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Abstract

Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are

biomarkers for liver health. Here we report the largest genome‐wide association

analysis to date of serum ALT and AST levels in over 388k people of European

ancestry from UK biobank and DiscovEHR. Eleven million imputed markers with

a minor allele frequency (MAF)≥ 0.5% were analyzed. Overall, 300 ALT and 336

AST independent genome‐wide significant associations were identified. Among

them, 81 ALT and 61 AST associations are reported for the first time. Genome‐wide
interaction study identified 9 ALT and 12 AST independent associations sig-

nificantly modified by body mass index (BMI), including several previously re-

ported potential liver disease therapeutic targets, for example, PNPLA3, HSD17B13,

and MARC1. While further work is necessary to understand the effect of ALT and

AST‐associated variants on liver disease, the weighted burden of significant

BMI‐modified signals is significantly associated with liver disease outcomes. In

summary, this study identifies genetic associations which offer an important step

forward in understanding the genetic architecture of serum ALT and AST levels.

Significant interactions between BMI and genetic loci not only highlight the

important role of adiposity in liver damage but also shed light on the genetic

etiology of liver disease in obese individuals.
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1 | INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is an epi-
demic in the United States with a prevalence between
30% and 40% among adults (Sharma & John, 2019;
Spengler & Loomba, 2015). Although often benign,
NAFLD may also progress to nonalcoholic steatohe-
patitis (NASH), which can lead to cirrhosis, liver
failure, and liver cancer if left untreated (Adams
et al., 2005). Obesity is a strong risk factor for NAFLD.
The prevalence of NAFLD in normal‐weight (body
mass index [BMI] < 25 kg/m2) men and women is on
average 7.5% and 6.7%, respectively, compared with
57% and 44% in men and women with a BMI >35 kg/m2

(Yki‐Jarvinen, 2014). Although the pathophysiology
between obesity and NAFLD is not fully understood,
it has been hypothesized that fat accumulation in the
liver may be linked to the exposure to free fatty
acids and adipokines released from adipose tissue
(Jakobsen et al., 2007).

Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) are commonly measured bio-
markers of liver health. Elevated ALT and AST levels are
signatures of liver disease or damage, such as NAFLD,
viral hepatitis, and drug‐induced liver damage
(Kaplan, 2002). Serum ALT and AST levels are con-
sidered highly heritable with genetic factors explaining
20%–60% of the phenotypic variance (Makkonen
et al., 2009; Rahmioglu et al., 2009; Sookoian &
Pirola, 2015). Previous genome‐wide association studies
(GWAS) identified numerous significant genetic loci as-
sociated with ALT and AST levels (Moon et al., 2019;
Prins et al., 2017; Sinnott‐Armstrong et al., 2019; Young
et al., 2019). In addition, some ALT and AST signals were
reported to have obesity‐dependent effects. For example,
PNPLA3 and HSD17B13 associations have been shown to
have stronger effects in obese individuals (Abul‐Husn
et al., 2018; Giudice et al., 2011; Mann & Anstee, 2017;
Stojkovic et al., 2014). However, no genome‐wide ag-
nostic screening of obesity‐dependent effects has been
performed.

Here we report a GWAS of serum ALT and AST
levels in 388k unrelated individuals of European an-
cestry from UKB and DiscovEHR. We also report the
first genome‐wide interaction study (GWIS) to in-
vestigate the effect of BMI on ALT and AST genetic
associations. Finally, we show that ALT‐ and AST‐
associated variants that are significantly modified by
BMI may have an important impact on the risk of
liver disease risks, for example, fatty liver disease,
shedding light on the development of potential
therapeutics.

2 | METHODS

2.1 | UK Biobank (UKB) data

A detailed description of the UKB study design, and
collection of phenotypic and genotype data has been
published previously by UKB (Bycroft et al., 2018).
Consenting individuals participating in the UKB study
were genotyped using the Affymetrix UK Biobank Axiom
Array and the UK BiLEVE Axiom Array. Genotype im-
putation was performed centrally by UKB based on a
merged reference panel incorporating UK 10 K, 1000
Genome, and Haplotype Reference Consortium (HRC).
Imputed variants were then filtered based on minor allele
frequency (MAF≥ 0.5%) and Hardy–Weinberg
(p< 10 × 10−15). Individuals of European ancestry were
identified using a linear model trained based on PC es-
timates from HapMap3. Overall, 319,882 unrelated in-
dividuals of European ancestry were included for
analysis of two enzyme levels: ALT and AST. Serum le-
vels of ALT and AST from the initial visit (2006–2010)
were measured centrally by UKB based on International
Federation of Clinical Chemistry (IFCC). A description
of the UKB sample demographics is shown in Table S1.
Further information about the UKB sample collection
and each phenotype can also be found via the UKB
Showcase website (https://biobank.ndph.ox.ac.uk/
showcase/).

2.2 | DiscovEHR data

A detailed description of the DiscoverEHR study design
has been published previously (Dewey et al., 2016). In
short, the DiscovEHR cohort is a subset of individuals
enrolled in the Geisinger Healthcare system who con-
sented to participate in Geisinger's MyCode Community
Health Initiative. Genomic DNA samples were trans-
ferred to the Regeneron Genetics Center from the Gei-
singer Health System. Genotyping was performed at the
Regeneron Genetics Center in two waves. In the first
wave, individuals were genotyped using the Illumina
Human OmniExpressExome array (8v1‐2). In the second
wave, genotyping was performed using the llumina
Global Screening Array. These two waves are referred as
“DiscovEHR OMNI” and “DiscovEHR GSA,” respec-
tively. All analyses were performed in each cohort
separately.

Individuals of European ancestry were identified
using a linear model trained based on PC estimates from
HapMap3. Pairwise identity‐by‐decent (IBD) estimates
were calculated using PLINK2 (Purcell et al., 2007) and
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pedigrees were reconstructed using PRIMUS (Staples
et al., 2014) as described previously (Dewey et al., 2016).
Genotype imputation of European individuals was per-
formed separately for DiscovEHR OMNI and GSA using
the Michigan Imputation Server (Das et al., 2016) based
on the HRC hg19 reference panel. Imputed variants were
mapped (lifted over) to GRCh38/hg38, and then filtered
based on MAF (MAF≥ 0.5%), Hardy‐Weinberg
(p< 10 × 10−15), and imputation info score (≥0.3). A to-
tal of 30,980 and 38,003 unrelated European individuals
with DiscovEHR OMNI DiscovEHR GSA data, respec-
tively, were included for analysis of serum ALT and AST
levels. The median of serially measured laboratory values
was selected for analysis following removal of likely
spurious values that were >3 standard deviations from
the intra‐individual median value. Age was defined as
age at last encounter.

2.3 | Statistical analysis

Genome‐wide associations analysis (GWAS) of ALT and
AST were tested within each cohort using linear regres-
sion in PLINK2 (Purcell et al., 2007). Rank inverse nor-
malized ALT and AST residuals were used for analyses
after regressing out Age, Age2, Sex, the first 10 principle
components, UKB‐specific covariates (study site and ar-
ray, only adjusted in UKB), and BMI (to minimize the
discovery of ALT and AST associations confounded by
BMI). The rank inverse normalized residuals (RINT)
were then tested for association based on the model

Y β β G~ + ,0 1

where Y is the RINT residuals of ALT or AST, and G is
the dosage genotype.

Genome‐wide interaction analysis (GWIS) was per-
formed using linear regression in PLINK2 (24). Rank
inverse normalized ALT and AST residuals were used for
analyses after regressing out Age, Age2, Sex, the first
10 principle components, and UKB‐specific covariates.
BMI was not used for residualization but was instead
included as the interaction variable (INT) in the inter-
action model:

Y β β G β INT β G INT~ + + + × ,0 1 2 3

where, Y is the RINT ALT and AST residuals, G is the
dosage genotype.

Summary statistics for the UKB and DiscovEHR
cohorts were jointly meta‐analyzed after genomic
correction using the fixed effect inverse variance
weighted method implemented in METAL (Willer
et al., 2010). Specifically, GWAS genomic correction

was performed based on the LDSC regression inter-
cept within each cohort (Bulik‐Sullivan et al., 2015);
in GWIS, since LDSC intercept has not been tested as
a genomic correction factor in interaction models,
genomic correction was performed based on inflation
factor (lambda). After meta‐analysis, no major infla-
tion was detected (Table S2) and therefore post meta‐
analysis genomic correction was not performed. HLA
region was removed in Manhattan plots but were in-
cluded for analyses.

2.4 | Genome‐wide significant variants
and signals

GCTA COJO was performed on meta‐analyzed GWAS
and GWIS data, respectively, to identify a set of in-
dependently associated signals in each data set (31).
A 10 Mb window was selected around signals with
p values less than 5 × 10−8. The default settings for
collinearity (R2 > 0.9) and allele frequency differences
(>0.2) were selected. Linkage disequilibrium (LD)
estimates were derived from a random selection of
10 K unrelated European individuals in UKB. A locus
is defined as a 1 Mb region. A novel signal is defined
with a r2 < 0.1 and at least 1 Mb away from any pre-
viously reported ALT or AST GWAS hits (ALT and
AST GWAS catalog (Buniello et al., 2019) and a recent
UKB study published on bioarchive (Sinnott‐
Armstrong et al., 2019). A significant GTEx expres-
sion quantitative trait locus (eQTL) is defined based
on the GTEx Portal accessed on 12/09/2020 (dbGaP
accession number phs000424. vN. pN) with a
p < 9.80 × 10−10 (Bonferroni correction of the
genome‐wide significance threshold based on 51 tis-
sue types) in at least one of the issue types (GTEx
Consortium, 2015).

2.5 | Gene–gene interaction analysis

Interaction between PNPLA3 p.I148M and all GCTA
COJO selected independent ALT and AST signals were
tested. Similar to GWIS, a linear regression model was
performed in PLINK2 (24). Rank inverse normalized
ALT and AST residuals were analyzed after Age, Age2,
Sex, BMI, the first 10 principle components, and UKB‐
specific covariates were regressed out. The PNPLA3
p.I148M genotype was coded as 0, 1, 2 and was included
as the interaction variable in the model below:

Y β β G β INT β G INT~ + + + × ,0 1 2 3
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where, Y is the RINT ALT and AST residuals, and G is
the dosage genotype. A significant interaction signal is
defined using a Bonferroni corrected p value threshold.

2.6 | Polygenic risk score (PRS)

Independent association signals identified by GCTA
COJO were used to construct PRS according to the
formula:

∑PRS β Allele= × .i

j

M

j ij

The PRS for a given individual i is the sum product of
the associated effect size (β) times the number of alter-
native (effect) alleles at all sites j. Scores were then
transformed to a normal distribution with N (0,1). PRS
associations are reported in standard deviation units.

2.7 | Expression enrichment analysis

Independent association variants were mapped to
genes if: (1) had a coding COJO variant, (2) had a
coding variant in LD with a COJO variant or, (3) had
an eQTL in LD with a COJO variant (but not in LD
with a coding variant). Tissue expression enrichment
analysis was performed using FUMA (Watanabe
et al., 2017). In brief, 30 general tissue type tissue‐
specific expression patterns were derived from GTEx
v8 RNA‐seq data (GTEx Consortium, 2015). Upregu-
lated gene‐set enrichment was tested and
Benjamini–Hochberg (FDR) was used to control for
multiple testing. Only gene sets which overlap with
≥2 genes with the input list are reported.

2.8 | Liver disease associations

A total of six liver disease traits were selected for asso-
ciations: fatty liver (K760), Cirrhosis, Fibrosis or Cir-
rhosis, NALD Cirrhosis, NALD Composite, NASH‐
NAFLD Composite. The definition and number of cases
for each liver disease trait in UKB is summarized in
Table S12. Mixed effect associations were computed with
the same set of imputed markers using SAIGE (Zhou
et al., 2018). Since SAIGE accounts for relatedness, the
entire European data set instead of the unrelated subset
was analyzed. Age, Age2, Sex, Age × Sex, first 10 princi-
ple components, and UKB‐specific covariates were ad-
justed. A fixed effect inverse variance weighted meta‐
analysis was performed using metal.

3 | RESULTS

3.1 | UKB and DiscovEHR

In total, 11 million imputed variants from 388,865
unrelated European individuals were analyzed for as-
sociations with ALT and AST levels. Sample demo-
graphics are summarized in Table S1. In UKB, 319,882
unrelated European individuals (53.7% females) were
analyzed with 23.8% of the individuals being obese
(BMI > 30 kg/m2). In DiscovEHR, 68,983 unrelated
European individuals were included from DiscovEHR
OMNI (N= 30,980) and DiscovEHR GSA (N= 38,003),
respectively. Compared to UKB, DiscovEHR cohorts
have proportionally more females (57.9% in OMNI
and 61.3% in GSA) and a higher prevalence (50.2%) of
obesity (Table S1).

3.2 | Genome‐wide association analysis
of serum ALT and AST levels

GWAS of ALT and AST was performed in DiscovEHR
and UKB separately. In the meta‐analysis of the sum-
mary statistics from each study, 26,366 ALT and 43,727
AST variants reached genome‐wide significance
(p< 5 × 10−8) (Figures 1 and S1 and Table S2). SNP‐
heritability estimates for ALT and AST were approxi-
mately 19.09% (SE: 0.0131) and 21.75% (SE: 0.0215), re-
spectively (Bulik‐Sullivan et al., 2015). Conditional
analysis using GCTA COJO identified 300 ALT and 336
AST independent associations (from 255 to 268 loci)
(Tables S3 and S4). Of these, 55 ALT and 71 AST variants
are coding or in strong LD (r2 > 0.8) with a coding variant
based on Ensembl 85 gene model. Also, 172 ALT and 187
AST signals are in strong linkage disequilibrium (LD)
with a significant GTEx expression quantitative trait lo-
cus (eQTL) (p< 9.80 × 10−10, after Bonferroni correction
of the number of tissue types, Tables S3 and S4) (GTEx
Consortium, 2015).

As expected, GWAS identified multiple previously
reported liver enzyme associations. For example,
rs738409 in patatin‐like phospholipase domain‐
containing protein 3 (PNPLA3) gene (p.I148M, pALT =
4.15 × 10−402, pAST = 1.03 × 10−344, Figure S2) is asso-
ciated with 1.66 and 1.02 units higher ALT and AST le-
vels (Romeo et al., 2008). Similarly, rs10433937 in 17
β‐hydroxysteroid dehydrogenase type 13 (HSD17B13)
gene (pALT = 6.31 × 10−68) is significantly associated with
lower ALT levels (Abul‐Husn et al., 2018). In addition, 81
ALT and 61 AST variants are reported for the first time
(having a r2 < 0.1 and at least 1Mb away from any pre-
viously reported ALT or AST GWAS hits, see detail in
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FIGURE 1 (See caption on next page)
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method). The most significant novel association observed
is an intronic variant within the gene peroxisome
proliferator‐activated receptor gamma (PPARG,
rs13083375, pALT = 1.04 × 10−43, Figure S3), lowering
ALT by 0.523 units per allele in an additive genetic
model. A complete list of novel signals is summarized in
Tables S3 and S4.

3.3 | GWIS of BMI‐dependent effects

A GWIS was performed to identify ALT‐ and AST‐
associated loci with BMI‐dependent effects. In total, 571
ALT and 951 AST variants with significant BMI inter-
actions were identified (p value for interaction (pINT) <
5 × 10−8, Figures 1 and S1 and Table S2). After condi-
tional analysis, 9 ALT and 12 AST independent signals
were observed (Tables 1 and 2). Among them, 4 ALT and
6 AST signals are either coding or in strong LD (r2 > 0.8)
with a coding variant; 5 ALT and 8 AST signals are in
strong LD with a significant GTEx eQTL
(p< 9.80 × 10−10, Tables S5 and S6).

GWIS identified several previously reported BMI‐
modified signals, for example, PNPLA3, HSD17B13
(Abul‐Husn et al., 2018; Giudice et al., 2011; Mann &
Anstee, 2017; Stojkovic et al., 2014). The most significant
BMI interaction was detected at rs738409 in PNPLA3
(p.I148M, pALT_INT = 8.32 × 10−107, pAST_INT = 2.95 ×
10−133). In the highest BMI quartile (top 25%, BMI >
29.82 kg/m2), the effect of alternate allele (G) is 10‐fold
greater (3.37 units/allele) than the effect observed in the
low BMI quartile (bottom 25%, BMI < 24.13 kg/m2)
(Figure 2). Similarly, rs6811902 in HSD17B13 is also
significantly modified by BMI (pALT_INT = 6.30 × 10−11,
pAST_INT = 1.11 × 10−15) where the alternate allele (C) is
associated with a greater effect on lowering ALT and AST
in individuals with elevated BMI relative to the low BMI
quartile (Figure 2).

In addition, the GWIS also identified novel BMI‐
dependent associations in previously reported liver dis-
ease loci. For example, consistent with previous reports

(Emdin et al., 2020), the alternative allele (G) of the
missense variant rs2642438 (p.T165A) in mitochondrial
amidoxime reducing component 1 (MARC1) is associated
with higher ALT and AST levels (pALT = 2.52 × 10−47,
pAST = 6.24 × 10−11). The associations were significantly
modified by BMI (pALT_INT = 7.08 × 10−14, pAST_INT =
4.70 × 10−16) and a greater effect was observed in the
higher BMI quartile. On average, the alternative allele is
associated with 0.128 units higher ALT in the low BMI
quartile and 0.935 units higher ALT in the high BMI
quartile (Figure 2). Similarly, significant BMI‐dependent
effects were also observed in variants from gene MAU2
sister chromatid cohesion factor (MAU2) and tribbles
pseudokinase 1 (TRIB1) (Tables S5 and S6).

GWIS also identified a novel BMI interaction with
insignificant main effect association. An intergenic var-
iant (rs4738684) near gene cytochrome P450 family 7
subfamily A member 1 (CYP7A1) was identified with a
significant BMI interaction effect (pINT = 1.10 × 10−8).
The alternative allele (G) is associated with lower ALT
level only in the high BMI quartile and no significant
effect is detected in the low BMI individuals
(Figures 2 and S5). CYP7A1 encodes a protein that cat-
alyzes the first reaction in the cholesterol catabolic
pathway and converts cholesterol to bile acids, which is
the primary mechanism for the removal of cholesterol
from the body (O'Leary et al., 2016). However, it is still
unclear why observed ALT association is only present in
high BMI individuals and no effect is observed in low
BMI individuals.

3.4 | Gene ×Gene interaction with
PNPLA3 I148M

Independently associated ALT (N= 300) and AST
(N= 336) signals were evaluated for genetic interactions
with PNPLA3 p.I148M, as a proxy for their therapeutic
potential in PNPLA3 risk allele carriers. Only HSD17B13
variants (rs10433937, pALT_INT = 3.19 × 10−7; rs13117201,
pAST_INT = 4.91 × 10−9) met the stringent Bonferroni

FIGURE 1 Manhattan plots of ALT and AST genome‐wide associations. (a) Manhattan plots of ALT genome‐wide associations. ALT
GWAS main effects are plotted at the top; BMI interaction effects are plotted at the bottom. GCTA COJO selected variants are highlighted.
Previously reported signals are highlighted in blue; novel signals are highlighted in green (defined as R2 < 0.1 with any previously reported
signals and at least 1Mb away from any previously reported signals). For visualization, main effect p values are capped at 1E−100,
interaction p values are capped at 1E−25. HLA region was excluded in the plot. (b) Manhattan plots of AST genome‐wide associations. AST
GWAS main effects are plotted at the top; BMI interaction effects are plotted at the bottom. GCTA COJO selected variants are highlighted.
Previously reported signals are highlighted in blue; novel signals are highlighted in green (defined as R2 < 0.1 with any previously reported
signals and at least 1Mb away from any previously reported signals). For visualization, main effect p values are capped at 1E−75, interaction
p values are capped at 1E−25. HLA region was excluded in the plot. ALT, alanine aminotransferase; AST, aspartate aminotransferase;
GWAS, genome‐wide association studies
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corrected significant threshold (Tables S7 and S8). The
magnitude of the per PNPLA3 p.I148M allele increase in
ALT and AST was significantly lowered by HSD17B13
genotype. On average, per HSD17B13 allele reduces the
PNPLA3 p.I148M allelic effect on ALT by 21%. Interest-
ingly, a greater effect was observed in high BMI quartile
(Figure 3).

3.5 | Tissue expression enrichment
analysis

ALT and AST association signals were mapped to genes
to evaluate tissue expression enrichment. ALT‐associated
genes are significantly enriched among several tissue
types including liver (2.01 × 10−17) and adipose tissue
(6.37 × 10−14). Adipose tissue is consistently upregulated

in genes mapped from novel (6.64×10‐5) and previously
reported (2.51 × 10−14) ALT associations (Figure S6 and
Table S9). Similarly, genes mapped from AST‐associated
variants are enriched in lung consistently between novel
(2.43 × 10−4) and previously reported (7.64 × 10−16) sig-
nals. (Figure S7 and Table S9). Notably, genes with sig-
nificant BMI‐dependent ALT‐ and AST‐associated
variants are enriched in liver (pALT = 3.14 × 10−5,
pAST = 5.41 × 10−6) and adipose tissues (pALT = 1.42 ×
10−3, pAST = 3.02 × 10−4) only (Figures S6 and S7).

3.6 | ALT, AST BMI‐interaction signals
and liver disease

We also investigated the impact of ALT (N= 300) and
AST (N= 336) associated variants on six liver disease

FIGURE 2 Forest plot of PNPLA3, HSD17B13, MARC1, and CYP7A1 associations with ALT, stratified by BMI groups. (a) PNPLA3
I148M (22:43928847:C:G) association with ALT, stratified by BMI groups. (b) HSD17B13 (4:87292732:T:C) association with ALT, stratified
by BMI groups. (c) MARC1 (1:220796686:A:G) association with ALT, stratified by BMI groups. (d) CYP7A1 (8:58480714:A:G) association
with ALT, stratified by BMI groups. Association was analyzed with RINTed phenotypes in UKB with the adjustment of age, age2, sex, BMI,
10PCs, and study‐specific covariates. BMI groups are defined based on the 25% quartiles of BMI distribution. ALT, alanine aminotransferase;
BMI, body mass index
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FIGURE 3 PNPLA3 I148M association with ALT and AST, stratified by HSD17B13 genotype. (a) PNPLA3 I148M ALT associations,
stratified by HSD17B13 (pINT = 3.19E−07). (b) PNPLA3 I148M AST associations, stratified by HSD17B13 (pINT = 4.91E−09). Association was
analyzed with RINTed phenotypes in UKB with the adjustment of age, age2, sex, BMI, 10PCs, and study‐specific covariates. BMI groups are
defined based on the 25% quartiles of BMI distribution. (c) HSD17B13 protective alleles partially protect PNPLA3 I148M risk. (d) PNPLA3
Interaction with HSD17B13, stratified by BMI groups (left: ALT; right: AST). ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BMI, body mass index
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traits. Specifically, this analysis focused on fatty liver,
cirrhosis, fibrosis/cirrhosis, NALD Cirrhosis, NALD
Composite, NASH‐NAFLD Composite. Twelve ALT and
13 AST signals had a p value less than 1 × 10−5 (rounded
p value threshold based on Bonferroni correction) in at
least one of the liver disease traits (Tables S3 and S4). As
expected, the most significant liver disease association
was identified at a previously reported missense variant
(PNPLA3, rs738409) having increased risks with multiple
liver disease conditions including NASH‐NAFLD com-
posite (odds ratio [OR] = 1.713, p= 6.21 × 10−136)
and fibrosis/cirrhosis (OR = 1.484, p= 2.99 × 10−115)
(Tables S3 and S4). Among the novel liver enzyme as-
sociations, a missense variant (rs3816873, p.I128T,
pALT = 4.15 × 10−15, pAST = 3.16 × 10−12) in the gene mi-
crosomal triglyceride transfer protein (MTTP) has the
most significant association with liver disease traits
(NASH NAFLD composite, OR= 0.921, p= 3.33 × 10−5)
(Figure S4 and Table S3).

As expected, not all liver enzyme‐associated variants
are associated with liver disease risk (Figure 4), likely
due to either a lack of power or the biological difference
between liver enzyme variation and liver disease. For
example, variant rs112574791 from gene glutamic pyru-
vic transaminase (GPT), which encodes cytosolic ALT, is
strongly associated with lower serum ALT levels yet not
liver disease (pALT = 1.27 × 10−105, pany_liver_disease > 0.1).
Interestingly, variants with significant BMI interactions
ranked higher among liver disease associations compared
with ALT‐associated variants without BMI interactions
(pINT≥ 5 × 10−8, Wilcoxon's rank test, p= 6.78 × 10−7,
Table S10).

3.7 | ALT, AST PRS, and liver disease

PRS were constructed using independent liver
enzyme‐associated variants at different BMI‐
interaction significance thresholds. A scheme of the
constructed PRS is shown in Figure S8. PRS from
ALT‐associated variants with significant BMI inter-
actions (PRS9, 9 variants with pALT < 5 × 10−8,
pBMI_INT < 5 × 10−8) are strongly associated with liver
disease, for example, NASH‐NALD composite (OR =
1.39, p = 3.91 × 10−33). PRS from ALT‐associated var-
iants without significant BMI interactions (PRS87, 87
variants pALT < 5 × 10−8, pBMI_INT > 0.5) had weaker
effects and were less significantly associated (OR =
1.13, p = 8.10 × 10−6). This pattern of association with
ALT polygenic scores was consistent for other liver
disease traits and for polygenic scores built using AST
association signals (Table S11).

4 | DISCUSSION

Serum ALT and AST are commonly measured bio-
markers of clinical importance. Serum ALT and AST
levels have been analyzed together in genome‐wide as-
sociation studies to shed light on the genetic etiology of
liver damage and pathogenesis. ALT is primarily ex-
pressed in the liver and elevated serum ALT level is
usually an indicator of liver damage or disease. AST is
expressed in the liver, but it is also expressed in other
organs including heart and skeletal muscle. Therefore,
AST level elevation is not specifically indicative of liver
damage or disease.

In this study, 11 million genetic markers were ana-
lyzed with serum ALT and AST levels in 388k European
individuals. It is the largest GWAS of liver enzymes to
date. After conditional analysis (GCTA COJO), 300 ser-
um ALT and 336 AST independent significant associa-
tions were identified, including previously reported
associations, for example, PNPLA3, HSD17B13, and
MARC1. In addition, 81 serum ALT and 61 AST novel
associations are identified, offering an important step
forward in understanding the genetic architecture of
serum ALT and AST levels.

The most significant ALT novel signal in this study
was an intronic variant in PPARG (rs13083375,
Figure S3 and Table S3), which is in strong LD
(R2 = 0.98) with a coding variant in exon 2 of the gene
(rs1801282, p.P12A). In our analysis, rs13083375 and its
proxy coding variant are associated with lower ALT le-
vels. PPARG encodes a transcription factor that regulates
adipocyte differentiation, adipogenesis, and lipid meta-
bolism (Altshuler et al., 2000; O'Leary et al., 2016). In
addition, PPARG is also expressed in liver hepatocytes.
Transcriptional activation of PPARG in the liver has been
shown to induce adipogenic mechanisms to store fatty
acids in liver lipid droplets and therefore may be linked
to the progression of NAFLD (Lee et al., 2018). Previous
studies suggested that liver‐specific deletion of PPARG in
mouse hepatocytes protects against development of
steatosis (Matsusue et al., 2003). In our analysis, the
variant did not exhibit a significant protective effect
against NAFLD (OR= 0.96, p= 9.87 × 10−2) likely due to
a lack of power.

Of the novel ALT‐ and AST‐associated variants, a
missense variant in the gene MTTP has the most sig-
nificant association with liver disease traits albeit sug-
gestively significant (rs3816873, p.I128T, OR= 0.921,
p= 3.33 × 10−5). Microsomal triglyceride transfer protein
(MTTP) encodes a triglyceride transfer protein expressed
in liver and has been implicated in lipoprotein assembly
and lipid removal from hepatocytes (O'Leary et al., 2016).
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FIGURE 4 Scatter plots of ALT (AST) and liver disease association signals. (a) Scatter plots of ALT and liver disease associations with
COJO selected independent variants only (N= 300). (b) Scatter plots of AST and liver disease associations with COJO selected independent
variants only (N= 336). (c) Scatter plots of ALT and liver disease associations. (d) Scatter plots of AST and liver disease associations.
Genome‐wide significant BMI interaction variants are highlighted in red. ALT, alanine aminotransferase; AST, aspartate aminotransferase
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FIGURE 4 Continued
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In UKB, rs3816873 is also modestly associated with lower
LDL (p= 4.80 × 10−6) and APOB (p= 1.20 × 10−6) (data
not shown). Other studies have shown that inhibition of
MTTP may lead to hepatic steatosis (Bernard et al., 2000;
Hashemi et al., 2011; Namikawa et al., 2004; Pereira
et al., 2011). Collectively these results suggest that
rs3816873 potentially modifies MTTP function and sup-
port its modulation to modify liver disease risk.

Among novel associations, we found multiple var-
iants mapping to genes involved in lipid and adiposity
metabolism, for example, haptoglobin‐related protein
(HPR), serine palmitoyltransferase long chain base sub-
unit 3 (SPTLC3), and ATP binding cassette subfamily G
member 5 (ABCG5) (Tables S3 and S4). Although these
observations support the role of lipid and adiposity me-
tabolism contributing to liver damage (Fabbrini
et al., 2010; Parekh & Anania, 2007), additional studies
are needed to provide stronger genetic evidence that
significantly supports a role for these genes in liver dis-
ease pathogenesis.

To better understand the impact of obesity on the
genetic risk for liver damage and disease, we performed a
GWIS exploring the modifying effects of BMI on serum
ALT and AST genetic associations. The most significant
signal was a missense variant (rs738409, p.I148M) in the
gene PNPLA3. Relative to individuals in the lower BMI
quartile (bottom 25%, BMI < 24.13 kg/m2), the per allele
effect for variant rs738409 was more than ten times
greater among individuals within the higher BMI quar-
tile (top 25%, BMI > 29.82 kg/m2) (Figure 2). This ob-
servation is consistent with previous genetic analyses of
PNPLA3 (Giudice et al., 2011; Mann & Anstee, 2017;
Stojkovic et al., 2014) and supports the synergistic effect
between PNPLA3 p.I148M and obesity. In addition, sig-
nificant BMI modifying associations were also observed
in multiple genes that have been evaluated as therapeutic
targets for NAFLD. For example, ALT‐associated variants
in HSD17B13 and MARC1 have stronger allelic effects in
the higher BMI quartile (Figure 2). In contrast to these
associations, the novel BMI‐ALT interaction association
near gene cytochrome P450 family 7 subfamily A mem-
ber 1 (CYP7A1) was observed only in individuals with a
higher BMI. No effect is observed in low BMI individuals.
Previous GWAS identified strong associations between
CYP7A1 and apolipoprotein B, triglyceride, and choles-
terol levels (Richardson et al., 2020; Ripatti et al., 2020).
This is the first genetic evidence of a BMI‐dependent
ALT association. Although the mechanism of action that
explains this association pattern is not clear, CYP7A1
encodes a protein that catalyzes the first reaction in the
cholesterol catabolic pathway and converts cholesterol to
bile acids, which is the primary mechanism for the re-
moval of cholesterol from the body (O'Leary et al., 2016).

Taken together, these BMI‐dependent signals highlight
how interaction analyses can improve our understanding
of genetic effects on phenotypes by testing across differ-
ent degrees of exposure and also show how we can im-
prove our knowledge about the therapeutic potential of
targets like HSD17B13 and MARC1 under these different
conditions.

Our analysis also demonstrates how interaction ana-
lyses can inform our understanding about the ther-
apeutic potential of novel association targets under
certain genetic background. For example, we tested in-
dependent ALT and AST signals in a genetic interaction
model with the PNPLA3 coding variant p.I148M, a well‐
established common variant (MAFEUR = 21%) that con-
fers strong susceptibility to NAFLD (Lin et al., 2014). In
our targeted interaction screen, we found variants from
HSD17B13 significantly reduce the PNPLA3 p.I148M al-
lelic effect on ALT by 21%. In addition, this interaction
has a greater effect within the higher BMI quartile
(Figure 3). Despite the exact biological mechanism of the
PNPLA3‐HSD17B13 interaction is not clear, these results
suggest that targeting HSD17B13 may reduce the risk of
liver disease in those with a higher risk conferred by
PNPLA3 p.I148M, and that the HSD17B13 protective
potential may be stronger in individuals with a high BMI.
On the other hand, variants in MARC1 and other signals
did not significantly interact with PNPLA3 variant and
therefore the mechanism could be independent from
PNPLA3 p.I148M.

In our tissue expression analysis, genes mapped to
ALT‐associated variants were significantly upregulated
in multiple tissues including liver, adipose tissue, and
lung (Figure S6). Genes mapped to AST‐associated var-
iants were found to be widely expressed across adipose
tissue, lung, nerve, and liver (Figure S7). Notably, genes
mapped to ALT‐ and AST‐associated variants with sig-
nificant BMI interactions are significantly upregulated in
liver and adipose tissue only. Although it is unclear how
adiposity expression enriched genes could influence the
pathogenesis of liver disease, it has been hypothesized
that free fatty acids and adipokines released from adipose
tissue increases the liver exposure to fat accumulation
and therefore contribute to fatty liver disease risk
(Jakobsen et al., 2007). These observations are consistent
overall with the biological functions of ALT and AST,
and also suggest that genes, with effects modified by
BMI, may be important in this biological process by in-
creasing the risk for liver damage and disease.

Significant ALT and AST variants have varying as-
sociation significance with liver disease traits
(Figure 4 and Tables S5 and S6). Interestingly, most of
the significant BMI interaction signals were at least
suggestively associated (p< 1.48 × 10−4, Bonferroni's
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correction) with NAFLD with consistent effect direc-
tions. In addition, Wilcoxon's rank test suggested that
significant BMI interaction variants have stronger sig-
nificance in liver disease associations (Table S10) relative
to variants not significantly modified by BMI. Further-
more, polygenic analysis of serum ALT‐associated var-
iants with significant BMI interactions are strongly
associated with liver disease, yet ALT variants without
BMI interaction effects have a weaker and less significant
effect on liver disease risk. For example, among 300 in-
dependent ALT significant signals, 8 signals are genome‐
wide significant with BMI interactions (pINT < 5 × 10−8),
and 87 signals are absent of BMI interactions (pINT > 0.5).
PRS based on the 8 signals are strongly associated with
nonalcoholic liver disease (p= 2.54 × 10−23, OR = 1.40),
yet the PRS based on 87 ALT signals have much weaker
associations (p= 1.38 × 10−4, OR = 1.14). Several ALT
and AST PRSs based on varying BMI interaction p values
were tested and suggested a similar trend (Table S11).
While larger samples sizes are required to determine if
any of the individual variants identified in our analysis
are significant risk factors for liver disease risk, collec-
tively, the burden of serum ALT and AST variants
modified by BMI are more likely to associate with liver
disease traits. In other words, interaction models may
help prioritize genes targeting liver diseases such as
NAFLD.

While this study focused on individuals of European
ancestry, BMI and fatty liver disease risk vary across
ancestry groups (Ogden et al., 2014; Setiawan
et al., 2016). GWAS and GWIS analyses in other ancestral
populations will be necessary to comprehensively un-
derstand the global contribution of genetic factors to fatty
liver disease risk. Including more diverse populations
with variable distributions of BMI and incidences of fatty
liver disease will enhance the discovery of genetic risk
factors and advance our understanding of how BMI
modifies the risk of liver disease specifically in these
populations.

In summary, this study presents the largest genome‐
wide association analysis of ALT and AST to date, and
the first genome‐wide interaction screening of BMI in-
teractions with these traits. The identified novel asso-
ciations represent a substantial advance in understanding
of the genetic architecture of serum ALT and AST levels,
which may help explain the biological mechanism of li-
ver disease and damage. The identification of multiple
significant BMI interaction signals solidifies the role of
adiposity in liver disease. Furthermore, we observed that
ALT and AST associations with significant BMI interac-
tions are also more likely to associate with liver disease
traits. Taken together, the results may contribute to novel

therapeutic target identification, and also shed light on
precision medicine strategy for liver disease patient care.
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