively higher cellularity, which may decrease the specificity of
FA to a certain extent. In individual studies, MD or FA showed
significant correlations with the ER status, Ki67 labeling index,
and nuclear/histological grade and could detect lymphovascular
invasion and axillary node metastasis in patients with breast
cancer (5, 20, 24). However, the results were not completely
consistent, and further researches with a large cohort of patients
are necessary.

Exploration of heterogeneity was an indispensable part of

meta-analysis when analyzing the pooled results. Introducing

improper heterogeneity will decrease the credibility of the
findings. Although we set strict selection criteria for including
high-quality studies, FA, λ1, λ2, λ3, and MD still demonstrate
moderate to obvious heterogeneity (I2 ranged from 71 to 92%).
Several potential confounding factors should be noticed. First,
both 1.5T and 3.0T MR scanners were used to image the
breast lesions in the included studies. Higher field strength
will provide clear images with higher signal-noise ratio to
delineate the lesions. Second, the b-values selected and numbers
of gradient directions varied from study to study, which may
influence the calculation of DTI parameters. Third, only a rough
comparison was performed between breast cancer and benign
lesions. Their compositions, hormone status, invasiveness, tumor
subtypes, lesion sizes, and type of genetic mutations may
form a completely different biologic behavior and structural
characteristic that confounded the results. Last, we included both
negative and positive results for this meta-analysis, which would
introduce reasonable heterogeneity, but the publication bias
was reduced.

There are some limitations in this study. First, other
meaningful DTI parameters such as maximal anisotropy,
relative anisotropy, volume ratio, geodesic anisotropy, average
eigenvalues, and radial diffusion have not been pooled due
to limited number of studies. Second, intravoxel-incoherent-
motion DWI, which can reflect the microcirculation perfusion of
the lesions, is also an important sequence for breast imaging. The
diagnostic performance between this sequence and DTI has not
been compared. Third, the studies and sample sizes vary between
FA, λ1, and MD comparisons; confounding may be an issue as
the studies are likely to be heterogeneous. Last, publication bias
was found in λ1 value, but we directly pooled the results instead
of using the trim and fill method (33).

In conclusion, breast cancers showed a significantly higher
FA but lower MD, λ1, λ2, and λ3 compared to benign lesions.
DTI is a valuable tool to differentiate breast cancer from benign
lesions with high sensitivity and specificity. Its parameters can
add specificity to the detection of breast cancer compared with
DCE-MRI. MD showed potential to distinguish IBC from DCIS.
There are still controversies in the explanation of FA for the
difference between breast cancer and benign lesions, and we
should pay caution to its usage. The parameters, especially λ1
and MD, should attract our attention in clinical practice. Besides,
the applications of DTI in reflecting ER status, Ki67 status, tumor
invasiveness, and the relations with lymphovascular invasion and
axillary node metastasis are promising research directions.
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