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Introduction

Peritoneum is the serous membrane covering the abdominal cavity and organs and is 
lined by a layer of simple squamous epithelium. These epithelial cells are called mesothe-
lium [1]. Malignant peritoneal mesothelioma (MPM) is the malignancy of peritoneal 
mesothelial cells and is a relatively rare disease but with a very poor prognosis [2]. The 
5-year relative survival rate of MPM patients is only 10% [3]. MPM is related to industrial 
pollutants and mineral exposure (asbestos accounts for 33%‒50% of cases, others include 
erionite, thorium, and mica). However, the duration between exposure and disease 
causation is variable. Other risk factors for MPM include familial Mediterranean fever 
and diffuse lymphocytic lymphoma. It usually spreads and remains within the abdominal 
cavity but in few cases may metastasize outside the abdomen [2,4]. MPM patients pres-
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Even in the current age of advanced medicine, the prognosis of malignant peritoneal me-
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of healthy controls have been identified by analyzing a microarray gene expression dataset. 
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these 
differentially expressed genes (DEG) were conducted to gain a better insight. A pro-
tein-protein interaction (PPI) network of the proteins encoded by the DEGs was construct-
ed using STRING and hub genes were detected analyzing this network. Next, the transcrip-
tion factors and miRNAs that have possible regulatory roles on the hub genes were detect-
ed. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web 
server. Six hundred six genes were found to be differentially expressed in MPM; 133 are 
upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six 
dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miR-
NAs were identified to have the most extensive regulatory functions on the DEGs. Through 
bioinformatics analyses, this work provides an insight into the potential genes and path-
ways involved in MPM.
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ent with atypical symptoms in most cases and this is responsible 
for the delayed diagnosis (average time to diagnose takes 4–6 
months) of this fatal disease. Abdominal symptoms include ab-
dominal distension, ascites, abdominal pain, early satiety, intestinal 
obstruction, and intestinal perforation. Other non-specific symp-
toms include weight loss, anorexia, nausea, night sweats, and unex-
plained fever [2,4]. MPM may also be responsible for paraneoplas-
tic syndrome exhibiting thrombocytosis, venous thrombosis, hy-
poglycemia, paraneoplastic hepatopathy, wasting of muscles, and 
adipose tissue [2]. Surgical intervention is the first line of treat-
ment for MPM patients. Cytoreductive surgery with heated intra-
peritoneal chemotherapy is currently the most preferred treatment 
option. Systemic chemotherapy is chosen for those MPM patients 
who are unable to undergo surgery [4].

In recent years, there has been rapid advancement in microarray 
and RNA-sequencing (RNA-seq) technologies, and analysis of 
the large amount of data obtained from them has shed light on 
complex biological processes in an unprecedented manner. Key 
genes and pathways involved in different cancers and diseases have 
been identified by analyzing these data. These key genes can be 
used as biomarkers and can be utilized for early diagnosis, survival 
prediction, drug target identification, and drug response observa-
tion [5-11]. Bioinformatics analyses have been employed to iden-
tify important genes and pathways involved in the disease process 
of malignant pleural mesothelioma [12-14]. Bioinformatics ap-
proach has also identified upregulation of spliceosomal genes, es-
pecially SF3B1 [15] and haploinsufficiency of BAP1 gene [16] are 
associated with MPM. In this study, we have identified the signifi-
cantly overexpressed and underexpressed genes in MPM by bioin-
formatics analyses.

Methods

Retrieval of microarray data
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) [17], a database of gene/microarray profiles with unre-
stricted public access hosted by NCBI was searched for MPM 
data. The following filters were applied while searching: ‘Expres-
sion profiling by array’ as the study type, ‘Homo sapiens’ as the or-
ganism, and the publication date to be within the last eight years. 
Only one MPM dataset (accession No. GSE112154) was retrieved 
from the search. Sciarrillo et al. [15] deposited this dataset to the 
GEO. They utilized Illumina HumanHT-12 V4.0 expression bead-
chip to obtain this gene expression profiling dataset and the data-
set is based on the GPL10558 platform. Series matrix file of 
GSE112154 was downloaded for subsequent analyses.
Identification of differentially expressed genes

NetworkAnalyst (https://www.networkanalyst.ca/NetworkAna-
lyst/faces/home.xhtml) [18], a web tool dedicated to the analysis 
of gene expression data was employed for analyzing the dataset of 
our interest. Forty-seven samples (45 malignant peritoneal meso-
thelioma samples and two peritoneal mesothelioma cell lines) 
were classified as ‘MPM’ and the rest three healthy peritoneal sam-
ples were classified as ‘Normal Mesothelium’ to make them com-
patible for analysis. Illumina probe IDs were converted by Networ-
kAnalyst to their corresponding Entrez gene IDs and official gene 
symbols. Probes corresponding to unannotated genes were filtered 
out and for multiple probes mapped to the same genes, their aver-
age expression values were considered. To obtain statistically sig-
nificant results, data with the lowest 15th percentile expression 
and data with relative abundance lower than the 5th percentile 
were discarded from downstream analyses using the ‘variance’ and 
‘low abundance’ filters. The dataset was quantile normalized fol-
lowed by box and whisker plot visualization. After quantile nor-
malization, data quality was assessed through three-dimensional 
principal component analysis (PCA). 

Limma (linear models for microarray data) [19], an R package 
for differential expression analysis of microarray data, embedded 
in the NetworkAnalyst server was exploited to identify the differ-
entially expressed genes (DEGs). Genes having an adjusted p-val-
ue (Benjamini-Hochberg method) < 0.05 and a |log2FC| value 
≥ 1.5 were considered as differentially expressed.

Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes pathway enrichment analyses: 
Enrichment analyses of the DEGs were carried out using Enrichr 
(https://maayanlab.cloud/Enrichr/). Enrichr provides a wide 
range of annotations curated from other databases and annotation 
tools for the submitted genes [20]. A list containing official gene 
symbols of the DEGs was used as the input. Gene Ontology (GO) 
biological process, molecular function, cellular component, and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
annotations for the DEGs were retrieved through Enrichr for an 
insight into the roles played by these DEGs. GO [21,22] provides 
annotations of gene products regarding their complex biological 
processes, molecular functions, and cellular distributions. KEGG 
provides molecular-level information about large-scale biological 
data obtained from genome sequences and other high-throughput 
experiments [23]. KEGG pathway database provides maps of mo-
lecular interaction, reaction, and relation networks relevant to cel-
lular metabolism, genetic and environmental information process-
ing, cellular processes, organismal systems, human diseases, and 
drug development. GO and KEGG pathway annotations having 
an adjusted p-value < 0.05 were considered statistically significant.
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Gene set enrichment analysis
Gene set enrichment analysis (GSEA) can be performed on DNA 
microarray or RNA-seq data to identify biologically linked en-
riched gene sets. It is a widely used approach where a priori gene 
sets grouped on the basis of their common biological functions, 
proximity in chromosomal locations, or participation in identical 
biological pathways are used to detect enriched gene clusters dif-
ferentially expressed in two different conditions or cell types. Here 
the focus is placed on sets of genes rather than on individual genes 
[24]. The DEGs identified in our study were ranked according to 
their |log2FC| values in a .rnk file and GSEA was performed em-
ploying the GSEA Preranked module of GenePattern platform 
(https:// www.genepattern.org/) using this file [25]. A priori an-
notated gene sets for conducting GSEA were retrieved from the 
Molecular Signatures Database (MsigDB) [26]. The c2.cp.kegg.
v7.4.symbols.gmt dataset was selected as the reference gene set da-
tabase. The number of gene set permutations was set to 1,000 and 
other parameters were used as default. In the ‘collapse dataset’ op-
tion ‘No_Collapse’ was chosen since we used official gene sym-
bols. Gene sets having a false discovery rate (FDR) q-value < 0.25 
were considered significantly enriched.

Protein-protein interaction network construction and 
identification of significant modules and hub genes 
The network of interactions among the protein products of the 
DEGs was obtained utilizing STRING (Search Tool for the Re-
trieval of INteracting Genes) (https://string-db.org/cgi/input?ses-
sionId = bGZ7ocKQMZ8I&input_page_active_form = multi-
ple_sequences) [27]. The STRING database was searched with 
medium confidence (interaction score cutoff was 0.4) and the 
protein-protein interaction (PPI) network was visualized using 
Cytoscape 3.6.1 [28]. Applying the degree cutoff, node score cut-
off, K-core, and maximum depth as 2, 0.2, 2, and 100, respectively, 
Molecular Complex Detection (MCODE) [29], a Cytoscape 
plug-in, was used to identify the modules with significant densities 
in the PPI network. Modules having an MCODE score ≥  4 were 
considered important. CytoHubba [30], another Cytoscape plug-
in was utilized for topological analysis to identify the nodes repre-
senting the hub proteins in the PPI network. CytoHubba allows to 
apply different methods of calculation for identifying hub nodes. 10 
methods available in CytoHubba, namely ‘Betweenness,’ ‘Bottle-
Neck,’ ‘Closeness,’ ‘Degree,’ ‘EcCentricity,’ ‘EPC’ (Edge Percolated 
Component), ‘MCC’ (Maximal Clique Centrality), ‘MNC’ (Maxi-
mum Neighborhood Component), ‘Radiality,’ and ‘Stress’ were ap-
plied to detect the top 50 hub nodes. Twelve proteins were ultimate-
ly identified as hub proteins from the consensus of all methods and 
their corresponding genes were considered as the hub genes.

Identification of transcription factors acting on DEGs and 
miRNAs acting on DEGs and transcription factors 
Transcription factors (TF) and microRNAs (miRNAs) are the 
two master regulators of gene expression. Cellular levels of TFs 
and miRNAs are influenced by each other in normal cells and 
their complex interplay controls the expression of common gene 
targets through feedback and feedforward loops [31]. miRNAs 
can bind to 3′ untranslated retion (UTR), 5′ UTR, promoter re-
gion, or even coding sequence of a gene to either suppress gene 
expression or induce expression. miRNAs can cause gene silenc-
ing by binding to 3′ UTR, 5′ UTR, and coding sequence, and can 
induce transcription by binding to the promoter region. They can 
also regulate gene expression within the nucleus at the time of or 
after transcription but the detailed mechanism of this intra-nucle-
ar regulation by miRNAs is not yet fully understood [32]. In our 
study, TF-DEG, miRNA-DEG, and miRNA-TF interaction net-
works were identified using the miRNet web server (https://
www.mirnet.ca/) [33]. miRNet is a curated database of miRNA 
interactions from 14 different miRNA databases. Official gene 
symbols of the hub genes were used as inputs and ChEA (ChIP 
Enrichment Analysis) was chosen as the TF database. ChEA pro-
vides data on genome-wide target specific TFs deduced from the 
chromatin immunoprecipitation (ChIP) followed by microarray 
hybridization, ChIP followed by high-throughput sequencing, 
ChIP with paired-end tag sequencing, and DNA adenine methyl-
transferase identification [34].

Identification of enriched kinases
Kinase enzymes phosphorylate proteins by transferring a phos-
phate group and phosphatase enzymes can dephosphorylate pro-
teins, thus reversing the function of kinases. Their coordinated ac-
tions make possible many normal cellular processes. Dysregulated 
kinases and deactivated phosphatases have significant roles in dif-
ferent malignancies, and kinase inhibitors are promising anticancer 
drugs [35]. Kinases that can phosphorylate the top TFs regulating 
the DEGs and thereby affect their expression level were identified 
employing the KEA2 (Kinase Enrichment Analysis 2) webserver 
(https:// www.maayanlab.net/KEA2/) [36]. A list of the top TFs 
was submitted as input to the KEA2 server. KEA2 hosts various 
phosphosite and protein level libraries that are either manually cu-
rated from kinase-substrate interactions in the literature or experi-
ment-derived data. A kinase enrichment analysis can be performed 
against these libraries to prioritize kinases phosphorylating the 
query proteins. ‘Literature based kinase-substrate library’ was cho-
sen to identify enriched kinases.
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Survival analysis of hub genes
Correlation between hub gene expression and survival rate was 
analyzed employing GEPIA2 (http://gepia2.cancer-pku.cn/ #in-
dex) [37], a web server for gene expression analysis based on the 
RNA-seq data of 9,736 tumors and 8,587 normal samples from 
the TCGA (The Cancer Genome Atlas) and the GTEx (Geno-
type-Tissue Expression) projects. Since TCGA provides data for 
only malignant pleural mesothelioma [38] and GTEx doesn’t con-
tain gene expression information of mesothelium, we choose the 
MESO (malignant pleural mesothelioma) dataset available in the 
GEPIA2 server to extrapolate the relationship between the expres-
sion level of hub genes and prognosis from pleural mesothelioma 
data. Hub gene names were used as inputs to GEPIA2. During 
survival analyses, median values were chosen as the group cutoff 
values, hazard ratios (HRs) were calculated based on Cox Propor-
tional-Hazards Model and the analyses were conducted with a 
95% confidence interval.

Identification of protein-drug interactions
Approved drugs, investigational and experimental compounds 
that can interact with the identified hub proteins were identified 
by searching the DrugBank knowledgebase (version 5.1.7, released 
2020-07-02; available at https:// go.drugbank.com/) [39]. This is 
a rich database that currently provides information on 13,791 drug 
entries of which 2,653 are approved small molecule drugs, 1,417 
are approved biologics, 131 are nutraceuticals and more than 6,451 
are experimental drugs. Information about 5,236 non-redundant 
protein (i.e., drug target/enzyme/transporter/carrier) sequences 
related to these entries is also available through DrugBank. Official 
symbols of the hub proteins were used as inputs.

Results

Identification of differentially expressed genes
The means of the microarray samples were found uniform after 
quantile normalization (Supplementary Fig. 1) and the PCA plot 
showed MPM and normal mesothelium samples arrange in differ-
ent clusters (Supplementary Fig. 2). A total number of 608 DEGs 
were identified from the analysis. Among these 608 DEGs, the re-
cords of two genes (Entrez gene ID: 100302207 and 100302173) 
have been withdrawn by the HGNC (HUGO Gene Nomencla-
ture Committee) and these genes were excluded from subsequent 
analyses. Among the rest 606 DEGs, 133 genes are upregulated 
and 473 genes are downregulated. Fig. 1 depicts a volcano plot 
representing the up-and downregulated genes. This volcano plot 
was generated using VolcaNoseR (https://huygens.science.uva.nl/
VolcaNoseR/) [40].

GO and KEGG pathway enrichment analyses
GO and KEGG pathway enrichment analyses were performed us-
ing the Enrichr web server. Biological processes, molecular func-
tions, cellular locations, and biological pathways enriched in DEGs 
are shown in Supplementary Tables 1‒4. From the GO biological 
processes, it was found that the DEGs significantly participate in 
the regulation of angiogenesis, negative regulation of cell prolifera-
tion, sprouting angiogenesis, negative regulation of cellular pro-
cesses, regulation of cell proliferation, negative regulation of angio-
genesis, regulation of vasculature development, regulation of in-
flammatory response, negative regulation of blood vessel morpho-
genesis, and in negative regulation of cell adhesion. Angiogenesis, 
cellular proliferation, inflammation, and cellular adhesion are criti-
cal events for tumorigenesis and metastasis. From the GO molecu-
lar functions, it was found that the DEGs mainly involve in cyto-
kine activity, calcium ion binding, integrin binding, metal ion 
binding, oxidoreductase activity, chemokine activity, coreceptor 
activity involved in the Wnt signaling pathway, planar cell polarity 
pathway, lipoprotein particle binding, and chemokine receptor 
binding. From the GO cellular component, it was found that the 
proteins encoded by the DEGs are chiefly distributed in lipid 
droplets, membrane rafts, microvilli, actin-based cell projections, 
cytoskeleton, endoplasmic reticulum lumen, integral components 
of the plasma membrane, sarcoplasmic reticulums, perinuclear re-
gions of cytoplasm, and caveolae. From the KEGG pathway en-
richment analysis, the DEGs were found to be enriched in Malaria, 
PPAR signaling pathway, lipolysis regulation in adipocytes, cyto-
kine-cytokine receptor interaction, AMPK signaling pathway, 
AGE-RAGE signaling pathway in diabetic complications, path-
ways in cancer, cell adhesion molecules, longevity regulating path-
way, thyroid hormone synthesis, glycerolipid metabolism, and 
PI3K-Akt signaling pathway. The top 10 GO terms and enriched 
pathways according to p-value are depicted in Fig. 2.

Gene set enrichment analysis
GSEA was performed to corroborate the enrichment results from 
Enrichr. Only one pathway (cytokine-cytokine receptor interac-
tion) was identified as downregulated from the GSEA with an 
FDR <  25% (FDR q =  0.0788609 and nominal p =  0.043296088) 
(Fig. 3). Among the 24 genes identified by Enrichr to be involved 
in cytokine-cytokine receptor interaction pathway (ACVRL1, 
CCL14, GDF10, CXCL8, OSM, LIFR, INHBB, PPBP, NGF, 
CXCL14, CXCL2, CX3CL1, BMP6, CXCL5, BMP5, GHR, IL-
1RL1, IL6, IL18RAP, ACVR1C, CCL8, LEP, LEPR, and IL17D), 
17 are included in the GSEA result (OSM, LEPR, ACVRL1, 
CXCL5, LIFR, IL18RAP, CCL14, INHBB, GHR, PPBP, CX3CL1, 
CXCL8, LEP, CCL8, CXCL2, CXCL14, and IL6). Two underex-
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pressed hub genes (IL6 and CXCL8) are included in the GSEA 
outcome which further emphasizes their importance.

PPI network construction and identification of significant 
modules and hub genes
STRING constructed the PPI network for the protein products of 
all the 606 DEGs. The number of nodes and edges in the network 
are 570 and 2,573, respectively. The average node degree of the 
network is 9.03, the average local clustering coefficient is 0.41 and 
the PPI enrichment p-value is < 1.0e-16. The PPI network was 
found to have significantly more interactions than expected which 
is an indication of their probable biological inter-connections as a 
group. The PPI network was visualized in Cytoscape and the sig-
nificantly dense modules were detected by the MCODE plug-in of 

Cytoscape. Six dense modules having an MCODE score ≥  4 were 
identified. The first module has 38 nodes, 217 edges, and has an 
MCODE score of 11.73. The second and third modules have 51 
and 29 nodes, respectively, and 224 and 79 edges, respectively. 
Their MCODE scores are 8.96 and 5.643, respectively. The fourth 
and fifth modules have five nodes, 10 edges, and their MCODE 
score is 5.0. The sixth module has 17 nodes, 35 edges and its 
MCODE score is 4.375. Proteins in each module are listed in Table 
1 and are graphically presented in Fig. 4. 

CytoHubba plug-in of Cytoscape was next employed to detect 
the top 50 hub proteins in the network. Ten available calculation 
methods in CytoHubba for detecting hub proteins were used. 
Multiple List Comparator (http:// www.molbiotools.com/list-
compare.html) was utilized to identify their intersections. Twelve 

Fig. 1. Volcano plot presentation of differentially expressed genes. The upregulated genes are shown in green dots and the downregulated 
genes are shown in red dots. Nonsignificant genes are shown in grey dots.
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proteins were identified as hub proteins by all the methods and 
their encoding genes were considered as the high-confident key 
genes (Table 2). Only two of the 12 hub genes were found upregu-
lated (CDH1 and GAPDH) and the rest 10 hub genes were found 
downregulated. CXCL8, PTGS2, and FGF2 (fibroblast growth 
factor 2) were found to be present in MCODE module 1, IL6, 
CDH5, VWF, TEK, MYC, and CDH1 in module 2, PPARG and 
GAPDH in module 3, and ADIPOQ in module 6. The hub pro-
teins were next submitted to STRING to identify their interactions 

which were then visualized by Cytoscape. It was found from 
STRING analysis that the hub proteins have significant interac-
tions among themselves. Among the 12 hub proteins, IL6, 
CXCL8, FGF2, and GAPDH are each connected with the rest 11 
hub proteins (Fig. 5).

Identification of TFs acting on DEGs and miRNAs acting 
on DEGs and TF
TFs that can act on the DEGs and miRNAs that can regulate the 
DEGs and TFs were identified, and the DEG-TF-miRNA interac-
tion network was constructed and visualized through miRNet 
(Fig. 6A). miRNet identified 197 TFs and 2,305 miRNAs. Fifteen 
top TFs with a degree cutoff of 180 and 10 top miRNAs with a de-
gree cutoff of 150 were identified. Among the Fifteen TFs, MYC 
and PPARG themselves are hub genes. Table 3 summarizes these 
most important TFs and miRNAs.

Identification of enriched kinases
Enriched kinases having interactions with the identified TFs were 
detected through the KEA2 web server. A total number of 20 kinas-
es having an adjusted p-value (FDR) <  0.1 were detected. Among 
them, significant kinases are GSK3B (6 substrates), MAPK14 (6 
substrates), MAPK1 (5 substrates), CSNK2A1 (4 substrates), 
MAPK8 (4 substrates), HIPK2 (3 substrates), PRKACB (3 sub-

Fig. 2. Bar graph representations of the top 10 Gene Ontology (GO) 
terms and enriched Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways according to p-values. The pink bar graph 
represents GO biological processes, the sky blue bar graph represents 
GO molecular functions, the light green bar graph represents GO 
cellular components, and the light red bar graph represents enriched 
KEGG pathways.
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receptor interaction pathway is significantly disturbed in malignant 
peritoneal mesothelioma. KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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Table 1. Significant modules in the PPI having an MCODE score ≥ 4

Module Nodes Edges MCODE
score Protein

1 38 217 11.73 TF, GPC3, PDK4, MSLN, ACACB, CLDN5, NES, FGF2, CIDEC, SDC2, CDH2, CEBPA, AGPAT2, CXCL8, CXCL5, PNP-
LA2, CX3CL1, CIDEA, SOD2, LPL, GPT, PLIN1, SPARCL1, PLIN2, HRC, GPAM, SCD, FABP4, LIPE, TMEM132A, 
PTGS2, DGAT2, ACSL1, ABHD5, CD36, MLXIPL, MFGE8, PCK1

2 51 224 8.96 VTN, MYC, SLC2A5, SELP, MCAM, HBEGF, NAMPT, CDH5, PTPRB, HMOX1, CAV1, KRT8, MCEMP1, TEK, MRAP, 
SNAI2, CDC20, SOX17, PDE3B, STOM, ALDH3B1, UBE2C, CAT, KLHL21, LPAR5, S1PR3, CXCL2, MYLIP, FBXO2, 
ZBTB16, SPSB1, VAMP8, S1PR1, FBXO7, HECW2, PPBP, NGF, LDLR, AGTR1, PECAM1, VWF, ADCY4, ANGPT1, 
CDH1, RBP4, MMP25, IL6, STAT5A, CFD, SELE, LEPR

3 29 79 5.643 THRSP, SOD3, KLF4, GPX3, GPX8, ADRB2, PTGER4, NOX4, CA9, THBD, RAMP2, INSIG1, NOS3, ASPM, NUSAP1, 
PPARG, TOP2A, KRT19, CEP55, NEK2, PARPBP, CALCRL, VIPR1, S100A4, GAPDH, PTH1R, COL1A1, GPBAR1, LEP

4 5 10 5 PIK3R2, NMB, PROK2, EDNRB, GPR4
5 5 10 5 HBA2, HBB, HBA1, HBG2, HBG1
6 17 35 4.375 ADAMTS5, HSPH1, DNAJB1, HSPB7, ATF4, FOXO1, BAG3, PTX3, TIMP1, ANG, MMP24, HSPA1B, ADIPOQ, HSP-

A12B, DNAJA4, OSM, EBF1

PPI, protein-protein interaction; MOCDE, Molecular Complex Detection.

Table 2. Twelve hub genes with their respective log2FC and adjusted 
p-values (FDR)

Hub gene Log2FC Adj. p-value (FDR)
CDH1 4.1017 0.00074857
GAPDH 1.5141 0.0020854
FGF2 –1.7636 0.001524
MYC –2.0953 0.020572
PTGS2 –2.4941 0.014657
TEK –2.7234 1.47E–05
VWF –2.7452 0.025154
CDH5 –2.7455 0.0011496
CXCL8 –3.0163 0.025552
ADIPOQ –3.0367 1.04E–15
PPARG –3.0666 1.10E–07
IL6 –4.1746 0.0010017

FDR, false discovery rate.

strates), GSK3A (2 substrates), and CDK5 (2 substrates). The rest 
of the kinases act on single substrates. The results from KEA2 are 
summarized in Table 4 and are visualized in Fig. 6B.

Survival analysis of hub genes
To elucidate the relationship between hub gene expression level 
and patient survival, survival analyses for the hub genes were per-
formed through GEPIA2 (Fig. 7). From the survival analyses, it 
was found that with a log-rank p <  0.05, increased expression lev-
els of one upregulated hub gene, GAPDH (HR, 2.3; p =  0.00061), 
and three downregulated hub genes, namely, TEK (HR, 1.8; 
p = 0.016), VWF (HR, 2; p =  0.0056) and CDH5 (HR, 1.9; p =  
0.0089) are associated with markedly decreased overall survival 
duration. Moreover, Cox regression analyses of these genes indi-

cated that these genes have high HRs (2.3, 1.8, 2, and 1.9) and can 
be considered as prognostic factors. These hub genes (GAPDH, 
TEK, VWF, and CDH5) can serve as survival biomarkers for 
MPM also.

Identification of hub protein-drug interactions
The approved drugs or the compounds that can interact with the 
hub proteins were identified through searching DrugBank. A total 
number of 237 drug or drug-like compounds were found to act on 
the hub proteins. Seven compounds were found to act on GAP-
DH, eight compounds with FGF2, 2 compounds with MYC, 109 
compounds with PTGS2, seven compounds with TEK, 11 com-
pounds with VWF, two compounds with CDH5, four compounds 
with CXCL8, 74 compounds with PPARG, and 13 compounds 
with IL6. No drug/compound was found to act on CDH1 and 
ADIPOQ. Among the identified compounds, there are agonists, 
antagonists, and compounds with still unknown pharmacological 
actions. For the two upregulated hub proteins (CDH1 and GAP-
DH), no antagonist/inhibitor was found. A full list of the identi-
fied compounds is available in Supplementary Table 5 and the hub 
protein-drug interaction network can be found in Supplementary 
Fig. 3.

Discussion

MPM is an aggressive disease and its prognosis is usually very 
poor. Identification of biomarkers of this disease can help in early 
diagnosis and treatment, and observing responses to ongoing 
treatment. For this purpose, in this study, we have analyzed 
GSE112154, a microarray dataset containing gene expression in-
formation of normal peritoneum and MPM. We have found a total 
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number of 606 genes are differentially expressed in MPM (133 
genes are upregulated and 473 genes are downregulated) with an 
adjusted p <  0.05 and a |log2FC| value ≥  1.5. These DEGs were 
next subjected to GO and KEGG pathway enrichment analyses 
followed by GSEA. From the GSEA, it was found that many genes 
involved in the cytokine-cytokine receptor interaction pathway are 
significantly downregulated in MPM, thereby interfering with the 
normal functions of this pathway. 

Six significant modules and 12 hub genes (CDH1, GAPDH, 
FGF2, MYC, PTGS2, TEK, VWF, CDH5, CXCL8, ADIPOQ, 
PPARG, and IL6) were identified from our analyses. Two of these 
hub genes, CDH1 and GAPDH, are overexpressed and the rest 10 

hub genes are underexpressed. CDH1 or E-cadherin’s main role is 
in cell-cell adhesion. CDH1 is considered a tumor suppressor gene 
[41] but was found overexpressed in epithelioid malignant pleural 
mesothelioma [42]. GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase) is a glycolysis enzyme that can be found in all tissues. 
Glyceraldehyde-3-phosphate is converted to 1,3-diphosphoglycer-
ate in the presence of GAPDH. In addition to this catalytic conver-
sion, GAPDH also takes part in various other complex biological 
processes like replication and repair of DNA, export of tRNA from 
the nucleus, exo- and endocytosis, cytoskeletal organization, etc. 
GAPDH overexpression is associated with different types of lung 
cancer, renal cell carcinoma, glioma, breast cancer, hepatocellular 

Fig. 4. Significant modules in the protein-protein interaction (PPI) network as identified by MCODE (Molecular Complex Detection). The 
downregulated genes are colored red and the upregulated genes are colored green. The nodes are colored in a continuous manner according 
to their |log2FC| values. Panels A, B, C, D, E, and F are significant modules in the PPI network as identified by MCODE. The downregulated 
genes are colored red and the upregulated genes are colored green. The nodes are colored in a continuous manner according to their |log2FC| 
values.
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Fig. 5. (A) Heatmap showing hub gene expressions in different samples of GSE112154. (B) Interactions among the common hub genes 
identified by 10 calculation methods of CytoHubba. (A, B) The downregulated genes are colored red and the upregulated genes are colored 
green. (B) The nodes are colored in a continuous manner according to their |log2FC| values. (C) Box plots showing expression levels of 
different hub genes in MPM (n = 47) and normal mesothelium (n = 3) samples.
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carcinoma, pancreatic cancer, gastric and colorectal cancer, mela-
noma, prostate, and urinary bladder cancer. In some of these can-
cers, GAPDH overexpression was responsible for chemotherapeu-
tic resistance [43]. GAPDH is also overexpressed in malignant 
pleural mesothelioma [44]. From survival analysis of pleural me-
sothelioma, it can be extrapolated that GAPDH upregulation 

would also be associated with reduced survival in peritoneal meso-
thelioma. FGF2 protein has important roles in cellular prolifera-
tion, motility, and differentiation. FGF2 gene has a suppressive ef-
fect on CDH1. Overexpression of the FGF2 gene in ovarian cancer 
cells was associated with downregulation of CDH1, upregulation 
of Slug (SNAI2) and ZEB1, and increased invasiveness [45]. We 

Table 3. Top transcription factors and miRNAs

Transcription factor Degree Betweenness miRNA Degree Betweenness
SOX2 293 14,615.15 hsa-mir-124-3p 241 75,109.76
MYC 283 20,679.36 hsa-mir-16-5p 236 75,393.02
SUZ12 229 7,521.775 hsa-mir-1-3p 209 57,945.4
EGR1 226 8,460.82 hsa-mir-27a-3p 195 49,269.11
STAT3 211 7,224.139 hsa-mir-129-2-3p 184 36,612.51
HNF4A 211 7,456.627 hsa-mir-34a-5p 170 36,162.74
NANOG 209 6,106.242 hsa-mir-155-5p 167 39,779.95
SPI1 208 8,373.637 hsa-mir-146a-5p 166 32,701.75
TP63 207 7,455.71 hsa-mir-374a-5p 159 30,642.76
AR 206 8,356.316 hsa-let-7b-5p 155 40,806.08
PPARG 204 9,683.092
RUNX1 193 6,815.653
TP53 187 7,209.77
MITF 185 5,649.56
POU5F1 181 4,757.409

miRNA, microRNA.

Table 4. Kinases acting on the TFs regulating the hub genes

Kinase name Adj. p-value (FDR) No. of substrate TFs Substrates (TF)
HIPK2 0.0003872 3 RUNX1, TP53, STAT3
MAPK1 0.0146 5 PPARG, TP53, STAT3, MYC, AR
MAPK14 0.0445 6 PPARG, RUNX1, HNF4A, STAT3, TP53, MYC
GSK3A 0.0722 2 TP53, MYC
CSNK2A1 0.0745 4 EGR1, TP53, SPI1, MYC
MAPK8 0.0745 4 TP53, MYC, PPARG, STAT3
GSK3B 0.0745 6 MITF, RUNX1, TP53, PPARG, STAT3, MYC
EPHA3 0.0745 1 STAT3
DYRK2 0.0745 1 STAT3
IRAK1 0.0745 1 STAT3
PRKACB 0.0745 3 EGR1, TP53, MITF
CDK5 0.0745 2 STAT3, TP53
PLK3 0.0784 1 TP53
CDK9 0.0784 1 TP53
VRK1 0.0806 1 TP53
FGFR4 0.0806 1 STAT3
MAPKAPK5 0.0806 1 TP53
MAPK11 0.0863 1 HNF4A
MSK1 0.0863 1 STAT3
FGFR3 0.0909 1 STAT3

TF, transcription factor; FDR, false discovery rate.
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Fig. 6. (A) Differentially expressed gene-transcription factor (TF)-miRNA interaction network. This network was obtained after filtering 
nodes of the original network with a degree cutoff of 150 to avoid hairball effect. In this image, genes are shown in blue circles, TFs are 
shown in green circles, and miRNAs are shown in red squares. (B) Network showing kinases that interact with TFs.

BA

Fig. 7. Overall survival analyses of the hub genes (p < 0.05). 95% Confidence interval is shown as dotted lines. HR, hazard ratio.
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have found an inverse relationship between CDH1 and FGF2 in 
MPM. We have found CDH1 is significantly upregulated and 
FGF2 is downregulated in MPM. We have also found SNAI2 is 
downregulated and ZEB1 is not differentially expressed in MPM. 
This suggests a vice versa regulatory relationship may exist be-
tween CDH1 and FGF2 in MPM. Increased FGF2 protein level 
also causes a receptor-independent upregulation of the IL6 gene 
[46]. This implies a directly proportional relationship between 
FGF2 and IL6 exists. We have found both FGF2 and IL6 are un-
derexpressed in MPM. MYC is a proto-oncogene and MYC pro-
tein has roles in cellular proliferation, differentiation, apoptosis, 
cellular senescence, DNA damage responses, biosynthesis of ribo-
some, glycolysis, and mitochondrial functions. It can initiate events 
that lead to either hyperproliferation of cancer cells or prevention 

of tumorigenesis. It was further observed that tumor cells having 
poor blood supply becomes metabolically inactive and MYC level 
is decreased in these cells. MYC helps survive these cells under hy-
poglycemic and hypoxic conditions. MYC is usually overexpressed 
in different cancers. However, it has been reported that MYC is un-
derexpressed in adrenocortical cancers. [47-49]. We have also 
found it is underexpressed in MPM. PTGS2 (also known as COX-
2) is overexpressed in many solid tumors, for example, breast, col-
orectal, lung, pancreatic, liver, and ovarian cancers [50]. But we have 
found this gene is downregulated in MPM. TEK is a receptor tyro-
sine kinase protein. It is involved in angiogenesis through TEK-angio-
poietin 1 (ANGPT1) and TEK-angiopoietin 2 (ANGPT2) signal-
ing. ANGPT1 is an agonist of TEK whereas ANGPT2 can play as 
both an agonist and an antagonist. TEK is downregulated in meta-
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static clear cell renal cell carcinoma and is associated with poor prog-
nosis [51]. We have found both TEK and ANGPT1 are downregu-
lated in MPM. Zhang et al. (2020) [12] showed that CXCL8/IL8, 
PPARG, ADIPOQ, and IL6 are upregulated in malignant pleural 
mesothelioma. But we have found from our analyses that these 
genes are downregulated in MPM. These genes might have differ-
ent roles in the pathogenesis of malignant pleural mesothelioma 
and MPM. We have found VWF and CDH5 are downregulated in 
MPM. These two genes are also downregulated in non-small cell 
lung cancer [52]. Apart from the hub genes, we have found the 
most upregulated genes in MPM are KRT19, KRT18P55, MSLN, 
KRT8, SLPI, CGN, and CXADR (Coxsackie and adenovirus recep-
tor). KRT19 (keratin 19) and KRT8 (keratin 8) are upregulated in 
lung adenocarcinoma where they are associated with poor progno-
sis. High KRT19 expression is also associated with liver and breast 
cancer. High KRT8 expression was also observed in clear cell renal 
cell carcinoma and gastric cancer [53]. KRT8 was also found to be 
upregulated in rat models of mesothelioma [54]. KRT18P55 (ker-
atin 18 pseudogene 55) encodes a long intergenic noncoding 
RNA (KRT18P55), is overexpressed in intestinal-type gastric can-
cer, and correlates with its progression [55]. This implies that this 
long noncoding RNA has a role common in intestinal-type gastric 
cancer and MPM. MSLN (mesothelin) in healthy individuals is 
expressed in pleura, pericardium and peritoneum. However, it is 
upregulated in all types of mesothelioma, pancreatic adenocarci-
noma, ovarian cancers, lung adenocarcinoma, and cholangiocarci-
noma [56,57]. SLPI (secretory leukocyte protease inhibitor) up-
regulation has been observed in breast, lung, stomach, and col-
orectal cancers [58]. CXADR is a receptor for Coxsackie B viruses 
and adenoviruses 2 and 5 [59]. It was shown that CXADR main-
tains survival and growth of oral squamous cell carcinoma by 
translocating CDH1 from cytoplasm to cell membrane [60]. We 
have found that both CXADR and CDH1 are upregulated in MPM 
and postulate a similar role played by CXADR in MPM.

TFs and miRNAs maintain spatiotemporal gene expression. 
TFs and miRNAs that can regulate the DEGs were also identified. 

Among the identified miRNAs, mir-34a was reported to be 
downregulated in MPM in comparison with normal peritoneum. 
Re-expression of mir-34a in MPM cells exhibited oncosuppressive 
events both in vitro and in vivo. This suggests downregulation of 
this miRNA has a possible role in the pathogenesis of MPM [61]. 
The roles of other miRNAs are yet to be elucidated. 

In this study, adopting a biological network analysis approach, we 
have identified the potential pathways and genes involved in MPM. 
These candidate genes and pathways need to be validated in further 
in vitro and in vivo experiments and in MPM samples to confirm 
their active roles and to manipulate them for clinical usefulness.
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