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Abstract: Celestial navigation is required to improve the long-term accuracy preservation capability
of near space vehicles. However, it takes a long time for traditional celestial navigation
methods to identify the star map, which limits the improvement of the dynamic response ability.
Meanwhile, the aero-optical effects caused by the near space environment can lead to the colorization
of measurement noise, which affects the accuracy of the integrated navigation filter. In this paper,
an INS/CNS deeply integrated navigation method, which includes a deeply integrated model and a
second-order state augmented H-infinity filter, is proposed to solve these problems. The INS/CNS
deeply integrated navigation model optimizes the attitude based on the gray image error function,
which can estimate the attitude without star identification. The second-order state augmented
H-infinity filter uses the state augmentation algorithm to whiten the measurement noise caused by
the aero-optical effect, which can effectively improve the estimation accuracy of the H-infinity filter in
the near space environment. Simulation results show that the proposed INS/CNS deeply integrated
navigation method can reduce the computational cost by 50%, while the attitude accuracy is kept
within 10” (3 σ). The attitude root mean square of the second-order state augmented H-infinity filter
does not exceed 5”, even when the parameter error increases to 50%, in the near space environment.
Therefore, the INS/CNS deeply integrated navigation method can effectively improve the rapid
response ability of the navigation system and the filtering accuracy in the near space environment,
providing a reference for the future design of near space vehicle navigation systems.

Keywords: near space vehicles; integrated navigation; H-infinity filter; celestial navigation

1. Introduction

Near space refers to the airspace 20 to 100 km above the surface [1]. Near space vehicles can
cruise at a high speed in both the atmosphere and space. Compared with traditional aircraft, near
space vehicles have been widely applied in space transportation, remote penetration, and so on, due to
their advantages relating to launch costs and re-usability, among others [2,3]. Therefore, near space
vehicles have drawn a great amount of attention, and many countries, such as the United States,
Russia, China, France, and Germany, have conducted research on near space vehicles, such as the
X-43A, X51A, X-37B, SHEFEX-1, SHEFEX-2, Avangard, and so on [4,5].

Near space vehicles fly so fast that attitude errors can greatly affect their position accuracy [6,7].
As the most accurate navigation method [8–10], celestial navigation is helpful for improving the
long-term accuracy preservation capability of near space vehicles [11]. Celestial navigation calculates
the attitude of aircraft by measuring stars which are firmly fixed in the inertial space, such that
navigation error does not accumulate with time. Star sensors are widely used in modern celestial
navigation systems, which capture images of stars and calculate the attitude according to the star
point locations [12]. However, star sensors are vulnerable to environmental impacts. To improve

Sensors 2020, 20, 5885; doi:10.3390/s20205885 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20205885
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5885?type=check_update&version=2


Sensors 2020, 20, 5885 2 of 18

the reliability of the navigation system, an inertial sensor is usually added to produce an integrated
navigation system [13,14]. The INS/CNS integrated navigation system can be divided into two modes:
Loose integration and tight integration [15]. In a loosely integrated navigation system, the inertial
and star sensors work independently, where the measurement of the integrated navigation system is
subject to the navigation error of both [16]. In a tightly integrated navigation system, the star sensor is
no longer used for independent navigation calculation but, instead, is used as a sensor to measure the
star vector; the system then sets up the measurement equation based on the star vector error [17,18].
The tightly integrated mode can save computational time at the sensor level, but it needs more time to
update the measurements in the navigation filter. The computational efficiency of tightly integrated
mode is close to loosely integrated mode in the whole navigation loop. Regardless of whether a
loosely or tightly integrated navigation system is employed, star identification is necessary to identify
navigation stars, which is the most time-consuming step [9,19]. The computational cost of the star
sensor causes an attitude data delay [20]. When the vehicle speed is low and the attitude changes
slowly, the attitude delay does not affect the navigation accuracy. However, the speed of near space
vehicles is so high, and their mobility is so strong, that data delay has a significant impact on their
navigation accuracy. Therefore, one solution is to simplify the celestial navigation algorithm and
improve the computational efficiency of the star sensor [5,20].

Furthermore, the complex flow structures around the optical window of the star sensor produce
target image offsets (called aero-optical effects), which is an important factor affecting the navigation
accuracy of the near space vehicle [21,22]. The main problem of celestial navigation in the near space
environment is the colored noise caused by aero-optical effects, which can cause the accuracy of the
integrated navigation filter to decrease or even diverge [23,24].

At present, the Kalman filter is the most widely used technology in integrated navigation
systems [25]. However, the Kalman filter makes some ideal assumptions in the filtering process, such as
knowledge of the system model and system disturbances. The Kalman filtering algorithm assumes that
the noise is white noise with zero mean and known covariance [26]; obviously, this assumption is no
longer tenable in the near space environment. To deal with the uncertainty of noisy models, the H-infinity
filter has been proposed. The H-infinity filter does not require the statistical characteristics of the noise
model and has better robustness in the uncertainty system model [27]. Therefore, the H-infinity filter
has great advantages over other filters in the near space environment.

Based on the above analyses, there are two problems that need to be solved: First, due to the
strong mobility and high speed of near space vehicles, attitude data delay has a great impact on the
navigation accuracy [1,5,20]. Therefore, the computational efficiency of the navigation algorithm
needs to be improved, in order to adapt to the dynamic characteristics of near space vehicles.
Second, the aero-optical effects affect the observation of the star sensor, leading to colorized measurement
noise [21,23]. Therefore, the filter of the integrated navigation system needs to be improved using a
colored noise model, in order to adapt to the near space environment.

To solve the above problems, an INS/CNS deeply integrated navigation model is proposed in this
paper. In loosely and tightly integrated mode, IMU and star sensor work independently, but in deeply
integrated mode, IMU will be involved in the calculation process of star sensor. IMU data is used
to predict the navigation star and ensure that the algorithm can converge. In the deeply integrated
navigation system, the star sensor only outputs a gray image (star identification is unnecessary).
The attitude is obtained by optimizing the gray image error function, which is constructed with the
help of IMU. Therefore, compared with the loosely and tightly integrated modes, the integration will
be deeper in deeply integrated mode. Meanwhile, a state augmentation algorithm is introduced to
whiten the measurement noise, which can effectively reduce the uncertainty of the measurement noise
model. Then, a second-order state augmented H-infinity filter is proposed by using prior information
of the colored noise, which can effectively improve the estimation accuracy of the near space vehicle
navigation system.
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This paper is organized as follows: In Section 2, the INS/CNS deeply integrated navigation
model is proposed, to improve the computational efficiency of the star sensor. The second-order state
augmented H-infinity filter is proposed in Section 3, to improve the navigation accuracy under colored
noise conditions in the near space environment. Simulations are presented in Section 4, to demonstrate
the performance of the proposed model. Finally, our conclusions are drawn in Section 5.

2. INS/CNS Deeply Integrated Model

The main idea of INS/CNS integrated navigation is to use the error between the measurement
information of the star sensor and the prediction information of the INS to estimate the misalignment
angle. The difference is the navigation information processing level; for example, a loosely integrated
model deals with navigation information at the attitude angle level [28], while a tightly integrated
model deals with navigation information at the star vector level [29]. Furthermore, the deeply
integrated model deals with navigation information at the gray image level. The deeper the navigation
information level is, the less processing links there are to the star sensor. Therefore, in the tightly
integrated mode, the star sensor does not need to calculate the attitude. In the deeply integrated mode,
star identification is only used to provide initial values at the beginning, the star sensor does not need
to carry out star identification subsequently.

2.1. Gray Image Error Function

The gray image error function is the gray error between the measurement star image of the star
sensor and the predicted star image by the inertial navigation system.

As shown in Figure 1, g1 is the measurement star image of the star sensor; g2 is the prediction star
image of inertial navigation; Osxsyszs is the star sensor co-ordinate system; Os′xs′ ys′zs′ is the virtual
star sensor co-ordinate system based on INS prediction; Cs′

s is the transformation matrix between
the star sensor and virtual star sensor co-ordinate systems; and φs is the misalignment angle of Cs′

s ,
which satisfies Cs′

s = exp(φs×). Suppose p1 is a pixel in g1 and ps is the projection vector of p1 in the
star sensor co-ordinate system, which satisfy [30]:

p1 =


ux

uy

1

 =


fx 0 cx

0 fy cy

0 0 1




X/Z
Y/Z

1

 = Aps, (1)

where ux and uy represent the horizontal and vertical pixel co-ordinates, respectively; A is the internal
parameter matrix of the star sensor; the parameters fx, fy, cx, and cy are fixed after delivery; X, Y, and Z
are the co-ordinates of ps; and ps is the normalized vector of ps.
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Due to the INS misalignment angle, g2 is based on the virtual star sensor co-ordinate system,
ps and p′s are projection vectors of the same point in the star sensor and virtual star sensor co-ordinate
system, and p2 represents the pixel co-ordinates of p′s in g2, which satisfy

p2 = Ap′s = ACs′
s ps = A exp(φs×)ps. (2)

I1
(
p1

)
is the gray value of point p1 in g1, I2

(
p2

)
is the gray value of point p2 in g2, p1 and p2 can be

regarded as projections of the same vector into different images, φ̂s is the estimate of φs, the subscript i
represents the number of pixels in the image, and ei

(
φ̂s

)
is the gray error function of a single point,

which calculated as follows:

ei
(
φ̂s

)
= I1

(
p1

)
− I2

(
p2

)
= I1

(
Aps

)
− I2

(
A exp

(
φ̂s×

)
ps

)
. (3)

According to the gray scale invariant, image transformation does not change the gray value of the
same star point [31]. When φ̂s is close to the true value φs, ei

(
φ̂s

)
will be close to zero. Considering all

pixels in the image, the star sensor attitude estimation problem can be transformed into a non-linear
optimization problem, as follows:

min
φ̂s

J
(
φ̂s

)
= ‖e

(
φ̂s

)
‖

2
, e

(
φ̂s

)
=


e1

(
φ̂s

)
. . .

eN
(
φ̂s

)
, (4)

where N is the number of pixels to be optimized in the image and e
(
φ̂s

)
is the gray image error function.

The optimal estimate of φs is obtained when J
(
φ̂s

)
reaches its minimum.

2.2. Attitude Optimization Algorithm Based on the Damped Newton Method

According to Equation (4), the principle of the deeply integrated model is to minimize the mean
square error between two images by adjusting φ̂s. To explain the principle of the deeply integrated
model intuitively, suppose that there is only one star in the image. The physical meanings of g1, g2,
and the gray image error function are shown in Figure 2.
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function. The optimal estimate of sφ  is obtained when ( )ŝJ φ  reaches its minimum. 
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ŝφAdjust

sφ

When    is close to sφ

A

BA


B

A

B

A

B

 
Figure 2. Fundamental principles of the deeply integrated model. 
Figure 2. Fundamental principles of the deeply integrated model.



Sensors 2020, 20, 5885 5 of 18

At the beginning, star identification is needed to modify INS to make sure that φ̂s is small enough.
Then, the star in g1 and the star in g2 will appear in the same star window as shown in Figure 2.
There will be one obvious peak A and one obvious trough B in ∆g above, adjust φ̂s in the direction of
→

BA. A and B will come closer and closer by iteration, and finally become the same as the ∆g below.
According to the gray scale invariant,

I1
(
Aps

)
= I1

′
(
A exp

(
φ̂s×

)
ps

)
. (5)

Equation (3) can be further written as

ei
(
φ̂s

)
= I1

(
p1

)
− I2

(
p2

)
= I1

′
(
A exp

(
φ̂s×

)
ps

)
− I2

(
A exp

(
φ̂s×

)
ps

)
= ∆I

(
p2

)
. (6)

∆I
(
p2

)
is the gray value of point p2 in ∆g,the physical meaning of ei

(
φ̂s

)
can be understood as the

value of the pixel co-ordinate p2 in ∆g. The purpose of global optimization is to minimize the mean
square error of all points in ∆g.

As shown in Figure 3, when φ̂s deviates from φs, there will be an obvious peak and an obvious
valley in ∆g. The purpose of the deeply integrated model is to adjust the rotation relationship φ̂s

between g1 and g2 until the peak and valley overlap, such that the gray error becomes close to zero.
Obviously, the fastest adjustment direction is the red line in Figure 3, which is actually the gradient
direction of ei

(
φ̂s

)
. The gradient can be described as follows:

∂ei
(
φ̂s

)
∂φ̂s

=
∂
[
I1

(
p1

)
− I2

(
p2

)]
∂φ̂s

=
∂
[
I1

(
Aps

)
− I2

(
A exp

(
φ̂s×

)
ps

)]
∂φ̂s

= −
∂I2

(
A exp

(
φ̂s×

)
ps

)
∂φ̂s

. (7)
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It is difficult to calculate ∂I2/∂φ̂s directly, so an intermediate variable is introduced to decompose
Equation (7). Suppose ρ = exp

(
φ̂s×

)
ps and ϑ = Aρ, then Equation (7) can be decomposed into:

∂ei
(
φ̂s

)
∂φ̂s

= −
∂I2

∂ϑ
∂ϑ
∂ρ

∂ρ

∂φ̂s
. (8)
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Next, we calculate the three partial derivatives. ∂I2/∂ϑ is the pixel gradient of g2 at ϑ. If one

supposes that the pixel coordinate is ϑ =
[

ua ub
]T

, then the pixel gradient is

∂I2

∂ϑ
=

1
2

[
I2(ua + 1, ub) − I2(ua − 1, ub)

I2(ua, ub + 1) − I2(ua, ub − 1)

]T

. (9)

Supposing that ρ =
[

Xρ Yρ Zρ

]T
, ∂ϑ/∂ρ can be calculated as follows:

∂ϑ
∂ρ

=


fx

Zρ 0 −
fxXρ
Z2
ρ

0
fy

Zρ −
fyYρ
Z2
ρ

. (10)

It is difficult to calculate ∂ρ/∂φ̂s directly, so the Baker–Campbell–Hausdorff formula is used to
approximate ∂ρ/∂φ̂s, which satisfies [32]:

∂ρ
∂φ̂s

=
∂ exp(φ̂s×)ps

∂φ̂s
= lim

δφ̂s→0

exp[(φ̂s+δφ̂s)×]ps−exp(φ̂s×)ps
δφ̂s

= lim
δφ̂s→0

exp[(κδφ̂s)×] exp(φ̂s×)ps−exp(φ̂s×)ps
δφ̂s

≈ lim
δφ̂s→0

(κδφ̂s)×exp(φ̂s×)ps
δφ̂s

= −ρ× κ

(11)

According to the Baker–Campbell–Hausdorff formula [32], κ = sinχ
χ I3×3 +

(
1− sinχ

χ

)
γγT + 1−cosχ

χ (γ×)

χ =
∣∣∣φ̂s

∣∣∣,γ =
φ̂s
χ

. (12)

The Jacobian matrix,Ji, can be obtained by substituting Equations (9)–(11) into Equation (8),
which satisfies:

Ji =
∂ei

(
φ̂s

)
∂φ̂s

= −
∂I2

∂ϑ
∂ϑ
∂ρ

∂ρ

∂φ̂s
=

1
2

[
I2(ua + 1, ub) − I2(ua − 1, ub)

I2(ua, ub + 1) − I2(ua, ub − 1)

]T


fx
Zρ 0 −

fxXρ
Z2
ρ

0
fy

Zρ −
fyYρ
Z2
ρ

[ρ× κ]. (13)

When there are N pixels to be optimized, each Ji is stacked into a global Jacobian

matrix J
(
φ̂s

)
=

[
JT

1 . . . JT
N

]T
, where Ji is a 1 × 3 dimensional matrix and J

(
φ̂s

)
is an N × 3

dimensional matrix.
The damped Newton method is used to update φ̂s, and ∆φ̂s is calculated as follows:

HJ∆φ̂s = gJ

HJ = JT
(
φ̂s

)
J
(
φ̂s

)
+ ηI

gJ = −JT
(
φ̂s

)
e
(
φ̂s

) , (14)

where η is the damping coefficient, which can avoid singularities and make the iterative process more
stable. Then, φ̂s = φ̂s + ∆φ̂s is used to modify φ̂s until it converges. It should be noted that the method
does not always converge, when the initial value of φ̂s is larger than 2′, the method will diverge in
simulation. Therefore, it is suggested that the initial value of φ̂s should be set within 2′ to ensure the
convergence of the algorithm. Generally, the method only needs 3-4 iterations to achieve convergence.

Following which, Cn
n′ can be calculated. ps and p′s are the true and predicted values of the same

vector, which satisfy 
ps = Cs

bCb
npn

p′s = Cs
bCb

n′pn
p′s = Cs′

s ps

. (15)
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Cn
n′ is calculated as follows:

Cn
n′ =

(
Cs

bCb
n′
)−1

exp
(
φ̂s×

)
Cs

bCb
n′ . (16)

Cn
n′ is used to modify Cb

n′ to the CNS attitude result Cb
n, where qcns is the quaternion of Cb

n. As the
CNS attitude, qcns, has been obtained by the deeply integrated model, the next section will describe the
filtering algorithm of the INS/CNS integrated navigation method.

3. Second-Order State Augmented H-Infinity Filter

There is a strong interaction between the aircraft and the surrounding airflow when the near space
vehicle re-enters the atmosphere. This effect is called the aero-optical effect, which causes colorization
of the attitude noise [23]. This section solves this problem by using a filtering approach.

3.1. Star Sensor Pixel Offset Model in the Near Space Environment

When light travels through a rapidly varying flow field, the imaging position on the focal plane
may be biased. The image distortion due to aero-optical effects can be described approximately as
follows:

I1(i1, j1) = I0(i0 + ∆i, j0 + ∆ j), (17)

where I0(i0 + ∆i, j0 + ∆ j) is the gray of reference image without aero-optical effects, I1(i1, j1) is the
gray of distorted image affected by aero-optical effects, (i0, j0) is the reference image co-ordinate,
(i1, j1) is the distorted image co-ordinate, and ∆i and ∆ j are the pixel offsets in the X-axis and Y-axis,
respectively, caused by aero-optical effects. The pixel offset effect is shown in Figure 4, where the
hollow point represents the original pixel position and the solid point represents the pixel position
after offset.
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It has been pointed out, in [24], that the pixel offset caused by aero-optical effects can be modeled
approximately as follows: {

∆i(t) = a1 sin(2π f1t + θ1)

∆ j(t) = a2 sin(2π f2t + θ2)
. (18)

However, sinusoidal mathematical models are difficult to directly apply in the navigation systems
of near space vehicles. This is because, in the actual flight environment, it is difficult to obtain the
real-time phases θ1 and θ2. Therefore, in this paper, a recursive model is used to describe the pixel
offset caused by aero-optical effects. The discrete sine sequence can be written as follows:

sin(ωn) ≈ 2 cos(ω) sin(ω(n− 1)) − sin(ω(n− 2)), (19)
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where ω is the digital angular frequency.
Therefore, the discrete recursive model of pixel offset can be obtained as follows: ∆i(tk) = 2 cos

(
2π f1

f s

)
∆i(tk−1) − ∆i(tk−2) +ωi(tk)

∆ j(tk) = 2 cos
(
2π f2

f s

)
∆ j(tk−1) − ∆ j(tk−2) +ω j(tk)

, (20)

where f s is the sampling frequency, and ωi(tk) and ω j(tk) are zero-mean white noise sequences.
This modeling method only needs to know the frequency, which improves the feasibility of
engineering applications.

3.2. Second-Order State Augmented H-Infinity Filtering Model

The H-infinity filter can obtain the optimal estimation of state variables under the condition of
noise with unknown statistics [33,34]. According to the characteristics of the near space environment,
the H-infinity filter can be improved based on the prior information of Vk. Specific improvements are
presented in the following sections.

3.2.1. Measurement Noise Whitening

Suppose the filter model is {
Xk = Φk/k−1Xk−1 + Γk−1Wk−1
Zk = HkXk + Vk

, (21)

where Vk is the observation noise of the star sensor in the near space environment, which includes
the two parts Vk = Vc,k + Vw,k, in which Vc,k is the colored noise part and Vw,k is the white noise

part (E
[
Vw,k

]
= 0, E

[
Vw,kVT

w, j

]
= Rw,kδkj). The mechanisms of Vc,k and Vw,k are different, so they are

not related. Vc,k can be approximated as a second-order Markov process, which can be described as

Vc,k = α1Vc,k−1 + α2Vc,k−2 + ξk, where ξk is the driving white noise (E[ξk] = 0, E
[
ξkξ

T
j

]
= Rc,kδkj). X

and Φ can be described as follows:

X =
[
φT (δvn)

T (δp)T (εb)
T (∇b)

T
]T

, Φ ≈ I + Ft. (22)

where

F =



−

[
ωn

in×
]

Mv M1 + M2 −Cn
b 03×3[

fn
ib×

]
−

[(
2ωn

ie +ω
n
en

)
×

]
+ [v×]Mv Mg + [v×](2M1 + M2) 03×3 Cn

b
03×3 Mpv Mpp 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


. (23)

M1 =


0 0 0

−ωie sin L 0 0
ωie cos L 0 0

, M2 =


0 0 vN

(RM+h)2

0 0 −vE

(RN+h)2

vE sec2 L
(RN+h) 0 −vE tan L

(RN+h)2

, Mv =


0 −

1
RM+h 0

1
RN+h 0 0
tan L

RN+h 0 0

. (24)

Mpv =


0 1

RM+h 0
sec L

RN+h 0 0
0 0 1

, Mpp =


0 0 −vN

(RM+h)2

vE sec L tan L
RN+h 0 −vE sec L

(RN+h)2

0 0 0

. (25)
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The first- and second-order terms of the noise sequence Vc,k can be expressed as follows:[
Vc,k

Vc,k−1

]
=

[
α1I α2I

I 0

][
Vc,k−1
Vc,k−2

]
+

[
ξk
0

]
. (26)

Vc,k−1 and Vc,k−2 can be extended into the state parameters to form the second-order augmented
state parameters and, so the measurement equation can be expressed as follows:

Zk = HkXk + Vc,k + α1Vc,k−1 + α2Vc,k−2 + ξk =
[

Hk α1I α2I
]

Xk
Vc,k−1
Vc,k−2

+ (
Vw,k + ξk

)
. (27)

The state equation can be expressed as follows:
Xk

Vc,k−1
Vc,k−2

 =


Φk/k−1 0 0
0 α1I α2I
0 I 0




Xk−1
Vc,k−2
Vc,k−3

+


Γk−1 0 0
0 I 0
0 0 I




Wk−1
ξk
0

. (28)

Suppose

Xa
k =


Xk
Vc,k−1
Vc,k−2

, Φa
k/k−1 =


Φk/k−1 0 0
0 α1I α2I
0 I 0

, Γa
k−1 =


Γk−1 0 0
0 I 0
0 0 I


Wa

k−1 =


Wk−1
ξk
0

, Ha
k =

[
Hk α1I α2I

]
, Va

k = Vw,k + ξk

. (29)

Then, the second-order state augmented model (after whitening) can be written as follows:{
Xa

k = Φa
k/k−1Xa

k−1 + Γa
k−1Wa

k−1
Zk = Ha

kXa
k + Va

k
. (30)

The noise characteristics of Wa
k and Va

k can be analyzed, which satisfy

E
[
Wa

k

]
= 0, E

[
Va

k

]
= 0

E
[
Wa

k

(
Wa

j

)T
]
= E




Wk−1
ξk
0

[ WT
k−1 ξT

k 0
] =


Qk 0 0
0 Rc,k 0
0 0 0

δkj

E
[
Va

k

(
Va

j

)T
]
= E

[
Vw,kVT

w, j + ξkξ
T
j

]
=

(
Rw,k + Rc,k

)
δkj

E
[
Wa

k

(
Va

j

)T
]
= E




Wk−1
ξk
0


(
VT

w, j + ξT
j

) =


0
Rc,k
0

δkj

. (31)

Although Va
k has been converted to white noise, the cost is that the system noise Wa

k and measured

noise Va
k become dependent (E

[
Wa

k

(
Va

j

)T
]
, 0). This is because the prior model of the colored noise

is added to the state quantity and the colored noise Va
k is affected by the driving white noise ξk,

which leads to correlation between Wa
k and Va

k.
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3.2.2. Decorrelation of System Noise and Measurement Noise in the Second-Order Augmented Model

Equation (31) can be abbreviated as follows:

E
[
Wa

k

(
Wa

j

)T
]
= Qa

kδkj

E
[
Va

k

(
Va

j

)T
]
= Ra

kδkj

E
[
Wa

k

(
Va

j

)T
]
= Skδkj

. (32)

According to Equation (30), 0 = Jk−1

(
Zk−1 −Ha

k−1Xa
k−1 + Va

k−1

)
, where Jk−1 is an arbitrary matrix.

The state equation can be organized as

Xa
k = Φa

k/k−1Xa
k−1 + Γa

k−1Wa
k−1 + Jk−1

(
Zk−1 −Ha

k−1Xa
k−1 + Va

k−1

)
=

(
Φa

k/k−1 − Jk−1Ha
k−1

)
Xa

k−1 + Jk−1Zk−1 +
(
Γa

k−1Wa
k−1 − Jk−1Va

k−1

)
= Φ∗k/k−1Xa

k−1 + Jk−1Zk−1 + W∗k−1

(33)

where {
Φ∗k/k−1 = Φa

k/k−1 − Jk−1Ha
k−1

W∗k−1 = Γa
k−1Wa

k−1 − Jk−1Va
k−1

. (34)

The covariance matrix of system noise and measurement noise is as follows:

E
[
W∗k

(
Va

j

)T
]
= E

[
Γa

kWa
k

(
Va

j

)T
− JkVa

k

(
Va

j

)T
]
=

(
Γa

kSk − JkRa
k

)
δkj. (35)

Obviously, if Jk satisfies Γa
kSk − JkRa

k = 0, W∗k and Va
k are no longer relevant and, so, Jk should satisfy

Jk = Γa
kSk

(
Ra

k

)−1
. (36)

The variance matrix of W∗k is

E
[
W∗k

(
W∗j

)T
]
=

(
Γa

kQa
k

(
Γa

k

)T
+ JkRa

kJT
k − Γa

kSkJT
k − JkST

k

(
Γa

k

)T
)
δkj

=
(
Γa

kQa
k

(
Γa

k

)T
− JkST

k

(
Γa

k

)T
)
δkj =

(
Γa

kQa
k

(
Γa

k

)T
− JkRa

kJT
k

)
δkj

(37)

If Q∗k = Γa
kQa

k

(
Γa

k

)T
− JkRa

kJT
k , the second-order state augmented model (after decorrelation) can be

expressed as follows:  Xa
k = Φ∗k/k−1Xa

k−1 + Jk−1Zk−1 + W∗k−1

Zk = Ha
kXa

k + Va
k

, (38)

where 
E
[
W∗k

]
= 0, E

[
Va

k

]
= 0, E

[
W∗k

(
Va

j

)T
]
= 0

E
[
W∗k

(
W∗j

)T
]
= Q∗kδkj, E

[
Va

k

(
Va

j

)T
]
= Ra

kδkj

. (39)

Suppose the estimator of the H-infinity Filter, after expanding its dimension, is

yk = TkXk =
[

Tk 0
]

Xk
Vc,k−1
Vc,k−2

 = Ta
kXa

k. (40)
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A second-order state augmented H-infinity filter can be obtained by substituting Equation (38)
and Equation (40) into the standard H-infinity formula, thus satisfying

Ω̃
a
k =

(
Ta

k

)T
ΩkTa

k

Xa
k = Φ∗k/k−1Xa

k−1 + Jk−1Zk−1 + Φ∗k/k−1Kk−1

(
Zk−1 −Ha

k−1Xa
k−1

)
Kk−1 = Pa

k−1

[
I− θΩ̃kPa

k−1 +
(
Ha

k−1

)T(
Ra

k−1

)−1
Ha

k−1Pa
k−1

]−1
Ha

k−1

(
Ra

k−1

)−1

Pa
k = Φ∗k/k−1Pa

k−1

[
I− θΩ̃kPa

k−1 +
(
Ha

k−1

)T(
Ra

k−1

)−1
Ha

k−1Pa
k−1

]−1(
Φ∗k/k−1

)T
+ Q∗k−1

. (41)

4. Results and Discussion

4.1. Simulation Verification of the INS/CNS Deeply Integrated Model

4.1.1. Algorithm Robustness Verification

The optimization object of the deeply integrated model is the global gray error of all navigation
stars, where the optimization result is the optimal solution (in the least-squares sense). Theoretically, the
mismatching of individual stars does not affect the final result; this was verified by simulation.

The Smithsonian Astrophysical Observatory (SAO) catalog was used for simulation validation,
where precession and nutation were compensated for by the IAU1980 model, aberration only considered
first-order corrections, and polar shift correction was provided by the International Earth Rotation
Service (IERS). As shown in Figure 5, the simulation was validated under three working conditions:
Low, medium, and high uncertainty.
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4. Results and Discussion 

4.1. Simulation Verification of the INS/CNS Deeply Integrated Model 

4.1.1. Algorithm Robustness Verification 

The optimization object of the deeply integrated model is the global gray error of all navigation 

stars, where the optimization result is the optimal solution (in the least-squares sense). Theoretically, 

the mismatching of individual stars does not affect the final result; this was verified by simulation. 

The Smithsonian Astrophysical Observatory (SAO) catalog was used for simulation validation, 

where precession and nutation were compensated for by the IAU1980 model, aberration only 

considered first-order corrections, and polar shift correction was provided by the International Earth 

Rotation Service (IERS). As shown in Figure 5, the simulation was validated under three working 

conditions: Low, medium, and high uncertainty. 
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Figure 5. Initial star map for each working condition: (a) Star map observation by the star sensor; (b) 

prediction star map obtained under low uncertainty conditions; (c) prediction star map obtained 

under medium uncertainty conditions; and (d) prediction star map obtained under high uncertainty 

conditions (all star maps had enhanced contrast for ease of viewing). 

Figure 5. Initial star map for each working condition: (a) Star map observation by the star sensor;
(b) prediction star map obtained under low uncertainty conditions; (c) prediction star map obtained
under medium uncertainty conditions; and (d) prediction star map obtained under high uncertainty
conditions (all star maps had enhanced contrast for ease of viewing).

The attitude calculation results obtained under the three conditions are shown in Figure 6.
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From Figure 6, it can be seen that, even under high uncertainty (where the INS only correctly
predicted 30% of the navigation stars), the deeply integrated algorithm still converged, and the
accuracies under the three conditions were only slightly different.

To explain this phenomenon, suppose ea
(
φ̂s

)
(1 ≤ a ≤ Ns) represents the gray error function of

correctly matched pixels and eb
(
φ̂s

)
(Ns + 1 ≤ b ≤ N) represents the gray error function of incorrectly

matched pixels. After the star point p1 in g1 is transformed into g1
′ by exp

(
φ̂s×

)
, there will be no star

point at the corresponding position p2 in g2 if the star points between g1 and g2 do not match. eb
(
φ̂s

)
will be equal to I1(p1), which can be recorded as Cb. Obviously, Cb is a constant that does not change
with φ̂s. The optimal objective is equivalent to

min
φ̂s

J
(
φ̂s

)
= ‖e

(
φ̂s

)
‖

2
=

Ns∑
a=1

e2
a

(
φ̂s

)
+

N∑
b=Ns+1

e2
b

(
φ̂s

)
=

Ns∑
i=1

e2
a

(
φ̂s

)
+

N∑
j=Ns+1

C2
b ⇔ min

φ̂s

J
(
φ̂s

)
=

Ns∑
i=1

e2
a

(
φ̂s

)
. (42)

Equation (37) shows that the constant term does not affect the final optimization result, such that
optimizing all stars is equivalent to only optimizing the correctly matched stars, which means that
unmatched stars do not affect the optimization result.

4.1.2. Comparison of Different Integrated Models

Star identification is not necessary in the deeply integrated mode and the navigation system can
still work when the number of navigation stars is less than three. Therefore, the simulation should
cover three conditions: The number of navigation satellites is more than three, equal to three, and less
than three. The star map of the star sensor in the simulation is shown in Figure 7.Sensors 2020, 20, x FOR PEER REVIEW 13 of 19 
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Figure 7. Simulation design.

The damped Newton method was used to optimize the misalignment angle iteratively. Taking the
time t = 10 s as an example, the iterative optimization results are shown in Figure 8.
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As shown in Figure 8, the attitude could reach convergence after only 3–4 iterations. Compared with
the first and fourth iteration optimization results, the gray image error is shown in Figure 9.
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Figure 9. Iterative results of image gray error in a star window: (a) Image gray error of the first iteration;
and (b) image gray error of the fourth iteration.

As shown in Figure 9, φ̂s did not converge in the first iteration, and there was an obvious peak
and trough in the gray error image; in contrast, φ̂s converged in the fourth iteration, and the position
deviation was close to zero. However, because of the image noise, there will be many little peaks and
troughs, and the fluctuation in the image was caused only by image noise.

The accuracies and calculation times of loosely, tightly, and deeply integrated modes are presented
in Figure 10.
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Figure 10. Comparison of different integrated models: (a) Accuracy comparison of loosely, tightly,
and deeply integrated navigation modes (the optical axis attitude is the Yaw and the non-optical
axis attitude is Pitch and Roll); and (b) computational cost comparison of loosely, tightly, and deeply
integrated navigation modes.

The simulation results show that the attitude accuracies of the loosely, tightly, and deeply
integrated navigation modes were of the same magnitude when the number of navigation stars was
sufficient, the non-optical axis attitude accuracy was 10” (3 σ), and the optical axis attitude accuracy
was 50” (3 σ). The loosely and tightly integrated navigation modes could not identify the navigation
stars when the number of navigation stars was insufficient, such that the accuracy became divergent.
In contrast, the deeply integrated navigation mode could still be used for the navigation solution when
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the non-optical axis attitude accuracy was about 50” (3 σ) and the optical axis attitude accuracy was
about 100” (3 σ).

Each star occupies about 9 pixels in the star image, and the deeply integrated mode needs 4
iterations. On average, each star needs 36 iterations; the tightly and loosely integrated mode require
star identification, there are 196 navigation stars in a sub catalogue on average, and the argument search
space is 196× 196. The searches number of per star is 196× 196/2 = 19, 208. Obviously, the computation
time of star identification is much larger than the time to update the measurements in deeply integrated
navigation filter. The simulation results in Figure 10b show that the computational cost of the deeply
integrated navigation mode was 50% lower than that of the tightly integrated navigation mode and
60% lower than that of the loosely integrated navigation mode.

4.1.3. Comparative Simulation of Single- and Double-Star Sensor Configurations

The attitude accuracy of the star sensor on the optical axis was lower than the remaining two axes,
so celestial navigation systems of near space vehicles should be configured with double star sensors.
The star sensor configuration schemes are shown in Figure 11.
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An accuracy comparison of the single- and double-star sensor configurations is shown in Figure 12.
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Figure 12. Simulation results of INS/CNS deeply integrated navigation: (a) Single-star sensor
configuration; and (b) double-star sensor configuration.

As shown in Figure 12, the attitude accuracy of the yaw under the single-star sensor configuration
was 50” (3 σ), which was much lower than the other two axes. The attitude accuracy of the three axes
was kept within 10” (3 σ) under the double-star sensor configuration, which effectively reduced the
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yaw angle error. For the near space vehicle, the accuracy of the yaw angle had a great influence on the
position and, so, it is recommended that the double-star sensor configuration is adopted in celestial
navigation systems.

4.2. Simulation Verification of the Second-Order State Augmented H-Infinity Filter

4.2.1. Comparison of the Second-Order State Augmented H-Infinity Filter and Standard
H-Infinity Filter

The vehicle attitude profile, star sensor and gyro specification, initial attitude estimation error are
shown in Figure 13 and Table 1.Sensors 2020, 20, x FOR PEER REVIEW 16 of 19 
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Figure 13. The trajectory of near space vehicles: (a) Nominal trajectory; (b) the vehicle attitude profile;
and (c) the vehicle position profile.

Table 1. The star sensor and gyro specification.

Parameter Value

Field of star sensor 10◦

Resolution of star sensor 256 * 256
Measurement noise of star sensor 20”(3 σ)

Gyro bias 0.1 ◦/h
Gyro noise 0.5 ◦/h (3 σ)

Initial attitude estimation error 20”(3 σ) 1

1 After the initial star identification.

The second-order state augmented H-infinity filter and standard H-infinity filter were compared
in a near space environment. As can be seen from Figure 13, the angular velocity of the vehicle is
largest in 500 s–600 s, and the 100 s data is used for simulated in Figure 14.
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comparison of the second-order state augmented H-infinity filter and standard H-infinity filter.
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At the beginning of filtering, the SOSA filter exhibit a large error at around 3 s, this is because
the initial value of Vc,k−1 and Vc,k−2 was unknown, which has to be set to zero at the beginning.
Due to Vc,k = α1Vc,k−1 + α2Vc,k−2 + ξk, if Vc,k−1 = 03×1, Vc,k−2 = 03×1, Vc,k will also close to zero.
At this time, the state augmented model cannot estimate the colored noise effectively. In addition,
because the estimated value of Vc,k is close to zero, the filter will assume the colored noise to be
very small (although it is actually not); then, the filter will allocate the error caused by Vc,k to other
navigation parameters, so the filter will exhibit a large error at around 3 s. However, as the filtering
goes on, the colored noise Vc,k will be estimated gradually, the state augmentation model will gradually
play a role, and finally the navigation accuracy will be improved. Therefore, the filtering results
should be used at least 10 s after the beginning of filtering. It can be seen from the simulation that
the standard H-infinity filter did not filter out the colored noise; however, the second-order state
augmented H-infinity filter proposed in this paper was able to effectively improve the colored noise
filtering accuracy. Compared with the standard H-infinity filter, it is more suitable for the near
space environment.

4.2.2. The Influence of Colored Noise Model Error on the Filtering Effect

The core of the second-order state augmented H-infinity filter is the colored noise model, where the
core parameter of the colored noise model is the digital angular frequency, ω, of the aero-optical effects,
whose influences are further illustrated in Figure 15. The attitude root mean square of the second-order
state augmented H-infinity filter was about 3” when there was no parameter error. There was little
change in the attitude accuracy when the parameter error was 10%, indicating that a 10% parameter
error did not have a significant impact on the filtering accuracy. When the parameter error increased to
30%, the attitude root mean square decreased to about 4”. Even when the parameter error increased to
50%, the attitude root mean square did not exceed 5” and, so, the parameter error of the digital angular
frequency ω does not significantly affect the second-order state augmented H-infinity filter.
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5. Conclusions

In this paper, an INS/CNS deeply integrated navigation method was presented for near space
vehicles. This method does not need star identification and can significantly reduce the required
computational cost. Meanwhile, the proposed second-order state augmented H-infinity filter can
weaken the influence of aero-optical effects on the measurement noise and effectively improve the
filtering accuracy in near space environments. The simulation results show that the attitude accuracy
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of the INS/CNS deeply integrated navigation method is kept within 10” (3 σ), while the computational
cost can be reduced by 50%. The INS/CNS deeply integrated navigation method therefore can assist
in improving the navigation accuracy of near space vehicles and reducing the computational cost of
the associated navigation systems, providing a theoretical reference for the design of the near space
vehicle navigation systems in the future.
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