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The demand for transportation, driven by an increasing global population, is continuously rising. 
This has led to a higher number of vehicles on the road and an increased reliance on fossil 
fuels. Consequently, the rise in atmospheric carbon dioxide (𝐶𝑂2) levels has contributed to 
global warming. Therefore, it is important to consider sustainable transportation practices to 
meet climate change mitigation targets. In this research paper, a non-linear mathematical model 
is developed to study the dynamics of atmospheric 𝐶𝑂2 concentration in relation to human 
population, economic activities, forest biomass, and vehicle population. The developed model 
is analyzed qualitatively to understand the long-term behavior of the system’s dynamics. Model 
parameters are fitted to actual data of world population, human economic activities, atmospheric 
𝐶𝑂2, forest biomass, and vehicle population. It is shown that increased vehicular 𝐶𝑂2 emissions 
have a potential contribution to the increase in atmospheric 𝐶𝑂2 and the decline of human 
population. Numerical simulations are carried out to verify the analytical findings and we 
performed global sensitivity analysis to explore the impacts of different sensitive parameters on 
the 𝐶𝑂2 dynamics.

1. Introduction

Greenhouse gases, with carbon dioxide (𝐶𝑂2) being a prominent example, play a significant role in the greenhouse effect, a key 
driver of climate change. These gases are emitted by diverse economic sectors, including energy generation, industrial processes, 
building operations, transportation activities, agricultural practices, forestry, and other land use activities (AFOLU). The expanding 
global population and corresponding economic development have led to an increased demand for energy, primarily sourced from 
fossil fuels [1–4]. This heightened energy demand has resulted in higher carbon dioxide (𝐶𝑂2) emissions, exacerbating the challenges 
posed by climate change [5–7].

The transportation sector is a significant contributor to 𝐶𝑂2 emissions due to the combustion of fossil fuels, which contributes 
to the concentration of atmospheric 𝐶𝑂2 [8–11]. Urban transport alone accounted for 23% of total energy-related emissions, and 
the global transportation sector contributes approximately 25% of total 𝐶𝑂2 emissions from fossil fuel combustion [10,12]. Conse-

quently, climate-related issues such as ozone layer depletion, droughts, and global warming have become more pronounced.
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Table 1

Model parameters and description.

Parameter Description

𝑟 Intrinsic human population growth rate

𝐿 Human population carrying capacity

𝛼 Mortality rate coefficient due to enhanced 𝐶𝑂2
𝑠 Economic activities growth rate due to population

𝜏 Human economic activities growth rate due to vehicle population

𝜂 Human economic activities depletion rate constant

𝐶0 Emission rate of 𝐶𝑂2 from natural and respiration processes

𝛾 𝐶𝑂2 vehicle emission rate constant

𝜎 Human economic activities 𝐶𝑂2 emission rate

𝜌 𝐶𝑂2 depletion rate coefficient due to forest biomass

𝜋 Natural 𝐶𝑂2 depletion rate coefficient

𝜃 Forest biomass intrinsic growth rate coefficient

𝐾 Forest area carrying capacity

𝜓 Deforestation rate coefficient

𝛽 Vehicle’s population growth rate due to demand for mobility

𝜉 Vehicle depletion rate coefficient

𝜔 Human population growth rate coefficient due forest harvesting

At the forefront of contemporary discourse, complexity sciences play a pivotal role in preserving human lives. This discourse en-

compasses the strategic application of mathematical modeling as a potent instrument within this paradigm [13]. Recent studies have 
employed non-linear mathematical models to investigate the dynamics of atmospheric 𝐶𝑂2 in relation to forest biomass. Notably, 
[14–16] have explored these models. These investigations have delved into diverse strategies, including genetically engineered plants 
and incentives for energy conservation through education, aimed at curtailing 𝐶𝑂2 emissions. Additionally, [17] has contributed 
to the discourse by scrutinizing the dynamics of atmospheric 𝐶𝑂2 from an energy sector perspective, highlighting the significance 
of adopting low-carbon energy sources to mitigate costs. Furthermore, [18,19] have employed non-linear mathematical models to 
manage atmospheric 𝐶𝑂2 levels through reforestation, considering variables such as forest biomass, human population, and refor-

estation efforts. Likewise, [15] have utilized a non-linear mathematical model to study atmospheric 𝐶𝑂2 concentration, taking into 
account plants’ capacity to absorb atmospheric 𝐶𝑂2.

However, non of these studies considered the dynamics of atmospheric 𝐶𝑂2 concentration due to vehicle emissions. Therefore, 
this study comes up with a mathematical model that encompasses the interplay or dynamics between human population, human 
economic activities, forest biomass, vehicle population and atmospheric 𝐶𝑂2 concentration in a global scale, and investigate the 
impact of vehicle population on the dynamics of atmospheric 𝐶𝑂2 concentration and human population. The structure of this paper 
is well-organized, with sections dedicated to formulating the mathematical model, qualitative analysis, quantitative analysis, and 
concluding the findings.

2. Model formulation

The system of non-linear ordinary differential equations is used to describe the dynamics of atmospheric 𝐶𝑂2 concentration. 
The model is made up of five distinct compartments, namely, human population (N), human economic activities (H), atmospheric 
𝐶𝑂2 concentration (C), forest biomass (B) and vehicle population (V) at a time 𝑡. It is assumed that the human population grows 
logistically and depletes due to the adverse impact of increased atmospheric 𝐶𝑂2 concentration by a rate 𝛼 [14,20]. Also, it is 
assumed that human population increases due to consumption of forest resources by a rate 𝜔 [14]. Using these assumptions, the 
dynamics of human population is governed by the equation (1) and parameter descriptions are in Table 1

�̇� = 𝑟𝑁

(
1 − 𝑁

𝐿

)
+𝜔𝜓𝑁𝐵 − 𝛼𝐶𝑁 (1)

Human economic activities are assumed to expand in response to population growth, as it drives increased demand for goods 
and services, and depletes naturally by a rate 𝜂. The growth of human activities is assumed to be influenced by the number of 
vehicles by the rate 𝜏 . As number of vehicle increases, it stimulates various economic sectors and promotes overall economic growth. 
This, in turn, leads to an expansion of human activities and their impact on the environment. Additionally, we assume that the 
growth of human economic activities is quantified by the Gross Domestic Product (GDP). The GDP serves as an indicator of economic 
performance and reflects the overall value of goods and services produced within a country. As GDP increases, it signifies a higher 
level of economic activity, including industrial, commercial, and agricultural sectors. The dynamics of human economic activities 
can be modeled by the equation (2) and its parameters are detailed in Table 1.

�̇� = 𝑠𝑁 + 𝜏𝑉 − 𝜂𝐻 (2)

The atmospheric 𝐶𝑂2 concentration is assumed to increase due to the growing number of vehicles and human activities by rates 
𝛾 and 𝜎 respectively. Additionally, 𝐶𝑂2 concentration in the atmosphere is naturally depleted through ocean sinking and absorbed 
2

by forest through photosynthesis process [21,4]. The growth rate of atmospheric 𝐶𝑂2 resulting from natural processes, such as 
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respiration of living organisms, volcanic eruptions, and changes in ocean circulation, is assumed to be constant [18]. The dynamics 
of atmospheric 𝐶𝑂2 is governed by equation (3) and parameters are described in a Table 1.

�̇� = 𝐶0 + 𝛾𝑉 + 𝜎𝐻 − 𝜌𝐵𝐶 − 𝜋𝐶 (3)

It is presumed that forest biomass adheres to the principles of logistic growth and depletes due to human population growth. Its 
dynamics is governed by equation (4) and parameters are explained in a Table 1.

�̇� = 𝜃𝐵

(
1 − 𝐵

𝐾

)
−𝜓𝑁𝐵 (4)

In the region of consideration, the vehicle population is assumed to have a growth rate of 𝛽 and naturally depletes, by the rate 𝜉. 
Vehicle population dynamics is modeled by equation (5).

�̇� = 𝛽𝑁 − 𝜉𝑉 (5)

Consequently, we formulate the following system of equations of non linear differential equation as presented in a system (6).

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�̇� = 𝑟𝑁

(
1 − 𝑁

𝐿

)
+𝜔𝜓𝑁𝐵 − 𝛼𝐶𝑁

�̇� = 𝑠𝑁 + 𝜏𝑉 − 𝜂𝐻

�̇� = 𝐶0 + 𝛾𝑉 + 𝜎𝐻 − 𝜌𝐵𝐶 − 𝜋𝐶

�̇� = 𝜃𝐵

(
1 − 𝐵

𝐾

)
−𝜓𝑁𝐵

�̇� = 𝛽𝑁 − 𝜉𝑉

(6)

Where

𝑁(0) ≥ 0,𝐻(0) ≥ 0,𝐶(0) > 0,𝐵(0) ≥ 0, 𝑉 (0) ≥ 0 (7)

3. Qualitative analysis

3.1. Boundedness of model solution

In this section, we demonstrate that the solutions of a system (6) with the initial condition (7) remain bounded. We achieve 
this by employing a well-established comparison theorem for differential equations [22]. In Lemma (1), we determine the region of 
attraction, which is an invariant region attracting all solutions of the model system (6) with the initial condition (7).

Lemma 1. The set Ω = {(𝑁, 𝐻, 𝐶, 𝐵, 𝑉 ) ∈ ℝ5 ∶ 0 ≤ 𝑁 ≤ 𝑁𝑚; 0 ≤𝐻 ≤𝐻𝑚; 0 < 𝐶 ≤ 𝐶𝑚; 0 ≤ 𝐵 ≤ 𝐵𝑚; 0 ≤ 𝑉 ≤ 𝑉𝑚, where 𝑁𝑚 = 𝐿 +
𝜔𝜓𝐾𝐿

𝑟
, 𝐻𝑚 =

𝑠𝑁𝑚

𝜂
, 𝐶𝑚 =

𝜂𝐶0 + 𝑠𝜎𝑁𝑚

𝜂 (𝜌𝐾 + 𝜋)
, 𝐵𝑚 = 𝐾 , 𝑉𝑚 =

𝛽𝑁𝑚

𝜉
establish the region of attraction for the system (6), which attracts all 

solutions originating from within the positive orthant’s interior.

Proof for Lemma (1) is appended in Appendix B.

3.2. Equilibrium analysis

The long-term behavior of the system (6) was established by using stability theory. The feasible equilibrium points are obtained 

and their stability properties are established. The model system (6) has two non-negative trivial solutions 𝐸1

(
0,0,

𝐶0
𝜋
,0,0
)

and 

𝐸2

(
0,0,

𝜃𝐶0
𝐾𝜌+ 𝜋

,𝐾,0
)

and two non-trivial solutions 𝐸3
(
𝑁3,𝐻3,𝐶3,0, 𝑉3

)
and 𝐸∗(𝑁∗, 𝐻∗, 𝐶∗, 𝐵∗, 𝑉 ∗).

It can be noted that the existence of 𝐸1 and 𝐸2 is obvious. Further more the existence of equilibria 𝐸3 and 𝐸∗ depend on the 
satisfaction of condition (8).

𝑟

𝛼
−
𝐶0
𝜋

> 0 (8)

Existence of 𝐸3

To prove the existence of 𝐸3 we solved the system (9) to obtain algebraic equations for 𝑁3, 𝐻3, 𝐶3 and 𝑉3 [17]. Consider the 
3

system (9) below,
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𝑟

(
1 −

𝑁3
𝐿

)
− 𝛼𝐶3 = 0

𝑠𝑁3 + 𝜏𝑉3 − 𝜂𝐻3 = 0
𝐶0 + 𝛾𝑉3 + 𝜎𝐻3 − 𝜋𝐶3 = 0

𝛽𝑁3 − 𝜉𝑉3 = 0

⎫⎪⎪⎬⎪⎪⎭
. (9)

From system (9) we have the following equations

𝑉3 =
𝛽𝑁3
𝜉

. (10)

𝐶3 =
𝜂𝜉𝐶0 + (𝛾𝛽𝜂 + 𝜎 (𝑠𝜉 + 𝜏𝛽))𝑁3

𝜋𝜉𝜂
= 𝑓 (𝑁3). (11)

𝐻3 =
𝑠𝜉𝑁3 + 𝜏𝛽𝑁3

𝜂𝜉
. (12)

On the other hand, the first equation provides 𝑔(𝑁3) such that

𝑔(𝑁3) = 𝑟

(
1 −

𝑁3
𝐿

)
− 𝛼𝑓 (𝑁3). (13)

By using equation (13), we analyze 𝑔(𝑁3) in three different scenarios as follows:

(a) When 𝑁3 =𝐿 + 𝜔𝜓𝐾𝐿

𝑟
we have the following

−
(
𝜔𝜓𝐾𝐿+

𝜂𝜉𝐶0𝑟+ (𝛾𝛽𝜂 + 𝜎(𝑠𝜉 + 𝜏𝛽)) (𝑟𝐿+𝜔𝜓𝐾𝐿)
𝜋𝑟𝜉𝜂

)
< 0.

(b) At 𝑁3 = 0, a function 𝑔(𝑁3) is given by

𝑔(0) = 𝛼

(
𝑟

𝛼
−
𝐶0
𝜋

)
.

Since 𝑔
(
𝐿+ 𝜔𝜓𝐾𝐿

𝑟

)
< 0, there exist a positive root 𝑁3 in the interval of 0 <𝑁3 <𝐿 + 𝜔𝜓𝐾𝐿

𝑟
if and only if 𝑔(0) > 0. Clearly, 

this requirement is met upon satisfaction of condition (8).

(c) For uniqueness of 𝑁 =𝑁3, we need to prove that 𝑔′(𝑁3) < 0. Considering equation (13) and some algebraic simplifications, it 
can be easily shown that

𝑔′(𝑁3) = −
(
𝑟

𝐿
+ 𝛼

𝛾𝛽𝜂 + 𝜎 (𝑠𝜉 + 𝜏𝛽)
𝜋𝜉𝜂

)
< 0.

Thus, a unique positive root, say 𝑁 = 𝑁3 of the equation (13) lies on interval 0 < 𝑁3 < 𝐿 + 𝜔𝜓𝐾𝐿

𝑟
. Substituting 𝑁 = 𝑁3 into 

equations (10)–(12) we get the appropriate values of 𝑉 = 𝑉3, 𝐶 = 𝐶3 and 𝐻 =𝐻3. Hence, it can be concluded that an equilibrium 
point 𝐸3 exists, whenever the condition (8) holds.

Existence of 𝐸∗

Interior equilibrium point 𝐸∗ of the system (6) can be obtained by solving the system (14).

𝑟

(
1 − 𝑁∗

𝐿

)
− 𝛼𝐶∗ +𝜔𝜓𝐵∗ = 0

𝑠𝑁∗ + 𝜏𝑉 ∗ − 𝜂𝐻∗ = 0
𝐶0 + 𝛾𝑉 ∗ + 𝜎𝐻∗ − 𝜌𝐵∗𝐶∗ − 𝜋𝐶∗ = 0

𝜃

(
1 − 𝐵∗

𝐾

)
−𝜓𝑁∗ = 0

𝛽𝑁∗ − 𝜉𝑉 ∗ = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(14)

The solution of the system (14) establishes the following results

𝑉 ∗ = 𝛽𝑁∗

𝜉
(15)

𝐻∗ = (𝑠𝜉 + 𝜏𝛽)𝑁∗

𝜉𝜂
(16)

( )

4

𝐵∗ = 𝐾

𝜃
𝜃 −𝜓𝑁∗ (17)
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𝐶∗ =
𝜂𝐶0𝜉 + 𝜂𝛾𝛽𝑁∗ + 𝜎𝑁∗(𝑠𝜉 + 𝜏𝛽)

𝜂𝜉(𝜌𝐵∗ + 𝜋)
(18)

ℎ(𝑁∗,𝐵∗) = 𝑟

(
1 − 𝑁∗

𝐿

)
− 𝛼

𝜂𝜉𝜋

(
𝜉𝜂𝐶0 + 𝜉𝛾𝛽𝑁∗ + 𝜎𝑁∗(𝑠𝜉 + 𝜏𝛽)

)
+𝜔𝜓𝐵∗ (19)

From equation (19) when no forest resources (𝐵∗ = 0) we get the following function of 𝑁∗

𝑓 (𝑁∗) = 𝑟

(
1 − 𝑁∗

𝐿

)
− 𝛼

𝜂𝜉𝜋

(
𝜉𝜂𝐶0 + 𝜉𝛾𝛽𝑁∗ + 𝜎𝑁∗(𝑠𝜉 + 𝜏𝛽)

)
. (20)

By using equation (20) 𝑓 (𝑁∗) can be analyzed as follows,

(a) We evaluate a function 𝑓 (𝑁∗) at 𝑁∗ = 0 to get the following

𝑓 (0) = 𝛼

(
𝑟

𝛼
−
𝐶0
𝜋

)
> 0

(b) When 𝑁∗ =𝐿 + 𝜔𝜓𝐾𝐿

𝑟
we have the following

−
[
𝜔𝜓𝐾 + 𝛼

𝜂𝜉𝜋𝑟

[
𝑟𝜉𝜂𝐶0 + (𝑟𝐿+𝜔𝜓𝐾𝐿) (𝜉𝛾𝛽 + (𝑠𝜉 + 𝜏𝛽)𝜎)

]]
< 0

There exists a positive root 𝑁 =𝑁∗ of equation (20) in the interval (0, 𝐿 + 𝜔𝜓𝐾𝐿

𝑟
) under condition (8).

(c) For uniqueness of 𝑁 =𝑁∗, we need 𝑓 ′(𝑁∗) < 0, that is

𝑓 ′(𝑁∗) = −
(
𝑟

𝐿
+ 𝛼

𝜂𝜉𝜋
(𝜉𝛾𝛽 + 𝜎(𝑠𝜉 + 𝜏𝛽))

)
< 0

Thus, a unique positive root, say 𝑁∗ of the equation (20) lies on interval 0 <𝑁∗ < 𝐿 + 𝜔𝜓𝐾𝐿

𝑟
. Substituting the obtained value of 

𝑁∗ into equations (15), (16) and (17) and performing algebraic simplifications we get the appropriate values of 𝑉 ∗, 𝐵∗ and 𝐻∗. 
Since the values of 𝑁∗ and 𝐵∗ are known, then to obtain the value of 𝐶∗ we substitute 𝑁∗ and 𝐵∗ into equation (18) and we 
conclude that an interior point 𝐸∗ exists under condition (8).

3.3. Stability analysis

In this section the behaviors of different equilibrium points of the model system are analyzed. From the system (6) the Jacobian 
matrix is given by

𝐽 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑟

(
1 − 𝑁

𝐿

)
− 𝑟𝑁

𝐿
− 𝛼𝐶 +𝜔𝜓𝐵 0 −𝛼𝑁 𝜔𝜉𝑁 0

𝑠 −𝜂 0 0 𝜏

0 𝜎 −𝜌𝐵 − 𝜋 −𝜌𝐶 𝛾

−𝜓𝐵 0 0 𝜃

(
1 − 𝐵

𝐾

)
− 𝜃𝐵

𝐾
−𝜓𝑁 0

𝛽 0 0 0 −𝜉

⎞⎟⎟⎟⎟⎟⎟⎠
.

At the equilibrium point 𝐸1

(
0,0,

𝐶0
𝜋
,0,0
)

the corresponding Jacobian matrix 𝐽𝐸1
, resulted from evaluating matrix 𝐽 through 

𝐸1 is given by

𝐽𝐸1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝛼

(
𝑟

𝛼
−
𝐶0
𝜋

)
0 0 0 0

𝑠 −𝜂 0 0 𝜏

0 𝜎 −𝜋
−𝜌𝐶0
𝜋

𝛾

0 0 0 𝜃 0
𝛽 0 0 0 −𝜉

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of a matrix 𝐽𝐸1
are 𝜆1 = −𝜉, 𝜆2 = 𝜃, 𝜆3 = −𝜂, 𝜆4 = −𝜋 and 𝜆5 =

𝑟

𝛼
−
𝐶0
𝜋

> 0. The equilibrium point 𝐸1 is unstable 
5

since it have at least one positive eigenvalues, that is 𝜆2 > 0 and 𝜆5 > 0.
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Similarly, evaluating matrix 𝐽 at 𝐸2, the following matrix is established.

𝐽𝐸2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐾2𝜔𝜓𝜌+𝐾𝜋𝜓𝜔+𝐾𝑟𝜌+ 𝜋𝑟− 𝛼𝐶0
𝜌𝐾 + 𝜋

0 0 0 0

𝑠 −𝜂 0 0 𝜏

0 𝜎 −𝐾𝜌− 𝜋
−𝐶0𝜌

𝜌𝐾 + 𝜋
𝛾

−𝜓𝐾 0 0 −𝜃 0
𝛽 0 0 0 −𝜉

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of 𝐽𝐸2
are 𝜆1 = −𝜉, 𝜆2 = −𝜃, 𝜆3 = −𝜂, 𝜆4 = −(𝐾𝜌 + 𝜋), and 𝜆5 =

𝐾2𝜔𝜓𝜌+𝐾𝜋𝜓𝜔+𝐾𝑟𝜌+ 𝜋𝑟− 𝛼𝐶0
𝜌𝐾 + 𝜋

. Clearly, upon 
utilizing condition (8), 𝜆5 > 0 making 𝐸2 unstable.

At the equilibrium point 𝐸3, we establish a matrix 𝐽𝐸3
, such that

𝐽𝐸3
=

⎛⎜⎜⎜⎜⎜⎜⎝

−
𝑟𝑁3
𝐿

0 −𝛼𝑁3 𝜔𝜓𝑁3 0
𝑠 −𝜂 0 0 𝜏

0 𝜎 −𝜋 −𝜌𝐶3 𝛾

0 0 0 −
(
𝜓𝑁3 − 𝜃

)
0

𝛽 0 0 0 −𝜉

⎞⎟⎟⎟⎟⎟⎟⎠
.

𝑁3 >
𝜃

𝜓
(21)

Upon satisfaction of condition (21) all the entries at the main diagonal will be negative, following [15], we utilize the Gershgorin’s 
Theorem by columns of the matrix to deduce sufficient conditions for local stability of 𝐸3. As such, 𝐸3 is proved to be asymptotically 
stable upon satisfaction of conditions in equation (22).

⎧⎪⎪⎨⎪⎪⎩

𝐿

𝑟
(𝑠+ 𝛽) <𝑁3 <

𝜋

𝛼
𝜎 < 𝜂

𝜌𝐶𝑚 + 𝜃

𝜓(𝜔+ 1)
<𝑁3 <

𝜌𝐶𝑚 − 𝜃

𝜓(𝜔− 1)
𝜏 + 𝛾 < 𝜉

(22)

Where 𝐶𝑚 is defined in Lemma 1

Theorem 2. The equilibrium point 𝐸3, if exists, is locally asymptotically stable if conditions (22) are satisfied.

At the interior equilibrium point 𝐸∗, the Jacobian matrix 𝐽 , was evaluated to get a matrix 𝐽𝐸∗ , such that

𝐽𝐸∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

− 𝑟𝑁∗

𝐿
0 −𝛼𝑁∗ 𝜔𝜓𝑁∗ 0

𝑠 −𝜂 0 0 𝜏

0 𝜎 −𝜌𝐵∗ − 𝜋 −𝜌𝐶∗ 𝛾

−𝜓𝐵∗ 0 0 −𝜃𝐵∗

𝐾
0

𝛽 0 0 0 −𝜉

⎞⎟⎟⎟⎟⎟⎟⎠
.

Clearly, all entries in the main diagonal of 𝐽𝐸∗ are negative. Following [15], we use the Gershgorin’s Theorem by columns of the 
matrix to deduce the local stability of 𝐸∗. As such, 𝐸∗ is proved to be locally asymptotically stable upon satisfaction of the following 
set of conditions

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑁∗ >max
{
𝐿

𝑟
(𝛽 −𝜓𝐾) , 𝐿

𝑟
(𝜓𝐾 − 𝛽)

}
𝜎 < 𝜂

𝑁∗ <
𝜌𝐾 − 𝜋

𝛼
𝜌𝐶𝑚 − 𝜃

𝜔𝜓
<𝑁∗ <

𝜃 + 𝜌𝐶𝑚

𝜔𝜓
𝜏 + 𝛾 < 𝜉

(23)

Where 𝐶𝑚 is defined in lemma (1).
6

Theorem 3. The interior equilibrium point 𝐸∗, if exists, is locally asymptotically stable if conditions (23) are satisfied.
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Theorem 4. The interior equilibrium point 𝐸∗, if exists, is globally asymptotically stable in Ω if conditions (24) are satisfied.

𝑟 >min
{

81𝛽2𝐿𝛾2

16𝜉2 (𝜌𝐾 + 𝜋)
,

9𝜎2𝑠2
16𝜂 (𝜌𝐾 + 𝜋)

}

𝐿<max
{

4 (𝜌𝐾 + 𝜋)
9𝛼2

,
4𝜉2𝑠2

81𝜏2𝛽2

}
⎫⎪⎪⎬⎪⎪⎭

(24)

The proof of theorem (4) is presented in Appendix A.

3.4. Ecological interpretation of stability analysis

Equilibrium points 𝐸1 and 𝐸2 represent different situations regarding the extinction of the human population and the presence 
or absence of forest biomass. The point 𝐸1 signifies the extinction of forest biomass, while 𝐸2 represents a situation where forest 
biomass exists. The absence of human population would lead to the cessation of human-related activities, resulting in a lack of 
stabilization in atmospheric 𝐶𝑂2 concentration. Only natural processes such as volcanic eruptions will contribute to 𝐶𝑂2 emissions, 
resulting in a natural depletion of atmospheric 𝐶𝑂2 concentration. However, the analysis reveals further that the forest will rapidly 
grow up to its carrying capacity, acting as a sink for 𝐶𝑂2 absorption. The atmospheric 𝐶𝑂2 concentration will solely depend on 
natural processes and will naturally deplete.

The equilibrium point 𝐸3 illustrates a situation where forest biomass no longer exists. In such a scenario, the emitted 𝐶𝑂2 will 
undergo some degree of natural absorption, while the remaining portion will persist in the atmosphere. This state is achieved when 
the natural growth rate of the human population exceeds the mortality rate resulting from the natural release of 𝐶𝑂2 .

The interior equilibrium point 𝐸∗ takes into account the coexistence of human population, economic activities, atmospheric 𝐶𝑂2
concentration, forest area, and vehicle population. To achieve this balance, the natural growth rate of the human population needs 
to exceed the mortality rate caused by natural 𝐶𝑂2 emissions. Moreover, specific conditions for the global stability of 𝐸∗ must be 
met to ensure the stability of the atmospheric 𝐶𝑂2 concentration. When these conditions are satisfied, the forest biomass can absorb 
the existing atmospheric 𝐶𝑂2, safeguarding the environment, while the remaining 𝐶𝑂2 gradually decreases. These interpretations 
emphasize how human actions and natural processes interact, highlighting the critical importance of maintaining the necessary 
conditions to uphold the stability of atmospheric 𝐶𝑂2 concentration and environmental well-being.

4. Quantitative analysis

4.1. Parameter estimation and model fitting

The parameter estimation process was done by adjusting the model parameters to best fit the time series data of world population 
[23], atmospheric 𝐶𝑂2 concentration [24–26], forest area [27], number of vehicles produced [28], and Gross Domestic Product 
(GDP) [29]. The specific values of the parameters were obtained through the least squares method, which minimizes the sum 
of squared differences between the model predictions and the actual data. We use a MATLAB in-built function (fminsearch) that 
implements unconstrained nonlinear minimization (Nelder-Mead) to get candidates that serve as local minimizers for the sum of 
squared residuals [30]. The selection of initial parameter values was guided by the fulfillment of conditions outlined in the qualitative 
analysis section. In addition to the data-driven parameter estimation, values of 𝐿 = 11, 𝐶0 = 5 and 𝐾 = 750000 were obtained from 
[31], [18] and [32] respectively. For the intrinsic human population growth rate (𝑟), data from [23] was considered, where a range 
of 0.02 to 0.03 per year is considered [31]. This range provides an estimate for the value of 𝑟 that is consistent with the available data 
and existing literature. The initial time is set to 1994, and the starting values are 𝑁(0) = 5.66315 billion people, 𝐻(0) = 2, 787.67662
billion US$, 𝐶(0) = 358.96 ppm, 𝐵(0) = 4, 099.2026 million hectares, and 𝑉 (0) = 49.658288 million vehicles.

To test the validity of the model, R-squared values are employed [31]. The R-squared values for real data and model predic-

tions of human population, human economic activities, atmospheric 𝐶𝑂2 concentration, forest biomass, and vehicle production are 
0.955471914, 0.94694, 0.981052, 0.9535782, and 0.9275, respectively. These values indicate a strong correlation between the real 
data and the model predictions. The real and model projections of the variables 𝑁 , 𝐻 , 𝐶 , 𝐵 and 𝑉 are shown in Fig. 1. It is evident 
from the figure that there is a close alignment between the model projections and the actual data, which ensures the validity of the 
model.

Furthermore, we applied statistical metrics to assess the performance of our model, including the Root Mean Squared Error 
Normalized (RMSEN) and the Nash-Sutcliffe Efficiency index (NSE). RMSEN, as it approaches zero, serves as a positive indicator 
of the model’s effectiveness. To classify model performance, we follow the criteria established in previous research [33,34], where 
RMSEN is considered excellent if it is less than or equal to 10%, good between 10% and 20%, reasonable between 20% and 30%, 
and poor if it exceeds 30%.

On the other hand, the coefficient of efficiency (NSE) quantifies the overall deviation between real and predicted values from 
the actual data (𝑅𝑖) and its mean (𝑅). The NSE value can range from −∞ to +1, with higher values indicating efficient model 
predictions. By using Formula (26), we calculated NSE to be 0.9343, suggesting efficient model predictions. Additionally, employing 
Formula (25), we obtained an RMSEN value of 2.6027%, further supporting the assessment of excellent model predictions.

In Equation (25), 𝑅𝑖 represents the actual data value, 𝑅 denotes the mean of actual data points, 𝑆𝑖 represents the model’s 
7

predicted data points, and 𝑛 signifies the number of observations.
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Fig. 1. Comparison between model fit and real data of (a) Human population, (b) Economic activities, (c) Atmospheric 𝐶𝑂2 concentration, (d) Forest biomass and (e) 
Vehicle population. The curve illustrates that there is a close alignment between the model solution and the observed data.

Table 2

Estimated model parameters, 95% confidence intervals, initial guess for parameters and their re-

spective source.

Parameter Baseline Source Interval Estimated

𝑟 0.026 [31] [0.022645 0.03378] 0.0285245

𝛼 0.000001 [32] [7.3998 × 10−7 1.2967 × 10−6] 0.0000010551

𝜏 3.94 Assumed - 3.94

𝑠 0.035 [19] [0.01752 0.04611] 0.03374

𝛾 4.9337 × 10−7 Assumed [1.6407 × 10−8 2.3026 × 10−8] 1.3657 × 10−8
𝜎 0.000576 Assumed [0.0005178 0.00079] 0.0007897

𝜂 6.67 × 10−7 Assumed - 6.67 × 10−7
𝜋 0.016 [32] [0.009668 0.0221] 0.016232

𝜃 0.0523 Assumed [0.000909 0.001425] 0.0012025

𝛽 0.0729 Assumed [0.27216 0.30054] 0.27534

𝜓 0.26 × 10−3 Assumed [0.0003480.0004031] 0.38874 × 10−3
𝜌 4.8 × 10−9 [32] [0.8662 × 10−6 1.461 × 10−6] 3.86657 × 10−7
𝜉 1.0676 × 10−6 Assumed [8.374 × 10−6 1.05005 × 10−5] 1.50623 × 10−5
𝜔 0.001 Assumed [0.00072517 0.0013074] 0.00094457

𝑅𝑀𝑆𝐸𝑁 = 100 × 1
𝑅

√√√√1
𝑛
×

𝑛∑
𝑖=1

(𝑅𝑖 − 𝑆𝑖)2 (25)

𝑁𝑆𝐸 = 1 −
∑𝑛

𝑖=1
(
𝑅𝑖 − 𝑆𝑖

)2
∑𝑛

𝑖=1
(
𝑅𝑖 −𝑅

)2 (26)

In addition, to assess the robustness of model fitting, we computed 95% confidence intervals for the parameter estimates, as 
presented in Table 2. These confidence intervals strongly suggest a 95% likelihood of containing the true parameter value. To 
construct these confidence intervals, we employed a bootstrapping resampling technique with 1000 different data samples, each 
of the same size as the original datasets. We then re-estimated model parameters for each data sample. It is worth noting that the 
true parameter value is encompassed within the calculated intervals in 95% of the cases. The narrow width of these confidence 
intervals underscores the reliability of the model’s parameter estimates. Notably, the value of 𝑟 falls within the range specified by 
[31], providing further support for the credibility of the parameter estimation. The combination of these tests confirms the robustness 
8

of the model’s parameter estimates, affirming its suitability for predictive purposes.
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4.2. Parameter sensitivity analysis

In order to grasp the impact of model parameters on the system output, we conducted a global sensitivity analysis (GSA) employ-

ing partial ranking correlation coefficient (PRCC) which use Latin Hypercube sampling Monte Carlo simulation (LHS). This approach 
allows us to assess how changes in individual parameters can influence the overall model output [35,36]. A positive PRCC indicate a 
positive correlation between model parameters and its output. Meaning that increase in the magnitude of a model parameter value 
will lead to a significant increase in the model output, and a decrease in parameter value will result to a reduced model output. 
Conversely, a negative PRCC suggest an inverse relationship between parameter value and the model predictions [37]. Observing 
Fig. 2(a), it is evident that atmospheric 𝐶𝑂2 concentration is significantly accelerated by the growth rate of the vehicle population, 
denoted as 𝛽, and the emission rate of human activities, represented by 𝜎, which is heavily influenced by 𝛽 and the intrinsic growth 
rate of the human population, depicted in Fig. 2(c). Furthermore, the PRCC values for the mortality rate due to adverse impacts of 
enhanced atmospheric 𝐶𝑂2 (𝛼), 𝛾 , 𝜎, and 𝛽 suggest that an increase in these values will lead to a decline in the human population. 
Conversely, increasing values of 𝑟, 𝜋, 𝜔, 𝜃, and 𝜓 are associated with an increase in the human population, as illustrated in Fig. 2(b). 
Also, high values of human population intrinsic growth rate 𝑟, lead to the increased demand for mobility as depicted in Fig. 2(d) as 
the result deforestation will be increased as shown in Fig. 2(e). Analyzing the PRCC values, we pinpointed several highly influential 
parameters, notably the growth rate of the vehicle population (𝛽), the 𝐶𝑂2 emission rate from human activities (𝜎) which is trig-

gered by vehicle population, and the intrinsic growth rate of the human population (𝑟). These findings strongly indicate that taking 
measures to reduce atmospheric 𝐶𝑂2 concentration and addressing the adverse effects of increased emissions from transportation 
could be pivotal in promoting environmentally friendly transportation practices.

4.3. Numerical simulation

To validate feasibility of the model analysis, we utilized MATLAB R2021a and Maple 2015 software. The chosen set of parameters 
from Table 2 satisfied the condition (8) for the existence of interior equilibrium point 𝐸∗. The eigenvalues of the Jacobian matrix 
corresponding to the equilibrium point 𝐸∗ were calculated to be −3.160388, −0.224952, −0.87302, −5.85509 × 10−7, and −0.15062, 
all of which are negative. This indicates that the equilibrium point 𝐸∗ is locally asymptotically stable and the condition (24) for 
global stability of 𝐸∗ is satisfied for estimated parameter values. Furthermore, the solution trajectories of the model (6) are plotted 
in Fig. 3 with different starting values. It can be observed that all trajectories initiated inside the region Ω converge towards the 
interior equilibrium point 𝐸∗. This demonstrates the nonlinear stability behavior of the point 𝐸∗ in the 𝑁(𝑡) − 𝑉 (𝑡) − 𝐵(𝑡) and 
𝑁(𝑡) −𝐵(𝑡) −𝐶(𝑡) space, as depicted in Fig. 3.

To investigate the impact of increased vehicular 𝐶𝑂2 emissions on the human population, we manipulated the most sensitive 
parameter, denoted as 𝛽 (as depicted in Fig. 2(c)), within our model. As shown in Fig. 4(a), doubling the vehicle population growth 
rate has a noticeable effect on the temporal evolution of atmospheric 𝐶𝑂2 concentration, illustrated in Fig. 4(b). The data clearly 
shows that as the vehicle population increases, atmospheric 𝐶𝑂2 concentration rises.

When we assess the implications of this heightened transportation activity, with the vehicle population growth rate doubled (as 
shown in Fig. 4(a)), it stimulates economic growth, increasing it from 64, 670.4 billion US dollars to 1, 071, 774 billion US dollars 
(as depicted in Fig. 4(c)). Simultaneously, atmospheric 𝐶𝑂2 levels increase from 1578 ppm to 2299.83 ppm (as seen in Fig. 4(b)). 
This results in a reduction in the human population, declining from 10.5255 billion to 10.3976 billion after 100 years as shown in 
Fig. 4(d).

5. Conclusion

At present time, the control of 𝐶𝑂2 emission along with fulfilling demand for mobility of both humans, goods and services is one 
of the important issues from ecological and environmental perspectives. The rapid increase in population influences the growth of 
atmospheric 𝐶𝑂2 concentration and hence climate change issues become more pronounced. In the present study, we have proposed 
and analyzed a non-linear mathematical model for vehicular 𝐶𝑂2 emission in relation to human population, economic activities, 
forest biomass and vehicle population.

The proposed model is useful to predict the long-term impact of vehicle 𝐶𝑂2 emission on atmospheric 𝐶𝑂2 evolution and human 
population. To verify the validity of a model, the model is simulated by using the real world datasets and model parameters fitted to 
these datasets. All conditions for existence and stability of the interior equilibrium point are satisfied by the estimated data. Numerical 
simulation shows that an increase in the vehicle 𝐶𝑂2 emission rate results to an increase of atmospheric 𝐶𝑂2 concentration as a 
result human population depletes due to adverse impact of enhanced atmospheric 𝐶𝑂2 concentration.

In addition, we conducted a global sensitivity analysis of the model parameters using PRCC. The analysis revealed that the 
atmospheric 𝐶𝑂2 concentration is significantly influenced by the growth rate of the vehicle population (𝛽), the intrinsic human 
population growth rate (𝑟), and the 𝐶𝑂2 emissions from human activities triggered by the growth in the vehicle population. Fur-

thermore, we identified a connection between the decline in human population and the adverse impacts of increased atmospheric 
𝐶𝑂2 concentration and the 𝐶𝑂2 emission rate from human activities (𝜎). These findings underscore the importance of considering 
sustainable transportation practices to mitigate the negative impacts on human population caused by an elevated atmospheric 𝐶𝑂2
concentration.

Therefore, to reduce the atmospheric 𝐶𝑂2 concentration, efforts to lower the emission from vehicles are advised so as to attain 
9

the seventh and thirteenth Sustainable Development Goals (SDG’S). The present study is not merely confined to consider the impact 
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Fig. 2. Sensitivity analysis of model dynamics conducted through 1000 simulations using Latin Hypercube Sampling (LHS). Partial Rank Correlation Coefficients 
(PRCCs) with respect to atmospheric 𝐶𝑂2 concentration, human population, human economic activities, vehicle population, and forest biomass are presented in 
graphs (a), (b), (c), (d), and (e), respectively.

of electric vehicles, shared mobility facilities such as Bus rapid Transit (BRT) and alternative transportation modes on atmospheric 
𝐶𝑂2 dynamics. Instead, it offers a foundational structure for predicting the long-term effects of atmospheric 𝐶𝑂2 concentration in 
relation to transport related emissions and human population with the help of analytical results. This will enable the development 
of strategies to alleviate the potential negative consequences of increased levels of carbon dioxide (𝐶𝑂2). The present study can be 
extended to include the impact of electric vehicles, shared mobility facilities and alternative transportation modes on atmospheric 
𝐶𝑂2 dynamics.
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Fig. 3. Graphical representation for global stability of an interior equilibrium point 𝐸∗ in 𝑁 − 𝑉 − 𝐵 Fig. 3 (a) and 𝑁 − 𝑉 − 𝐶 Fig. 3 (b). All solution trajectories 
with different initial start are attracted to the interior equilibrium point 𝐸∗.

Fig. 4. Impact of increased transportation activities on time evolution of atmospheric 𝐶𝑂2 Fig. 4(b), economic activities Fig. 4(c), and human population Fig. 4(d). 
As vehicle population is doubled, results to an increase in the atmospheric 𝐶𝑂2 concentration and decline in human population.
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Appendix A. Proof of Theorem 4

To analyze the global stability of the interior equilibrium 𝐸∗, we use Lyapunov stability theory. Consider the following scalar 
valued positive definite function

𝑈 =
(
𝑁 −𝑁∗ −𝑁∗ ln 𝑁

∗

𝑁

)
+ 1

2
𝑘1 (𝐻 −𝐻∗)2 + 1

2
𝑘2 (𝐶 −𝐶∗)2

+1
2
𝑘3

(
𝐵 −𝐵∗ −𝐵∗ ln 𝐵

∗

𝐵

)
+ 1

2
𝑘4 (𝑉 − 𝑉 ∗)2

(A.1)

Where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are suitable positive constants to be determined later.

Differentiating 𝑈 with respect to 𝑡;

𝑑𝑈

𝑑𝑡
= 𝜕𝑈

𝜕𝑁

(
𝑑𝑁

𝑑𝑡

)
+ 𝜕𝑈

𝜕𝐻

(
𝑑𝐻

𝑑𝑡

)
+ 𝜕𝑈

𝜕𝐶

(
𝑑𝐶

𝑑𝑡

)
+ 𝜕𝑈

𝜕𝐵

(
𝑑𝐵

𝑑𝑡

)
+ 𝜕𝑈

𝜕𝑉

(
𝑑𝑉

𝑑𝑡

)
(A.2)

Performing algebraic operations we get the following;

𝑑𝑈

𝑑𝑡
= − 𝑟

𝐿
(𝑁 −𝑁∗)2 − 𝜂𝑘1 (𝐻 −𝐻∗)2 − 𝑘2 (𝜌𝐾 + 𝜋) (𝐶 −𝐶∗)2 −

𝜃𝑘3
𝐾

(𝐵 −𝐵∗)2

−𝜉𝑘4 (𝑉 − 𝑉 ∗)2 + 𝛼 (𝐶 −𝐶∗) (𝑁 −𝑁∗) +𝜓
(
𝜔− 𝑘3

)
(𝐵 −𝐵∗) (𝑁 −𝑁∗)

+𝑠𝑘1 (𝐻 −𝐻∗) (𝑁 −𝑁∗) + 𝜏𝑘1 (𝑉 − 𝑉 ∗) (𝐻 −𝐻∗) + 𝛾𝑘2 (𝑉 − 𝑉 ∗) (𝐶 −𝐶∗)
+𝜎𝑘2 (𝐻 −𝐻∗) (𝐶 −𝐶∗) + 𝛽𝑘4 (𝑁 −𝑁∗) (𝑉 − 𝑉 ∗)

(A.3)

Choosing 𝑘3 = 𝜔 we have the following;

𝑑𝑈

𝑑𝑡
= − 𝑟

𝐿
(𝑁 −𝑁∗)2 − 𝜂𝑘1 (𝐻 −𝐻∗)2 − 𝑘2 (𝜌𝐾 + 𝜋) (𝐶 −𝐶∗)2 −

𝜃𝑘3
𝐾

(𝐵 −𝐵∗)2

−𝜉𝑘4 (𝑉 − 𝑉 ∗)2 + 𝛼 (𝐶 −𝐶∗) (𝑁 −𝑁∗) + 𝑠𝑘1 (𝐻 −𝐻∗) (𝑁 −𝑁∗)
+𝜏𝑘1 (𝑉 − 𝑉 ∗) (𝐻 −𝐻∗) + 𝛾𝑘2 (𝑉 − 𝑉 ∗) (𝐶 −𝐶∗)
+𝜎𝑘2 (𝐻 −𝐻∗) (𝐶 −𝐶∗) + 𝛽𝑘4 (𝑁 −𝑁∗) (𝑉 − 𝑉 ∗)

(A.4)

Choosing 𝑘1 =
𝜂𝑟

𝑠2𝐿
, 𝑘2 = 1, 𝑘3 = 𝜔 and 𝑘4 =

𝜉𝑟

𝛽2𝐿
, 𝑑𝑈
𝑑𝑡

is negative definite under conditions (24), hence the Theorem (4) is 

proved.

Appendix B. Proof of Lemma 1

From the fourth equation of model system (6), we have

𝑑𝐵

𝑑𝑡
≤ 𝜃𝐵

(
1 − 𝐵

𝐾

)
. (B.1)

By comparing the above differential inequality with the differential equation

𝑑𝐵

𝑑𝑡
= 𝜃𝐵

(
1 − 𝐵

𝐾

)
. (B.2)

and using comparison theorem, we have

𝐵(𝑡) ≤ 𝐾

1 +
(

𝐾

𝐵(0)
− 1
)
𝑒−𝜃𝑡

.
(B.3)

Let 𝜖 > 0 be given. Then ∃𝑡0≥0 such that
12

𝐵(𝑡) ≤𝐾 + 𝜖 ∀𝑡≥𝑡0 . (B.4)

https://www.bts.gov/content/world-motor-vehicle-production-selected-countries
https://www.bts.gov/content/world-motor-vehicle-production-selected-countries
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This gives

lim sup
𝑡→∞

𝐵(𝑡) ≤ 𝐵𝑚. (B.5)

Now from the first equation of the model system (6), we have

𝑑𝑁

𝑑𝑡
≤ (𝑟+𝜔𝜓(𝐾 + 𝜖))𝑁 − 𝑟𝑁2

𝐿
∀𝑡≥𝑡0 . (B.6)

Using the same argument as previously, ∃𝑡1≥𝑡0 such that

𝑁(𝑡) ≤ (𝑟+𝜔𝜓(𝐾 + 𝜖)) 𝐿
𝑟
+ 𝜖 =𝑁𝜖 , ∀𝑡≥𝑡1≥𝑡0 . (B.7)

Hence

lim sup
𝑡→∞

𝑁(𝑡) ≤𝑁𝑚. (B.8)

From second equation in the model system (6), we get

𝑑𝐻

𝑑𝑡
≤ 𝑠𝑁𝜖 − 𝜂𝐻 ∀𝑡≥𝑡1 . (B.9)

Then we have

𝐻(𝑡) ≤
𝑠𝑁𝜖

𝜂
+ 𝜖 =𝐻𝜖 , ∀𝑡≥𝑡2≥𝑡1 . (B.10)

Hence

lim sup
𝑡→∞

𝐻(𝑡) ≤𝐻𝑚. (B.11)

From third equation of the model system (6)

𝑑𝐶

𝑑𝑡
≤ 𝐶0 + 𝜎𝐻𝜖 − 𝜌(𝐾 + 𝜖)𝐶 − 𝜋𝐶 ∀𝑡≥𝑡2 . (B.12)

∃𝑡3≥𝑡2 such that

𝐶(𝑡) ≤
𝐶0 + 𝜎𝐻𝜖

𝜌(𝐾 + 𝜖) + 𝜋
+ 𝜖 = 𝐶𝜖 ∀𝑡≥𝑡3≥𝑡2 . (B.13)

Hence

lim sup
𝑡→∞

𝐶(𝑡) ≤ 𝐶𝑚. (B.14)

Similarly, it can be easily shown that lim sup
𝑡→∞

𝑉 (𝑡) ≤
𝛽𝑁𝑚

𝜉
. Thus, the Lemma 1 is proved.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .heliyon .2024 .e23976.
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