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Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic
progressive liver disease with a substantial impact on global health. Given that MASLD
has a complex etiology, it is a multisystemic disease, a multidisciplinary approach is
required when treating MASLD. The optimal drug for MASLD should diminish steatosis,
fibrosis and inflammation in the liver. Although the pharmaceutical industry is still lagging
in developing an approved pharmacologic therapy for MASLD, research has recently
intensified, and many molecules that are in the final stages of clinical trials are expected to
be approved in the coming few years. The current review updated information related to
the MASLD pathogenesis, diagnosis and therapeutic options, how patients are clinically
managed nowadays, and what to expect in the near future.
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1. Introduction
Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive deposition

of triglycerides in hepatocytes, and is considered to be a metabolic liver disease [1]. It
represents a generic name for several liver diseases, which include non-alcoholic fatty
liver (NAFL), simple fatty liver (SFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and
hepatocellular carcinoma (HCC) [2]. Nowadays, the research concerning NAFLD has
become urgent and important because the age of diagnosis of NAFLD is progressively
decreasing, and its relationship with cancer risk is well known [3].

After understanding the pathogenesis of NAFLD, NAFLD became MASLD (metabolic
dysfunction-associated steatotic liver disease), non-alcoholic fatty liver (NAFL) became
MAFL (metabolic-associated fatty liver), and NASH became MASH (metabolic dysfunction-
associated steatohepatitis) [4]. In this way, MASLD became a prominent global health
challenge [5]. It is characterised by the excess accumulation of hepatic lipids (hepatic
steatosis), which can lead to inflammation (steatohepatitis) and progressive fibrosis.
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The clinical evolution of MASLD is unpredictable. In unfavorable cases, MASLD
can be fatal. In unfavorable cases, MASLD can progress to advanced liver diseases such
as cirrhosis, hepatic decompensation, or hepatocellular carcinoma, which significantly
increase the risk of liver-related mortality. Additionally, MASLD is often associated with
increased cardiovascular risk, which can also contribute to fatal outcomes. In general,
MASLD remains asymptomatic until decompensated cirrhosis develops. When symptoms
appear, they consist of a mild pain in the right upper quadrant and in fatigue [6].

The severity of MASLD is mediated by factors that include genetic susceptibility, nu-
tritional content, adiposity, insulin resistance, the gut microbiome, and a host of endocrine
effectors of disease [7]. The pathogenesis and the clinical manifestations of MASLD are
heterogenous because in MASLD are involved many and different pathogenic molecular
pathways [8,9]. Obesity and adipose tissue dysfunction (adiposopathy) are major risk fac-
tors for MASLD [10]. These conditions are closely associated with metabolic disturbances
such as insulin resistance, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia,
which are commonly observed in patients with MASLD [11].

As a result of the interactions between genetic, epigenetic and environmental factors
the pathogenesis of MASH/MASLD is complex and complicated at the same time. The con-
sequence of these interactions are represented by systemic metabolic dysfunction involving
the liver, with deranged molecular pathways and cell-cell communication between hepato-
cytes, liver sinusoidal cells, stellate cells, Kupffer cells, and recruited immune cells [12]. The
variable combinations of these factors can generate different clinical phenotypes among
individuals with MASLD. This is the reason why it is necessary to develop a personalized
management of the disease.

MASLD itself determines the occurrence of some extrahepatic complications like
cardiovascular disease, T2DM/insulin-resistance, chronic kidney disease, and a few types
of extrahepatic cancers [13,14]. Patients with severe liver fibrosis likely develop subclinical
carotid atherosclerosis with cardiovascular diseases, which represent the leading cause of
MASLD-related mortality [15].

Death rates from extrahepatic cancers in MASLD exceed the deaths caused by hepato-
cellular carcinoma because the global prevalence of MASLD is about 30%. It was found
that the increased extrahepatic cancer risk in MASLD is independent of the liver fibrosis
stage. Taking into account this significant prevalence, in the future, access to care and the
costs for treating MASLD will be huge [16].

The diagnosis of MASLD is increasingly moving toward non-invasive, early detection
methods due to its often asymptomatic nature and the rising global burden. Traditional
reliance on liver biopsy, while accurate, is impractical for widespread use, particularly
in lean MASLD, which defies typical obesity-associated expectations and complicates di-
agnosis with limited awareness and outdated criteria [17]. FibroScan liver elastography
has emerged as a rapid and effective diagnostic tool capable of detecting hepatic steato-
sis and fibrosis in early and subclinical stages, proving valuable in adult and pediatric
populations [18]. Imaging-based modalities like MRI and ultrasound have demonstrated
promising diagnostic accuracy, with AUROC values as high as 0.94–1.0, however, inconsis-
tent pathology definitions and a lack of validation across studies hinder standardization [19].
Meanwhile, extracellular vesicles (EVs) offer novel diagnostic and therapeutic potential due
to their role in the pathophysiological alterations of liver tissue, positioning them as next-
generation biomarkers under active investigation [20]. Collectively, these advancements
represent a significant evolution in MASLD diagnostics, shifting from invasive procedures
to integrated, non-invasive tools that emphasize early detection, personalized risk profiling,
and continuous monitoring.
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Multidisciplinary teams composed of hepatologists, cardiologists, endocrinologists,
physiotherapists, dietitians, and psychologists must be involved in treating patients with
MASLD [21]. The optimal treatment of MASLD must also involve the metabolic risk factors
that promote cancer and cardiovascular disease, not only the progression of liver disease.
Considering that MASLD is a disease with slow evolution, clinical endpoints are difficult to
achieve and assess in clinical trials. Within them is followed, in the first place, the fibrosis
reversal, since fibrosis severity is the main prognostic factor in MASLD. The biomarkers
involved in MASLD and its molecular mechanisms are not completely understood, so
finding an appropriate pharmacological treatment represents a challenge [22]. Optimal
treatment of MASLD must have a safety profile, in order not to cause more harm than good
to some asymptomatic patients, who may be morbid event-free for many years [23].

The current review presents information regarding MASLD pathogenesis, diagnosis
and therapeutic options, how patients are clinically managed nowadays, and what to
expect in the near future.

2. MASLD Pathogenesis
2.1. Physiopathology of Liver Fibrosis

Insulin promotes the storage of free fatty acids (FFAs) and, consequently, of triglyc-
erides at the adipose tissue level. This activity is due to its anti-lipolytic activity in lipid
metabolism. If the insulin resistance is present, insulin isn’t able to inhibit adipocyte lipol-
ysis and this determines the release of FFAs from the adipose tissue in the bloodstream
and consequently their excessive presence in the liver, where an excessive biosynthesis
of triglycerides takes place [24]. One of the leading causes of fatty liver is represented
by insulin resistance and this also represents one of the therapeutic targets in MASLD
treatment [25]. The source of FFAs from the liver is represented by the diet, de novo lipoge-
nesis and adipose tissue (60%). Excessive accumulation of FFAs in the liver is considered to
be responsible for the pathogenic pathway of liver fibrosis and the formation of reactive
oxygen species [26]. The excess of FFA in the liver generates lipotoxic lipids that cause
endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis of hepatocytes.
All of these are involved in the formation of reactive oxygen species. In this environment,
Kupffer cells (macrophages in the liver sinusoids) release the profibrotic factor TGF-β
(transforming growth factor-β), which activates the hepatic stellate cells. The activated
hepatic stellate cells migrate to the place of the injury, secrete an extracellular matrix and
determine the formation of a fibrotic tissue in the liver. If fibrinogenesis is exacerbated,
it becomes pathogenic [27,28]. The severity of liver fibrosis reflects the liver damage. An
extensive liver fibrosis indicates the presence of compensated or uncompensated cirrhosis
and of HCC (Figure 1) [29,30].

2.2. MASLD and the Disruption of Carbohydrate Metabolism

In the onset and progression of MASLD/MASH, glucose metabolism has an essential
role [31]. MASLD patients have increased levels of hexokinase 2 (HK2) and pyruvate kinase
isozyme type M2 (PKM2), two essential enzymes involved in glycolysis. The increased
level of the two enzymes activates the glycolytic process. As a consequence of an increase
in glucose transport to the liver, glycolysis will also be increased. So, a large amount
of pyruvate will be available for “de novo” lipogenesis. MASLD is characterized by an
abnormal accumulation of triglycerides in hepatocytes [32]. The formation of lactate repre-
sents the alternative pathway of pyruvate metabolism. Lactate is involved in decreasing
the activity of histone deacetylase (HDAC), which represents a step in stimulating the
“de novo” lipogenesis pathway. The uptake of FFAs by hepatocytes and the promotion
of the expression of lipogenic genes are stimulated by the increased levels of lactic acid.
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Mitochondrial dysfunction and a deranged Krebs cycle lead to oxidative stress and DNA
damage in the case of steatohepatitis [33].

Figure 1. Exacerbation of MASLD and pharmacotherapy to reverse the stage of fibrotic MASH to a
healthy liver. MASLD: metabolic dysfunction-associated steatotic liver disease, MAFL: metabolic-
associated fatty liver, MASH: metabolic-associated steatohepatitis, HCC: hepatocellular carcinoma.
Dark arrow: worsening liver condition. Light red arrow: improving MASLD stages under
MASLD pharmacotherapy.

Insulin resistance may be hepatic or systemic. Both have a negative influence on
MASLD. After a short-term consumption of high-fat diets, hepatic insulin resistance can
be triggered. It is not accompanied by peripheral insulin resistance. The insulin resistance
is involved in increasing gluconeogenesis and “de novo” lipogenesis [34]. To increase
the “de novo” lipogenesis, insulin participates in the activation of the liver X receptor
(LXR), with upregulation of CHREBP1 and SREBP1 genes [35]. Insulin is also involved
in the regulation of very low-density lipoprotein (VLDL) production because it inhibits
the microsomal triglyceride transport protein (MTTP) and promotes the apolipoprotein
B (ApoB) degradation. With the emergence of insulin resistance, problems appear in the
regulation of VLDL due to the reversal of the above-mentioned processes, to an increased
uptake of FFAs in the liver and to a decrease in the phosphorylation of forkhead box
transcription factor 1 (FoxO1). All these are involved in MASLD pathogenesis [36]”.

Fructose is another carbohydrate which can worsen hepatic steatosis. It has important
roles in maintaining metabolic homeostasis. In the liver, the catabolism of fructose in the
aim to generate substrates involved in the “de novo” lipogenesis pathway takes place
in the presence of phosphofructokinase [37]. While fructose stimulates the “de novo”
lipogenesis pathway it inhibits the β-oxidation process. It is also involved in decreasing
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the inhibition of protein biosynthesis and in increasing oxidative stress. All these worsen
hepatic steatosis [38].

2.3. MASLD and the Disruption of Lipid Metabolism

In MASLD, hepatocellular lipid accumulation, mainly as triglycerides, appears as a
consequence of the imbalance between lipid input and output at this level. For triglycerides
synthesis FFAs represent the main substrate [39]. An excessive accumulation of FFAs in
the liver causes a cascade of harmful events. These include lipotoxicity [40], the dysfunc-
tion of mitochondrial and endoplasmic reticulum, the activation of signaling pathways
related to inflammation and metabolism, and the activation of the receptor involved in
inflammation [41]. FFAs and diacylglycerols (intermediates in de novo lipogenesis) are
involved in the disruption of metabolic homeostasis having as a result an excessive pro-
duction of reactive oxygen species (ROS), which originate from impaired mitochondrial
function [42]. At least initially, FFAs are esterified and transported via VLDL and/or
oxidized with conversion to different substrates. This initial defense mechanism fails if
FFAs exceed the mitochondria’s capacity to metabolize FFAs, leading to increased ROS
production. This determines the evolution from steatosis to MASH [43].

Lipolysis begins with the production of cyclic adenosine monophosphate (cAMP).
cAMP activates protein kinase A, which in turn activates specific lipases, namely
phosphohormone-sensitive lipase (p-HSL) and phospho-perilipin 1 (p-PLIN1), by phos-
phorylation. After lipolysis takes place, free FFAs are directed to the liver. Insulin is known
to inhibit these pathways [44].

In MASLD, these mechanisms are upregulated in the adipose tissue and are indepen-
dent to the diabetes presence. Due to the adipocyte hypertrophy and insulin resistance,
obesity can occur. Lipolysis will increase and consecutive, the uptake of FFAs into the liver
is exacerbated [34].

The gut microbiota is involved in regulating systemic homeostasis. This role is partly
dependent on bile acids (BA) metabolism-mediated signal transduction together with
specific receptors [45]. The damage observed in chronic liver diseases, which also includes
the evolution from steatosis to steatohepatitis, is also due to the alteration of the BAs’
function and disruption of their metabolism. This occurs independently of the presence of
obesity and diabetes [46].

The enterohepatic circulation of BAs is partially interrupted by the inhibition of the
ileal/colonic reabsorption and increases the fecal excretion of BAs. Consequently, a greater
amount of cholesterol is metabolized into bile acids, thus reducing the risk of obesity. An
important relevance is that BAs serve as ligands for Farnesoid X receptor agonists (FXR)
during their absorption in the terminal ileum, acting as a hormone [47].

In the liver FXR fulfills several roles namely, inhibits lipogenesis pathway by inhibiting
SREBP1c, promotes the oxidation of FFAs and promotes ketogenesis, processes that are
related to fibroblast growth factor 21 (FGF21) [48] and induces β-oxidation by activating
peroxisome proliferator-activated receptor-α (PPARα). In the blood stream FXR facilitates
the clearance of VLDL, improving metabolic dysfunction in MASLD [49].

After FXR intestinal activation, the intestinal epithelial cells release human fibroblast
growth factor 15/19 (FGF15/19) into the liver. This reduces hepatic steatosis and increases
insulin resistance [50]. Also, FXR intestinal activation decreases glucagon-like peptide-1
(GLP-1) secretion. Because FXR is distributed in several tissues, the impact of FXR on
MASLD is still being studied [51].
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2.4. MASLD and Thyroid Hormones

Thyroid hormones acting on the thyroid hormone receptor isoforms α (THRα) recep-
tor stimulate hepatic lipogenesis while THRβ appears to play a larger role in fatty acid
oxidation. THR-β is also known as nuclear receptor subfamily 1, group A, member 2
(NR1A2), a nuclear receptor protein encoded by the THRβ gene in humans. It represents a
sensor for triiodothyronine and is involved in liver regeneration and reduction of apoptosis
at this level. It also improves hepatic regulation of lipid metabolism and plays a role in
regulating insulin sensitivity [52].

The liver not only receives signals from thyroid hormones, but also has receptors
for thyroid-stimulating hormone (TSH, or thyrotropin), which induce hepatic steatosis,
and is a major site for the conversion of thyroxine (T4) to triiodothyronine (T3). It also
synthesizes the main proteins to which thyroid hormones bind: thyroxine-binding globulin,
transthyretin, and albumin [7,53].

Thyroid hormones stimulate THR-β. THR-β is mostly expressed in the liver. Conse-
quently, the lipid metabolism in the liver is accelerated as well as the mobilization of the
FFA at this level. As a result, there is a reduction in LDL-cholesterol, TG levels, of hepatic
steatosis and fibrosis. Clinical studies highlighted the fact that having hypothyroidism is
more common in patients with MASLD [54]. For the patients who progress to MASH, the
activity of THR-β in the liver decreases in parallel with the increase of steatosis and THR-β
becomes less sensitive to thyroid hormones [55].

2.5. MASLD and Gut Dysbiosis

Both gut and liver diseases are frequently associated with a perturbed regulation
of gut–liver communication and dysbiosis. This fact, together with the disruption of
the mechanical gut barrier, altered immune homeostasis and imbalanced bile salt pool,
triggers enhanced gut permeability, “leaky gut”, and systemic inflammation. An altered gut
microbiota (concerning its function and structure) have a great implications on the gut and
liver. Researchers demonstrated that microbiota has an etiopathogenic role in gut and liver
diseases, which determines the alteration of gut composition [56]. The severity of the liver
dysfunction is related to the fact that liver disease disrupts gut homeostasis and determine
changes in the intestinal permeability and in the composition of gut microbiota [57]. An
important mediator of the gut–liver axis is represented by the gut microbiome [58].

The mechanical barrier, the immune barrier and the biological barrier represent the
three major lines of defence. To maintain gut homeostasis they can interact with each
other [59].

Dysbiosis can be a predisposing condition for MAFLD because the gut microbiota
plays an important role in regulating metabolic homeostasis [60,61]. Recent evidence points
to the important role of gut microbiota in MASLD [62].

Crucial elements in the pathophysiology of MASLD are represented by fat accumula-
tion, hepatocyte injury, and intestinal barrier damage. The intestinal barrier is essential in
absorbing nutrients and preventing the intrusion of microorganisms from the gut lumen.
When the intestinal barrier function is altered, intestinal permeability increases and this
in involved in the initiation and progression of intra and extrahepatic damage in MASLD.
MASLD is strongly linked to gut barrier disruption, increased intestinal permeability, tight
junctions alterations and dysbiosis [63].

Dysbiosis is involved in ethanol endogenous production and this directly contributes
to MASLD development. At the intestinal lumen level, the undigestible carbohydrates
from the diet can induce endogenous ethanol production. The endogenous ethanol arrive
in the liver by the portal vein and induces liver damage which in turn aggravates MASLD
pathology. Alcohol dehydrogenase and cytochrome P450 isoenzymes from the liver are
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involved in ethanol catabolism, consecutively to its catabolisation appear mitochondrial
dysfunction which represent a causative factor for MASLD development [64].

2.5.1. Mechanical Barrier Disruption in MASLD

Bacterial overgrowth in the gastrointestinal tract which can disrupt gut homeostasis
and permeability can be produced by the loss of chemical substances and of mucus in the
gut barrier [65].

The possibility of microbial translocation contributing to MASLD is increased by
the inflammation in the intestinal mucosa and by the damage of the intestinal epithelial
barrier. In MASH patients, disruption and alterations in the tight junctions has been
described [66]. Tight junction proteins exhibit contractions and shift to the cytoplasm
under inflammatory stimulation and conditions of hypoxia. As a consequence, the cell
pores expand significantly and lead to an increased permeability of the intestinal mucosa.
This, in turn, determine the translocation of intestinal bacteria and the release of bacterial
byproducts (e.g., lipopolysaccharide) into the bloodstream and liver by the portal vein. As
a result, liver Kupffer cells are stimulated and release inflammatory factors [65].

An important role in facilitating the entry of gut bacteria and bacterial products into
the bloodstream is insured by the disruption of the gut–vascular barrier [67]. Plasmalemma
vesicle-associated protein-1 (PV-1) expression, which serves as a marker of gut–vascular
barrier permeability, is elevated during pathogenic events like the systemic dissemination
of bacteria in MASH. During the early stages of MASH, gut–vascular barrier disruption is
noticeable. By interfering with the WNT/β-catenin pathway in endothelial cells, enteric
pathogens have been found to breach the gut–vascular barrier [68].

2.5.2. Immunological Barrier Disruption in MASLD

The primary constituents of the immune barrier are lymphocyte- and plasma cell-
secreted IgA. IgA exhibits a specific affinity for Gram-negative bacteria present in the
gastrointestinal tract. However, when the intestinal mucosa is impaired, the functionality of
IgA is hindered, which, in turn, causes inflammation and facilitates bacterial translocation
within the intestine [69].

The gut–liver axis plays a critical role in the pathogenesis of MASLD. Sterile inflamma-
tion, driven by damage-associated molecular patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs), significantly contributes to hepatic injury [70]. Obesity pro-
motes the expansion of adipose tissue, leading to an increased release of free fatty acids
(FFAs) into systemic circulation. Concurrently, intestinal dysbiosis alters the composition
of microbiota, enhancing gut permeability and enabling bacterial overgrowth. This condi-
tion facilitates the translocation of microbial components, particularly lipopolysaccharides
(LPS), into the portal vein. Both FFAs and LPS, along with other DAMPs (hyaluronic acid,
fibrinogen, thermal shock proteins) and PAMPs (lipids, proteins from bacteria, viruses,
fungi, parasites), activate pattern recognition receptors, especially Toll-like receptors (TLRs),
on hepatic immune cells such as Kupffer cells, hepatic stellate cells, and hepatocytes [71]
(Figure 2).

The activation of toll-like receptors (TLRs), particularly TLR4, initiates complex down-
stream signaling cascades that involve nuclear factor-kappa B (NF-κB) and interferon regula-
tory factors (IRFs). These pathways ultimately lead to the transcription of pro-inflammatory
cytokines, chemokines, and type I interferons. The resulting pro-inflammatory environment
significantly contributes to hepatic inflammation and fibrotic remodeling. This mechanism
underscores the integral role of TLR-mediated immune responses in linking metabolic
dysfunction, microbial translocation, and progressive liver injury in MASLD [72] (Figure 3).
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Figure 2. Gut–liver axis in MASLD—FFA—free fatty acids; LPS—lipopolysaccharides; TLR—toll-like
receptors.

Figure 3. TLR4 activation in MASLD—PAMPs—pathogen-associated molecular patterns; DAMPs—
damage-associated molecular patterns; TLR4, triggered by endogenous DAMPs and exogenous
PAMPs, is activated and initiates downstream signaling that stimulates NF-κB and leads to cytokine
production, such as IL-17, fueling a pro-inflammatory state.

Elevated levels of serum IgA in MASLD patients were found. Thet are produced
by plasma cells in secondary lymphoid organs. Both in human and mouse models of
MASLD long-term inflammation and fibrosis were linked to liver-resident IgA producing
cells expressing PDL1 (programmed death-ligand 1), hindering body’s capacity to avoid
cancer [73]. In a mouse model of MASH, microbial factors from the gut stimulated B cells
in the liver and these contributed to liver inflammation and fibrosis [74].

In the lamina propria of the gut, patients with MASLD present a decrease in FOXP3-
expressing regulatory T cells (Tregs) and an increase in Th1 and CD8+T cells [75].
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The mast cells are immune cells located in the intestinal barrier and are involved in
releasing cytokines, histamine and proteases, which can affect the integrity of the intestinal
barrier (regulating both innate and adaptive immunity). Primary proteases, trypsin and
chymases, are responsible for zonula occludens-1 (ZO-1) cleavage, they increase the per-
meability of the gut epithelium and reduce the expression of JAM-A (junctional adhesion
molecule A) [76].

An important role in the immune function at the gut barrier level is assured by the
secretory immunoglobulin A (sIgA) which is produced by lymphocytes and plasma cells.

In patients with severe NASH, serum IgA levels are notably higher compared to
patients in the early stages of the disease. This elevation is due to advanced fibrosis [77].

Injured hepatocytes release DAMPs, which trigger inflammatory pathways and am-
plify liver damage. Among key mediators, IL-17—a pro-inflammatory cytokine mainly
secreted by Th17 cells—is critically involved in linking gut-derived immune signals to
hepatic inflammation. Its production, stimulated by microbial cues, contributes to steatosis,
hepatocyte injury, and fibrosis. IL-17A and IL-17F, the most studied members of the IL-17
family, play pivotal roles in MASLD by promoting inflammation, disrupting metabolic
balance, and driving fibrogenesis through direct activation of hepatic stellate cells [78]
(Figure 4).

Figure 4. Role of IL17 in MASLD progression—Th17 cells, a subset of pro-inflammatory CD4+ T cells;
IL-17 and IL-22 cytokines; DCs—dendritic cells, SCs—stellate cells in the liver.

2.5.3. Microbial Barrier Disruption in MASLD

High-fat, cholesterol, and a refined carbohydrate diet can determine gut dysbiosis and
microbiome changes. It can also decrease commensal bacteria populations (involved in
maintaining the integrity of the gut barrier) and increase gram-negative bacteria popula-
tions (involved in proinflammatory effect), which represent an harmful environment [79].
All these may induce an increase in gut permeability, the activation of toll-like recep-
tors (TLRs) family and its consequent inflammation by lipopolysaccharide and endotoxin
among other bacterial subproducts [80].
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An important number of studies demonstrated that carbohydrate and fat diet, high-
kcal diet and obesity can be involved in gut damage, gut dysbiosis, and metabolic
disarrangements [81]. Other studies highlighted the fact that overweight and obese
adults have less microbial gene count. Comparing lean adults with obese ones, a lower
Firmicutes/Bacteroidetes ratio has been correlated to lean adults [82].

The gut microbiome profile of patients diagnosed with MASLD is characterized by an
increased percentage of Proteobacteria, Enterobacteria, Escherichia, and Bacteroides species and
a decreased percentage of Firmicutes species [83].

As a conclusion, a high fat content and dysbiosis can directly affect gut permeability.
Also, an increase in gut inflammation can produce gut damage, dysbiosis, and an increase
in gut permeability.

2.5.4. Microbiome in MASLD

One of the most common effects of microbiota changes on the host is the release of
bacterial metabolites that play important roles in energy homeostasis. After food is ingested,
the body releases compounds named BA for digestion. BA are known to control bacterial
overgrowth and maintain intestinal barrier function. Moreover, bacteria also influence BA
metabolism, transforming the primary BA into secondary BA in the colon, modulating
FXR and TGR5 expression, having a direct effect on glucose tolerance and homeostasis,
insulin sensitivity, lipid metabolism, triglycerides (TG), and cholesterol levels, and energy
expenditure by the host [63].

The close connection between the gut–liver axis and dysbiosis, one of the highlighted
features in chronic liver disease, sheds light on another putative therapy for managing the
disease: the restoration of intestinal microbial diversity.

3. MASLD Diagnosis
The diagnostic approach to MASLD primarily rules out liver pathology causes and

confirms MASLD presence. Consider MASLD in individuals with: 1. Evidence of hepatic
steatosis from imaging (ultrasound, CT, MRI). 2. Unexplained elevation in hepatic transam-
inases, notably ALT and AST. 3. Two or more metabolic risk factors, such as obesity, type 2
diabetes, dyslipidemia, or hypertension. 4. Positive family history, especially in first-degree
relatives with MASLD-related cirrhosis [84].

3.1. Initial Clinical Evaluation

The clinical assessment begins with a detailed history and physical examination cov-
ering symptoms, comorbidities (e.g., type 2 diabetes, obesity), medication use (linked
to hepatic steatosis—amiodarone, methotrexate, tamoxifen, and glucocorticoids), family
history of liver disease (e.g., cirrhosis, MASLD, HCC), and alcohol intake. The physical
exam should evaluate body mass index (BMI) and signs of chronic liver disease, such as
hepatomegaly, jaundice, ascites, or splenomegaly. Initial labs assess liver function and
metabolic status, including liver enzymes (ALT, AST, alkaline phosphatase), synthetic func-
tion markers (total bilirubin, albumin, INR), metabolic parameters (fasting blood glucose,
total and HDL cholesterol, triglycerides), and complete blood count with platelets [85].

3.2. Imaging Assessment of Hepatic Steatosis

For patients suspected of MASLD based on imaging (e.g., transabdominal ultra-
sound, CT, MRI), additional imaging is unnecessary for diagnosis if other criteria are met
(i.e., excluding primary etiologies and having at least one metabolic risk factor) [86]. For
those without recent liver imaging (i.e., within 12 months), transabdominal ultrasound is
required. In patients with MASLD, ultrasound typically shows a hyperechoic texture or
bright liver due to diffuse fatty infiltration. A meta-analysis of 49 studies with 4720 patients
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found ultrasound sensitivity and specificity for detecting moderate to severe fatty liver
were 85% and 94%, respectively, using liver biopsy as the reference standard. However,
sensitivity is reduced in obese patients [87]. In a study of 187 Grade 2 obesity patients
preparing for bariatric surgery, histological analysis showed hepatic steatosis in 95%, while
ultrasound detection was only 49% [88].

3.3. Liver Biopsy: Indications and Histology

Liver biopsy is reserved for cases where noninvasive tests are inconclusive or alterna-
tive diagnoses are considered. Histologic confirmation of MASLD requires >5% steatosis
in hepatocytes [89]. While imaging techniques can identify steatosis, they are generally
less reliable than histology for diagnosing MASH. The use of liver biopsy for assessing
inflammation and staging in all MASLD patients is limited by potential complications (like
bleeding) and costs. It can clarify MASH, characterized by hepatic steatosis, hepatocyte
ballooning degeneration, and lobular inflammation, typically in acinar zone 3 [90]. The
NAFLD Activity Score (NAS) quantifies disease activity and guides diagnosis, especially
when biopsy is required. The NAS is calculated by summing biopsy scores for steatosis
(0–3), lobular inflammation (0–3), and hepatocellular ballooning (0–2), excluding fibrosis.
In the study establishing NAS, scores 0–2 were generally found in cases not diagnostic
for MASH. Scores of 3–4 were evenly distributed among non-diagnostic, borderline, or
positive MASH cases, while 5–8 were mainly linked to diagnostic MASH cases [91]. With
advancing fibrosis to cirrhosis, steatosis and inflammation may not be consistently detected.
However, patients with cirrhosis and metabolic risk factors may be classified as having
MASLD-related cirrhosis instead of cryptogenic cirrhosis. Evaluating MASH in patients
with MASLD and another liver disease can be complex. For example, MASH patients may
also have alcohol-associated liver disease, complicating the assessment of each condition
via liver biopsy [92]. In a study of 3581 liver biopsies from patients with chronic liver
diseases, concurrent steatohepatitis was found in 5.5% of those with hepatitis C virus
(HCV) infection, including heavy alcohol users. The prevalence of steatohepatitis in other
chronic liver diseases varied, from 1. 1.6% in autoimmune hepatitis to 7. 7.9% in alpha-1
antitrypsin deficiency. Importantly, none of the patients with steatohepatitis due to chronic
liver disease unrelated to HCV reported heavy alcohol use [93].

3.4. Differential Diagnosis

The differential diagnosis of MASLD includes other conditions associated with liver
steatosis, particularly in adult patients without metabolic risk factors: (1) alcohol-associated
liver disease (ALD)—individuals with liver steatosis and significant alcohol consumption
(>50 g daily [350 g weekly] for females and >60 g daily [420 g weekly] for males) are
primarily diagnosed with alcohol-associated liver disease. A significant clinical indicator
of alcohol-associated fatty liver disease is an AST to ALT ratio exceeding. (2) In contrast,
in patients with MASLD, this ratio is generally <1, unless advanced fibrosis elevates AST
levels [94]; (3) Chronic hepatitis C virus (HCV) infection—Liver steatosis attributable to
hepatitis C genotype 3 can be ruled out with anti-HCV antibody testing [95]; (4) Wilson
disease—individuals showing symptoms of Wilson disease may display elevated liver
enzymes along with signs of copper overload (Kayser–Fleischer rings, neurocognitive
issues) and a family history of Wilson disease; (5) parenteral nutrition—the provision of
parenteral nutrition has been linked to increased liver enzymes and liver steatosis [96];
(6) drug-induced liver disease—drugs associated with liver steatosis include amiodarone,
methotrexate, tamoxifen, and glucocorticoids [97]; (7) other genetic disorders—other ge-
netic conditions such as lysosomal acid lipase deficiency (cholesterol ester storage disease),
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hypobetalipoproteinemia, and lipodystrophy are also part of the differential diagnosis,
however, these disorders typically present in pediatric populations.

3.5. Staging and Fibrosis Assessment

The primary objective in staging patients with MASLD is to assess the extent of fi-
brosis. Typically, non-invasive imaging techniques, like Vibration-controlled Transient
Elastography (VCTE) or Magnetic Resonance Elastography (MRE), are utilized. VCTE
liver stiffness values: <8 kPa indicates low-risk fibrosis score (F 0-F 1), ruling out clinically
significant fibrosis; 8–12 kPa is indeterminate for advanced fibrosis, where MRE may assist
since ultrasound elastography is less reliable. MRE below 2.55 kPa indicates low-risk fibro-
sis (≤F 1), while over 3.63 kPa suggests advanced fibrosis or cirrhosis; >12 kPa indicates
advanced fibrosis or cirrhosis, prompting further management and referral to hepatol-
ogy for screening and preventive measures for cirrhosis complications (variceal bleeding,
hepatocellular carcinoma) [98]. Combining VCTE and liver stiffness for staging MASLD
patients leverages its non-invasive, point-of-care features, effectively ruling out advanced
fibrosis with notable diagnostic precision. A systematic review of 44 studies revealed VCTE
sensitivity of 80% and specificity of 77% in detecting advanced fibrosis (≥F 3). Research
indicates MRE’s greater precision than ultrasound-based elastography for fibrosis staging,
although availability and cost may limit its use [99]. A pooled analysis of 230 patients with
biopsy-confirmed MASLD showed MRE’ s superior diagnostic accuracy for establishing
fibrosis stages (F 0 to F 4) compared to ultrasound-based transient elastography [100]. An
alternative strategy is the FIB-4 index, incorporating age, AST, ALT, and platelet count,
followed by imaging (e. g., VCTE) for patients with FIB-4 ≥ 1. 1.3 [4,45,70]. A FIB-4 above
3.25 indicates cirrhosis and necessitates hepatology referral. Patients with FIB-4 over 2. 2.67
are also at risk for advanced fibrosis; thus, a hepatology referral is recommended [101].

4. MASLD Therapeutic Options
The following premises must be taken into account when a treatment is instituted for

a patient diagnosed with MASLD:

- 90–95% of patients will not progress to liver cirrhosis;
- the progression of MASLD to liver cirrhosis lasts for 20 to 25 years;
- MASLD has the possibility to regress. When steatosis is present, regression takes place

in a short time, but when fibrosis is present and adiposopathy is mitigated, regression
is still possible, but takes longer [102].

When the adipose tissue capacity is surpassed by a surplus of energy, adiposopathy
is present, and this represents the expression of MASLD. The adipose tissue capacity is
exceeded when severe obesity is present, but can be exceeded even if the patient’s BMI is
normal. This depends on the interindividual variability [103]. Adiposopathy is involved
in the occurrence of MASLD, metabolic dysfunctions, cardiovascular diseases and cancer.
This is the reason why in all the patients diagnosed with MASLD, the treatment targets
adiposopathy. The aim is to decrease the amount of adipose tissue and to improve its
function [104].

Compared to healthy subjects, patients with MASLD have an almost two-fold increase
in mortality. The rate of mortality increases with the worsening of liver fibrosis and reaches
up to 4-fold greater for patients with F4 fibrosis/cirrhosis [105]. The severity of fibrosis is
associated not only with liver-related mortality but also with cardiovascular and cancer
mortality [106]. The main causes of death are cancers, cardiovascular diseases, and only
then liver diseases [105]. It seems like the obesity-associated risk for cancers is dependent
on the development of MASLD [107].
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4.1. Healthy Lifestyle and MASLD

Epidemiological research has demonstrated the link between eating habits and liver
disease. Weight loss, physical activity, and a Mediterranean diet can contribute to the
reduction of liver steatosis and fibrosis. A healthy lifestyle represents the primary treatment
for MASLD patients [108]. The most important mortality prognostic factor in MASLD is
liver fibrosis. Unfortunately, most of the patients cannot reach the target weight required
to reduce liver fibrosis [109]. MASLD can also occur in lean patients with normal BMI. A
normal BMI does not necessarily indicate a healthy metabolic status of the patient [110].
These patients have a poor metabolic profile compared to the healthy subjects, namely pre-
senting hypertension, increased values of glucose, HbA1c, triglycerides, LDL-cholesterol,
and decreased values of HDL-cholesterol [111].

By decreasing BMI and waist circumference, the beneficial effect of the diet can be
explained. Physical activity is also involved in reducing the waist circumference [112]. For
patients with MASLD, a healthy diet and regular physical activity can decrease not only
cardiovascular mortality but also all-cause mortality. It is not known exactly how much
physical activity should be done to protect from mortality and to have a positive impact on
survival [110].

To lose weight, patients must adopt a hypocaloric diet with a 500 to 1000 kcal deficit.
Epidemiological studies showed discrepant results concerning the relative importance
of the quantity of energy intake over the quality of nutrients in the diet [113]. However,
it is well known that high fructose consumption determines MASLD development and
progression [114]. Also, the kind of fat consumed has an important role in MASLD devel-
opment. A high intake of cholesterol and saturated fatty acids promotes MASLD, fibrosis,
and hepatocellular carcinoma while an increased consumption of omega-3 polyunsaturated
fatty acids appears to protect against the occurrence of hepatocellular carcinoma [115]. The
consumption of red meat is also associated with insulin resistance and MASLD [116].

Different diets were proposed, but the most accepted one is the Mediterranean diet.
The Mediterranean diet consists of a low consumption of sugars and refined carbohydrates
and a high consumption of vegetables, fruits, whole grains, seeds, and nuts. Fish is allowed,
but red meat is not recommended. It is basically a plant-based diet. The Mediterranean
diet in MASLD patients seems to be associated with a lower risk of T2DM, cardiovascular,
and cancer mortality, including from liver cancer [117].

Intermittent fasting is another proposed diet. It allows an unlimited energy intake,
but the consumption is limited to certain time intervals. By maintaining this type of diet,
metabolic dysfunction is improved with better glycemia and blood pressure control and a
better evolution in terms of steatosis and liver fibrosis [118].

Changing dietary habits highlights the significant role of diet in the treatment of liver
disease. A hypocaloric, low-fat and low-carbohydrate diet is recommended [119].

An intake of at least two coffees/day without sugar or sweeteners seems to protect
against the development of hepatic steatosis/fibrosis [120], while the consumption of three
coffees/day decreases the risk of developing hepatocellular carcinoma [121].

Patients with MASLD should not drink alcohol. Although there is no clear scientific
evidence to indicate the prohibition of alcohol consumption in MASLD, it is known that
alcohol and metabolic dysfunction are synergic involved in inducing liver disease [122]. In
a recent article, it was underlined that alcohol intake can increase the risk of progression of
liver disease in MASLD patients [123].

Physical activity, even when weight loss is not achieved, has a protective effect against
liver steatosis, provided it is performed at least three times per week for 45 min of moderate-
intensity exercise [124]. Furthermore, it was found that physical activity can improve liver
stiffness and reduce hepatic steatosis, independently of dietary changes [125].
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If weight loss is less than 10%, lifestyle interventions have a lower success rate. Unfor-
tunately, not even a quarter of patients who lose weight are able to maintain their weight.
Moreover, approximately 60% of them return to their initial weight in less than a year. Even
if the patients reach their initial weight, the beneficial effects of the transient weight loss on
metabolic dysfunction and on liver steatosis seem to persist for at least 2 years [126].

Studies reported that exercise programs help the body to counter oxidative stress, to
stimulate the turnover of lymphocytes, and boost the expression of anti-inflammatory cy-
tokines within the intestinal lining. It is proposed that exercise promotes intestinal motility,
potentially leading to the shedding of loosely attached microbes from the gastrointestinal ep-
ithelium. Physical exercise fosters the proliferation of other beneficial microorganisms that
play a role in maintaining a healthy mucosal immune system and gut barrier balance [127].

As a conclusion, the non-pharmacological approach is important, but alone is not
enough in treating patients with MASLD (Figure 5) [55].

Figure 5. Main therapeutic approaches for MASLD. GLP-1: Glucagon-Like Peptide-1, SGLT-2:
Sodium-glucose co-transporter-2, PPAR: Peroxime Proliferator-Activated Receptor, FXR: Farnesoid-X
receptor, FGF: Fibroblast growth factors, THR-beta: Thyroid hormone receptor beta.

4.2. Drug Therapy in MASLD

Because the pathogenesis of MASLD is different, in the last decade, an increasing num-
ber of compounds have been synthesized and tested [128]. According to the development
and progression of the disease, different biological targets have been identified. Special
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attention was granted to the histologically characterized disease pathophenotypes, ranging
from steatosis to inflammation and then to fibrosis. Among the compounds tested in the
last 10 years for the treatment of MASLD/MASH, very few reached the level of a phase
three trial. Most of them failed to enter into clinical trials, or the studies were limited to
phase one or two. Antidiabetic drugs, PPAR agonists, FXR agonists, and THR agonists are
the most promising drugs in treating MASLD [31] (Figure 5).

4.2.1. Anti-Hyperglycemic Drugs

For patients with steatotic liver who present insulin resistance, the use of antidiabetic
drugs has shown variable results [31]. Among people with T2DM and MASH, the treatment
aims to improve the aspects related to the cardiometabolic risk factors, namely glycemia,
lipidemia, body weight, and blood pressure, and regarding steatohepatitis, especially if a
significant fibrosis (stage ≥F2) is present. Biopsy represents the gold standard to diagnose
and stage the severity of liver fibrosis, but it is an invasive method and is not feasible
or acceptable for all patients. So, to establish a drug therapy, the following factors are
taken into account: elevated fibrosis-4 index (FIB4) >1.3, elevated serum aminotransferase
level, plasma biomarkers for liver fibrosis determination, and/or imaging such as transient
elastography and magnetic resonance elastography [129].

The first anti-hyperglycemic drug to show efficacy in an early randomized clinical trial
involving patients with prediabetes/T2DM and biopsy-proven MASH was pioglitazone,
a PPAR gamma agonist that reduces insulin resistance by improving glucose utilization
and lipid storage/redistribution [130]. More details concerning pioglitazone are presented
below in the section PPAR agonists.

Metformin, an anti-hyperglycemic drug, affects liver fat storage and metabolism. It
decreases food intake and body weight, though findings remain contradictory. Metformin
inhibits gluconeogenesis, reducing liver glucose levels. After meals, it increases glucose
utilization and insulin sensitivity in the liver and skeletal muscle. By inhibiting lipolysis,
metformin lowers serum FFA concentrations, which are gluconeogenesis substrates. Its
effects are linked to the activation of AMP-activated protein kinase (AMPK) by Peutz-
Jeghers protein (LKB1), which inhibits lipogenesis and fatty acid synthesis in the liver and
muscle [131].

In patients with new-onset T2DM, metformin improved the hepatic steatosis index
over two years, but worsened the FIB-4 index. It enhances metabolic homeostasis in
T2DM patients with steatotic liver by counteracting insulin resistance, activating AMPK,
reducing ROS generation, inducing fatty acid β-oxidation, and altering gut microbiota
positively [132]. Although results in treating liver steatosis are promising, metformin as
monotherapy is unconvincing. Current studies focus on combining metformin with other
anti-diabetic drugs like SGLT-2 inhibitors, liraglutide, and pioglitazone [133].

SGLT2 inhibitors, or “florins,” provide cardiorenal benefits as adjunctive therapy
for T2DM and MASLD, improving cardiometabolic risk factors, inflammation, hepatic
triglycerides, and aminotransferase levels [134].

While they significantly improve hepatic steatosis marked by MRI and non-invasive
biomarkers, liver biopsy histological evaluations post-treatment remain unreported [135].

Due to their antifibrotic and antiphlogistic actions, SGLT2 inhibitors are recognized for
kidney and cardio-protective effects, leading to authorization for non-diabetic conditions
like kidney disease and heart failure [136]. Currently, numerous randomized controlled tri-
als aim to demonstrate their efficacy in reducing inflammation, steatosis, and fibrosis [137].

Overall, SGLT2 inhibitors are deemed safe, with common side effects including dia-
betic ketoacidosis, hypotension, and genitourinary infections [138].
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Among SGLT2 inhibitors, dapagliflozin and empagliflozin are the most effective.
Dapagliflozin does not significantly affect insulin sensitivity but reduces hepatic lipid accu-
mulation [31]. A meta-analysis of 7 trials treating patients with MASLD using dapagliflozin
10 mg showed that serum AST and ALT values decreased, insulin resistance (HOMA-
IR) improved, no decreases in gamma-glutamyl transferase (GGT) were noted, and total
serum cholesterol increased. No significant safety profile differences were found between
groups. The DEAN phase 3 trial (NCT03723252) aims to compare dapagliflozin’s efficacy
versus placebo in patients with histologically confirmed MASH, seeking improvements
in liver histology score, fibrosis score, hemoglobin A1c (HbA1c), insulin resistance, and
body weight within one year. Empagliflozin administration in T2DM patients decreases
plasma liver enzyme levels and hepatic lipid accumulation, reduces the risk of diabetic
ketoacidosis, and lowers extremity amputation risk, presenting a potential treatment for
T2DM and MASLD patients [139].

Glucagon-like peptide 1 (GLP-1) analogs are effective antidiabetic medications for type 2
diabetes mellitus (T2DM). Secreted by L- and K-cells in the intestine, GLP-1 and glucose-
dependent insulinotropic polypeptide (GIP) enhance insulin secretion after meals [140].
GLP-1 boosts insulin production, inhibits glucagon, and decreases appetite. Despite ex-
tensive distribution, GLP-1 receptors (GLP-1R) are not significantly present in the liver. In
relation to MASLD, GLP-1 improves overall metabolism by increasing insulin sensitivity,
suppressing appetite, and facilitating weight loss. The receptor agonists promote weight
loss via pleiotropic actions, enhancing satiety and delaying gastric emptying [141]. Various
studies indicate that GLP-1 analogs can reduce hepatic steatosis and enhance MASH, with
limited results on liver fibrosis. Thus, GLP-1 analogs are promising for MASLD in T2DM
and obesity. The FDA has approved seven GLP-1 receptor agonists for T2DM: exenatide,
liraglutide, dulaglutide, albiglutide, lixisenatide, semaglutide, and tirzepatide. Liraglutide,
semaglutide, and tirzepatide are also approved for overweight and obesity treatment [142].

In the SCALE studies, 3 mg daily liraglutide resulted in a 6–8% total body weight
loss [143]. The LEAN study, a phase 2 trial with 52 patients comparing liraglutide to
placebo, showed liraglutide significantly resolved steatohepatitis (39% vs. 9%) and slowed
fibrosis progression (9% vs. 36%), though it did not improve fibrosis. The weight loss
benefits did not directly correlate with histological response, indicating liver benefits
may surpass weight loss effects. A few side effects, mainly gastrointestinal issues, were
noted [144].

At a dose of 2.4 mg per week, semaglutide causes greater weight loss than liraglutide [145].
In MASLD treatment, semaglutide was included in phase 2 and 3 studies. A phase 2b
study enrolled 320 patients with MASH and fibrosis (F1–F3), treated with increasing doses
of semaglutide, reaching a maximum of 0.4 mg/week or placebo. The 0.4 mg dose is
lower than that used for obesity treatment. MASH resolution was 40% for semaglutide
versus 17% for placebo, but fibrosis showed no improvement [146]. In another phase 2
study, 71 patients with MASLD-associated cirrhosis received semaglutide 2.4 mg/week,
with no improvement in fibrosis or MASH observed. There was a trend for worse fibrosis
(more patients with ISHAK grade 6 and higher collagen), suggesting semaglutide may be
ineffective after cirrhosis develops. This study was conducted alongside a placebo. The
ESSENCE trial, a phase 3 study started in 2021, enrolled patients with MASH at F2–F3
fibrosis stages, treating them with 2.4 mg semaglutide/week and placebo. Histological and
clinical endpoints will be evaluated at weeks 72 and 240, monitoring for progression to
cirrhosis, hepatic decompensation, liver transplantation, and death. In the semaglutide
group, side effects like gallbladder and gastrointestinal disorders, and increased lipase and
amylase activity were more common [147].
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Tirzepatide is a dual incretin, more accurately a dual GLP-1 and GIP agonist. Tirzepatide
adds the beneficial effects of GLP-1 to the enhancement in adipose tissue function mediated
by GIP. A phase 2 randomized clinical trial (RCT), named SYNERGY-NASH (NCT04166773),
was completed at the beginning of 2024. The study assessed the efficacy and safety of
tirzepatide administration in patients diagnosed with MASH. The main objective of the
study was to determine whether tirzepatide leads to the resolution of MASH without
worsening fibrosis. Secondary objectives included monitoring body weight, liver fat
content, and changes in fibrosis stage. It was reported that approximately 75% of patients
met the study’s objectives, compared to approximately 13% in the placebo group [140].

4.2.2. Ketohexokinase Inhibitors

Ketohexokinase is the enzyme that transforms fructose into fructose 1-phosphate and
represents the rate-limiting enzyme in fructose metabolism. Excessive fructose consump-
tion is a risk factor for MASLD. It is associated with increased hexokinase levels, deranged
fatty acid oxidation, and enhanced de novo lipogenesis. Consecutive, the hepatic steatosis
and insulin signal transduction worsen [148]. The inhibition of hepatic hexokinase may
decrease the fructose-induced hepatic impairement. So, in clinical trials, PF-06835919 and
hexokinase inhibitors decreased hepatic lipid accumulation, but insulin resistance was not
improve [149].

4.2.3. Statins

MASLD is associated with hyperlipidemia. The increased transport of lipids to the
liver is because lipoproteins are rich in triglycerides and cholesterol. Some small clinical
trials indicated that atorvastatin decreases ALT serum levels and improves hepatic steatosis,
and that rosuvastatin decreases ALT and AST serum levels and improves liver fibrosis.
Statins can improve MASLD/MASH expression by reducing the risk of hepatic steatosis
and fibrosis [150].

4.2.4. Peroxisome Proliferator-Activator Receptor (PPAR) Agonists

The family of PPAR receptors is mostly located in the liver, brown adipose tissue,
and macrophages. There are 3 types of PPAR receptors. In the liver PPARs decrease the
biosynthesis of TGs, activate FFAs oxidation and increase insulin sensitivity. Older studies
have demonstrated the effectiveness of PPARs in MAFLD treatment. PPAR-γ is involved in
the inhibition of inflammation, in glucose and lipid metabolism regulation and in adipocyte
differentiation [151].

Thiazolidinediones, commonly known as “glitazones” are potent activators of PPAR-γ
and they are known as antidiabetic agents. They improve insulin sensitivity, reduce plasma
FFAs level, reduce hepatic lipid accumulation and some of them seem to improve fibrosis
by inhibiting the activation of hepatic stellate cells” [152].

As we mentioned above, pioglitazone was the first anti-hyperglycemic drug which
showed efficacy in treating prediabetes/T2DM patients with MASH. In general, PPARs
are dysregulated in MASLD, and the activity of pioglitazone, a PPAR α/γ receptor ago-
nist, consists of steatosis improvement, hepatic biomarkers improvement, and reducing
inflammation. Following the administration of pioglitazone, a histological amelioration
was found by improving MASLD activity score (NAS), and no worsening of liver fibrosis
was observed [153,154]. Treatment with pioglitazone is included in several guidelines as
a possible treatment option for patients with T2DM and proven MASH [155]. However,
the clinical use of pioglitazone is limited due to its many adverse effects, which include
weight gain, fatigue, mild lower extremity edema, bone fracture in postmenopausal women,
fluid retention, which can determine heart failure in patients with cardiomyopathy and
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bladder cancer [129]. Therefore, before pioglitazone administration, great care is required
in selecting the patients [152].

Saroglitazar is another dual PPAR-α/γ agonist that can be used for MASLD treatment.
After completing all the mandatory clinical trials, in 2020 saroglitazar was approved for
MASH treatment in India, but not in other countries [156]. In the United States, saroglitazar
was approved only for treating dyslipidemia in diabetic patients [157]. In a placebo-
controlled RCT study (NCT03061721), a phase 2 study named EVIDENCES IV, conducted
in the United States on 106 patients with MASLD or MASH, saroglitazar proved beneficial
activity on the liver. At a dose of 4 mg magnesium saroglitazar, liver fat content, triglyceride,
ALT, adiponectin and insulin resistance were significantly reduced [158]. Concerning the
safety and tolerability, saroglitazar can cause cough and diarrhea as common adverse
effects [159]. Another placebo-controlled RCT study (NCT05011305) which investigates
the administration of magnesium saroglitazar to 240 patients with MASH and fibrosis is
currently ongoing. The main objective of the study is to investigate the resolution of MASH
without worsening fibrosis after 52 weeks of saroglitazar administration. It is also followed
if saroglitazar administration improves liver fibrosis without worsening liver steatosis,
liver inflammation or ballooning [160].

Lanifibranor is a pan-PPAR agonist which acts as an agonist on all three PPAR isoforms
because it can bind to different regions of the PPAR α-, δ-, and γ-ligand domain [161]. This
is why in MASLD patients, lanifibranor can have a better activity in reducing inflammation,
liver fibrosis and metabolic risk factors compared with a single PPAR agonist [161]. In a
phase 2b placebo-controlled RCT (NCT03008070) study, named NATIVE study, in which
247 participants were enrolled, the activity of lanifibranor (administered for 24 weeks)
was compared with placebo. It demonstrated a higher activity in reducing the SAF-A
score (Steatosis Activity Fibrosis score) by at least two points without deterioration of
fibrosis [162]. Due to the fact that promising results were obtained, a phase 3 placebo-
controlled RCT (NCT04849728) study, named the NATIV3 study was started. The study is
still ongoing and is estimated to be completed in October 2026. This study aims to enroll
1000 patients diagnosed with active MASH and liver fibrosis (stage F2/F3) and to measure
the resolution of MASH with improvement in fibrosis at week 72. Concerning the side
effects, they are more frequent in the lanfibranor group compared to the placebo group
and consist of nausea, diarrhea, peripheral edema, weight gain, and anemia. The positive
results of this study could lead lanifibranor to a step of approval [23].

4.2.5. Farnesoid-X Receptor (FXR) Agonists

FXR is a nuclear receptor activated by BA, mainly in the liver but also in the small
bowel. It modulates bile acids, cholesterol, glucose metabolism, lipogenesis, inflammation,
fibrogenesis, intestinal integrity, and vascular remodeling [163]. A complex pathway
governs BA biosynthesis. Luminal BAs reabsorb into the ileal enterocyte, interacting with
nuclear FXR to upregulate FGF-19 expression. During enterohepatic circulation, FGF-19
binds hepatic FGFR4/β-Klotho, inhibiting CYP7A1 expression, the rate-limiting enzyme
in BA synthesis [47]. This prevents excessive bile acid accumulation in the liver. Liver
FXR activation improves glucose tolerance by increasing glycogenogenesis and decreasing
gluconeogenesis [164]. Additionally, it reduces hepatic fat accumulation through small
heterodimer partner expression and CYP7A1 activity [165], while upregulating FGF-19 and
FGF-21, which have anti-steatogenic and anti-fibrotic effects [166].

An analog of the primary BA chenodeoxycholic acid, named obeticholic acid (a semi-
synthetic BA), was tested for a potent agonistic activity on FXR and for its possible beneficial
metabolic effects on glucose and hepatic lipid metabolism. In order to determine the
long-term effects of obeticholic acid on MASH and fibrosis in patients with stage 1–3
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fibrosis, a large phase 3 randomized, placebo-controlled trial was performed. Unfortunately,
obeticholic acid treatment did not correspond in terms of MASH resolution and side effects.
For about 10% of cases, the treatment was discontinued due to the presence of a dose-
dependent pruritus, and about 50% of patients developed hypercholesterolemia requiring
newly prescribed statins [167].

Other synthetic FXR agonists are being tested and might produce fewer adverse events
than obeticholic acid. MET642 is included in a phase 2 clinical trial enrolling MASH patients
(NCT0477396). MET409 alone, in a phase 1b trial, decreases the amount of lipids in the liver,
and currently is associated with empagliflozin in a phase 2b trial. The non-BA tropifexor is
another highly potent FXR agonist tested in a phase 2 clinical trial (NCT02855164), a study
named FLIGHT FXR. In the study, MASH patients diagnosed with fibrosis stage between 1
and 3 were enrolled. Compared to placebo, tropifexor decreases the amount of lipids in the
liver, reduces body weight and transaminases [168].

4.2.6. Fibroblast Growth Factors (FGF) Agonists

The FGF superfamily includes FGF19 and FGF21, which have beneficial effects on
glucose and lipid metabolism. In animal models, the administration of FGF19 and FGF21
decreases body weight and lipid mass and improves insulin sensitivity, hepatic steatosis,
and serum lipid levels. A potential explanation may be the reduced expression of genes
involved in TG biosynthesis or the inhibition of SREBP1 [169].

FGF-19 is a gut hormone induced by the activation of FXR. It is downregulated in
patients with MASH and has a beneficial activity in maintaining BA, carbohydrates, and
energy homeostasis. However, it is associated with a bad prognosis because it has a
potential carcinogenic effect, being involved in promoting hepatocellular carcinoma [170].

Aldafermin (NGM282) is an engineered analog of recombinant human FGF19 with
a 95.4% homology, made up of 190 amino acids. In animal models of MASH, it showed
beneficial histological effects at the liver level [171]. Aldafermin can inhibit BA synthesis
and regulate metabolic homeostasis.

In a 24-week phase 2b trial carried out on patients with MASH-related stage 2 or 3 fibrosis,
aldafermin did not improve liver fibrosis but decreased hepatic lipid accumulation by
7.7% [172]. In another phase 2b trial aldafermin was well tolerated, without a significant
dose-dependent response in fibrosis [173].

The activity of FGF-21 in the liver is to inhibit “de novo” lipogenesis, stimulate FFA
oxidation, incorporate TG into VLDL and deliver them into the blood. In addition, FGF21
can modulate obesity and hepatic metabolic homeostasis via increased energy consumption
and insulin sensitivity. The secretion of FGF21 is dependent on starvation, nutritional stress,
a high-fat diet, or a nutritional restriction diet [174]. The human FGF-21 has a short half-life
and thus to obtain a structural FGF-21 analog, modifications are required in the aim to
increase both its half-life and its stability [175].

Pegozafermin (BIO89-100), a pegylated FGF-21 agonist, was developed for treating
severe hypertriglyceridemia and MASH by subcutaneous administration. It must be
administered once at 14 days, because it has a longer half-life, due to the fact that it is
pegylated [176]. In a phase 2b placebo-controlled RCT (NCT04929483) study, pegozafermin
improved fibrosis in 222 patients with MASH [177]. Due to this fact, in March 2024,
pegozafermin entered a phase 3 clinical trial (NCT06318169) to determine not only the
efficacy of pegozafermin in patients diagnosed with MASH and fibrosis but also to evaluate
its safety. The study is expected to end in 2029 [178].

Efruxifermin consists of a human IgG1-Fc domain and two altered FGF-21 and is a
fusion protein with a great stability in the body. It represents another drug from this group
which has good potential in treating MASLD [179]. In 2023, the first results of the placebo-
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controlled phase 2b RCT (NCT04767529), named HARMONY, were published, which
enrolled patients with MASH and F2 or F3 fibrosis stage. The main objective of the study
was to find an improvement in at least one fibrosis stage, without worsening of MASH,
after the administration of 28 mg/50 mg efruxifermin for 24 weeks. The study concluded
that efruxifermin improves liver fibrosis, more accurate for the group that received 28 mg
efruxifermin an improvement of 36% was achieved compared to 19% for the placebo group
and for the group that received 50 mg efruxifermin an improvement of 33% was achieved
compared to 19% for placebo group [180]. In late 2023, efruxifermin entered two ongoing
placebo-controlled phase 3 RCT studies. SYNCHRONY (NCT06215716) is the first study, in
which are expected to be enrolled 1000 participants and which has as main objective to find
an improvement in at least one fibrosis stage after 52 weeks of treatment with efruxifermin.
It is a histology study and it is expected to end by March 2027. SYNCHRONY Real-World
(NCT06161571) represents the second RCT study, which investigates the tolerability and
the safety of efruxifermin. The study aims to enroll 700 patients diagnosed with MASLD
and it is expected to end until October 2026 [181].

4.2.7. Thyroid Hormone Receptor Beta (THR-β) Agonists and MASLD

Selective THR-β agonists improve the conversion of T4 to T3 and likely enhance
mitochondrial function, in addition to the anticipated beneficial metabolic effects [52].

Resmetirom (trade name Rezdiffra) was very quickly approved by the US Food and
Drug Administration in March 2024, to improve liver condition. It became the first drug
approved for treating non-cirrhotic MASH in adults diagnosed with F2 to F3 fibrosis
stages [182]. Resmetirom is orally administered and compared with the T3 hormone.
Resmetirom is about 28 times more selective for THR-β than for THR-α. Also, it reaches the
extrahepatic tissues in a very small amount [183]. After oral administration, Resmetirom
improves liver fat content and liver fibrosis. Liver enzymes, lipid metabolism parameters,
and inflammatory biomarkers are also improved without major safety concerns. However,
nausea and diarrhea have been reported as side effects [172].

VK2809 represents another THR-β agonist that targets the liver and can be orally
administered. Two double-blind RCTs evaluated its efficacy and safety. One is a phase 2a
study (NCT02927184), a 12-week study, in which 59 patients with MASLD and hypercholes-
terolemia were enrolled, which was completed in 2019. It showed a significant reduction in
LDL-cholesterol, lipoprotein A, apolipoprotein B, and ALT levels. The other, a phase 2b
study (VOYAGE, NCT04173065), a 52-week study, began in May 2023, was completed in
2024, and was carried out on patients with MASH and biopsy-proven fibrosis. The results
indicated a decrease in the hepatic fat content, so the main objective of the study was met.
Both studies reported mild side effects, which indicates that VK2809 has a good safety
profile [184]. VK2809 is still under investigation but shows good potential [185].

4.2.8. Anti-Fibrotic and Anti-Inflammatory Agents

Cenicriviroc is an antagonist compound, administered orally, which blocks chemokine
2 and 5 receptors. This two receptors are involved in the fibrosis and the inflammation
of the liver. In the CENTAUR phase 2b trial, cenicriviroc ameliorated liver fibrosis with-
out worsening MASH, but did not achieve any histological improvement in NASH. The
AURORA phase 3 trial (NCT03028740) was prematurely interrupted because the interim
analysis prove no efficacy for cenicriviroc [186].

In the TANDEM phase 2b trial (NCT03517540) the combined treatment of cenicriviroc
with tropifexor was studied. Was reported that in patients with biopsy proven MASH with
fibrosis, the association was safe and it decreased body weight and ALT. Unfortunately,
when considering the histological evaluation criteria, the combination of cenicriviroc plus
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tropifexor did not prove a was superior activity compared to monotherapy with cenicriviroc
or tropifexor [187].

Galectin-3 is a β-galactoside-binding lectin involved in fibrosis and inflammatory
response. In a phase 2b NASH-CX clinical trial (NCT02462967), belapectin (a complex
carbohydrate) targeted galectin-3 but did not present a significant activity on fibrosis
and inflammation when compared with placebo. In patients diagnosed with MASH-
related cirrhosis without esophageal varices, belapectin decreased the hepatic venous
pressure gradient. A phase 2b/3 trial (NCT04365868) named NAVIGATE will assess for
18 months the administration of belapectin compared to placebo, in MASH patients with
compensated cirrhosis, to monitor those who will develop new esophageal varices and
clinically significant cirrhosis-related events [188].

Selonsertib is an inhibitor of apoptosis signal-regulating kinase-1 (ASK1). The phase
3 trials named STELLAR 3 and 4 showed that the oral administration of selonsertib to
patients diagnosed with stage 3 fibrosis or compensated cirrhosis was well tolerated. Still,
they did not improve the fibrosis without worsening MASH [189].

Other compounds are tested for their anti-inflammatory and anti-fibrotic activities.
For example, GB1211 targets galectin 3, DFV890 targets nucleotide oligomerisation do-
main (NOD)-like receptor family pyrin domain-containing 3 (NLPR-3), nimacimab targets
cannabinoid 1 receptor (CB1) tested in phase 1 trials, trialstipelukast (a leukotriene), or
nitazoxanide (an antiparasitic agent) tested in phase 2 trials. Results about safety and
efficacy are therefore awaited [31].

4.2.9. Microbiome Modulation in MASLD

Preclinical and clinical studies suggest that the microbiome could be a novel target for
alleviating the pathophysiology of MASLD [63].

To improve the imbalanced microbiota of the host the use of probiotics is recom-
mended. Probiotics are a group of beneficial microorganisms that actively colonizes the
human gut. Probiotic supplementation decreases the presence of pathogenic bacteria and
reduces the production and entry of harmful compounds into the liver [190].

The probiotic beneficial effect may result from a combination of actions, which may be
related to the enzymes or metabolites produced by specific strains.

Concerning the function of the intestinal barrier, studies underlined the fact that
probiotics stimulate immune function against enteric pathogens and regulates intestinal
inflammation by PPARγ expression. Moreover, probiotics improve the function of the
intestinal barrier by altering the characteristics and secretion of intestinal mucus not only
by the suppression of the host’s inflammatory response. The composition of intestinal
microorganisms is also involved in changes in the nature of the mucus and in increasing its
secretion. The expression and localization of tight junction proteins and genes related to
mucin production is promoted by probiotics [191].

Prebiotics are indigestible food ingredients that are involved in improving the host’s
health by stimulating selectively the activity and growth of specific bacterial colonies. They
function by increasing the activity of probiotics and have a positive impact on the human
body. More efficacy presents the use of symbiotics (the combination of probiotics with
prebiotics) [192].

Correction of gut dysbiosis can combat the hyperpermeability, the disrupted intestinal
barrier, the flow of bacterial products (i.e., lipopolysaccharides), the immune system and
inflammatory activation in the intestine and the endothelial barrier in the liver and at
systemic level. The close relation between overweight/obesity and the steatotic liver opens
up new avenues of approach targeting gut microbiota [60]. For example, a double-blind,
randomized placebo-controlled pilot study which included 26 obese patients was conducted
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over a period of 6 months. The patients received a symbiotic multispecies daily containing
1.5 × 1010 CFU of a blend of B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37,
L. casei W56, L. brevis W63, L. salivarius W24, Lc. lactis W58, Lc. lactis W19, glucomannan
galacto-, fructo-oligosaccharides, minerals, and B2 and D3 vitamins. Beneficial effects on
hip circumference was obtained and overall quality of life was improved [193].

A promising treatment against MASLD consists in a mixture of metabolic cofactors
composed of L-carnitine, nicotinamide riboside, N-acetyl cysteine and betaine [194]. Vita-
min D supplementation has been reported to improve insulin resistance in MASLD [195]
and omega-3 FFAs can be helpful in MASLD [9]. A multi-ingredient supplementation im-
proves pathological MASLD features in the liver, reduces inflammation and steatosis [196].

Although the approval on the market of resmetirom for MASLD treatment represents
a great success, nowadays it is considered that the combination of some suitable drugs
could be much more beneficial in treating MASLD with reduced adverse effects [197].

Since research in the field has intensified and many compounds are in the final stages
of the study, new drugs for MASLD treatment are expected to be soon introduced onto the
market [198].

4.3. Metabolic Surgery
4.3.1. Bariatric Surgery

Bariatric surgery can be performed on patients diagnosed with MASLD, but it is
not primarily performed for MASLD. It can be used to correct the severe obesity-related
comorbidities in patients with MASLD [31].

Two types of intervention are known when talking about bariatric surgery. One
method is only restrictive, namely, by decreasing the stomach capacity the calory intake is
also restricted. Sleeve gastrectomy and adjustable gastric banding represent examples of
restrictive bariatric surgery. The other method bypasses the proximal small bowel, which
involves a decrease in its absorptive surface. This method is not only restrictive it is also
malabsorptive. The Roux-en-Y gastric bypass and biliopancreatic diversion with duodenal
switch represent examples of restrictive and malabsorptive bariatric surgeries. Compared
to malabsorptive methods, restrictive methods cause less weight loss but produce fewer
adverse effects [199]. Different results are obtained in the treatment of MASLD depending
on the type of intervention performed. Thus, it was found that the adjustable gastric
banding is less effective in improving liver histology, while the gastric bypass and sleeve
gastrectomy have similar effects [200].

The beneficial effects of bariatric surgery in MASLD treatment are dependent on
weight loss, and seem to last for approximately five years. Several studies have shown
that bariatric surgery promotes steatosis resolution, MASH resolution without worsening
fibrosis in about 80% of the cases, and fibrosis regression in about 70% of the cases. Even if
initially the fibrosis is advanced, for more than 50% of cases a complete fibrosis resolution
may be achieved [201]. In an open-label trial, 300 patients diagnosed with MASH were
randomized to receive lifestyle intervention or bariatric surgery. The study proved that
bariatric surgery was associated with a 70% higher chance of achieving fibrosis improve-
ment of at least one stage and with a 50% decreased risk of worsening fibrosis [202]. In
approximately 75% of the patients with steatohepatitis, there was an improvement in histo-
logical characteristics, namely in ballooning and lobular inflammation [203]. It is essential
to highlight that bariatric surgery in MASLD patients is associated with a decreased risk of
major liver outcomes and of cardiovascular events [204].

In the case of patients with liver cirrhosis, bariatric surgery must be proposed with
great caution because mortality rate exceed up to 1%. For the patients diagnosed with
decompensated cirrhosis, bariatric surgery is contraindicated because the mortality rate
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reaches up to 20% [205]. In patients with MASH, the complication rate of bariatric surgery
does not increase [206].

4.3.2. Endoscopic Bariatric Interventions

Most of the studies carried out in the past indicate that the beneficial effects of en-
doscopic bariatric interventions in the treatment of MASLD patients are low. Endoscopic
bariatric interventions are available, such as aspiration therapy, balloons, endoscopic sleeve
gastroplasty, which causes the restriction of food intake, and endobarrier and duodenal
mucosal resurfacing, which represent small bowel devices that target insulin resistance
and metabolic profiles. A recent meta-analysis, which included 863 patients diagnosed
with MASH, suggested that endoscopic bariatric interventions may determine a histologic
improvement [207]. Due to the fact that after balloon removal, most patients regain weight,
the intragastric balloon seems to have only a transient effect on weight and therefore is not
suitable for long-term therapy [208]. Regarding endoscopic sleeve gastroplasty, a two-year
follow-up study was carried out on obese MASLD patients treated in this way. A sustained
weight loss and an improvement in liver histology were registered. Namely, for 20% of the
patients that presented baseline F3–F4 fibrosis, it regressed up to F0–F2 fibrosis [209].

4.4. Faecal Microbiota Transplant

Gut microbiota is associated with metabolic diseases, including obesity, insulin re-
sistance, and MASLD. Concerning the application of faecal microbiota transplant as a
treatment, single or combined, for MASLD, some studies on animals show that the total
faecal microbiota transplant from healthy donors to high-fat diet (HFD) animals improved
gut permeability and decreased inflammation and steatosis in the liver of recipients [210].

In clinical practice, a faecal microbiota transplant is approved only for the treatment of
the recurrent infection with Clostridium difficile [211]. However, some randomized clinical
trials were developed that propose a faecal microbiota transplant to improve obesity,
metabolic syndrome, and MASLD [212]. The reduced sample size and the heterogeneity
of donors and recipients represent the limitations of such studies. Despite significant
changes in bacterial populations, it is hard to find remarkable improvements in MASLD
pathophysiology when a faecal microbiota transplant is used as a single treatment. Most
clinical trials show a tendency for body weight and adiposity reduction in long-term faecal
microbiota transplant applications. Regarding the effects of a faecal microbiota transplant
on the liver, fat accumulation in the liver was decreased. In line with this, the faecal
microbiota transplant has been proposed as a treatment for MASLD [213].

5. Future Perspectives
In the future, with the aim of ensuring a more effective MASLD treatment, is rec-

ommended to subcategorize MASLD depending on the severity of a patient’s metabolic
syndrome symptoms. Perhaps the classification of MASLD according to the degree of
fibrosis will lose its usefulness [214].

Combination therapy targeting different pathological pathways and personalized
treatment is needed [109]. For this purpose, several aspects in the treatment of MASLD
should be clarified, namely, the use of monotherapy must be clearly defined, the dose
and the safety of such combination must be rigorously tested and clinical trials must be
carried out on a large number of patients [215]. Furthermore, more researches are needed
to understand the intricacies of miRNAs function and develop effective miRNA-based
therapies for MASLD.
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6. Conclusions
MASLD is a liver disease with a great impact on patients’ global health. The establish-

ment of a healthy lifestyle is essential but not sufficient. Therefore, other treatment options
are needed. Taking into account the fact that MASLD is a multisystemic disease, a multidis-
ciplinary approach is required. This is the reason why adopting a healthy lifestyle together
with a monotherapy may not give results. To obtain good results in treating MASLD, a
combination therapy that can target different pathological pathways and organ systems
must be studied intensively. A personalized therapy should be instituted for patients who
do not respond to conventional treatment. Taking into account the increasing prevalence of
MASLD and the fact that the age at which it is diagnosed is decreasing, regular medical
check-ups are recommended among the population, to diagnose the disease in its initial
stages and before complications appear.
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Abbreviations

ALD alcohol-associated liver disease
ALT alanine aminotransferase
AMPK AMP-activated protein kinase
ApoB apolipoprotein B
ARFI acoustic radiation force impulse
ASK1 apoptosis signal-regulating kinase-1
AST aspartate aminotransferase
BA bile acids
BMI body mass index
cAMP cyclic adenosine monophosphate
CB1 cannabinoid 1 receptor
CT computed tomography
DAMPs damage-associated molecular patterns
DCs dendritic cells
EVs extracellular vesicles
FFAs fatty acids
FGF15/19/21 fibroblast growth factor 15/19/21
FIB4 fibrosis-4 index
FoxO1 forkhead box protein O1
FXR farnesoid X receptor
GGT gamma-glutamyl transferase
GIP glucose-dependent insulinotropic polypeptide
GLP-1 glucagon-like peptide-1
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HbA1c hemoglobin A1c
HCC hepatocellular carcinoma
HCV hepatitis C virus
HDAC histone deacetylase
HFD high-fat diet
HK2 hexokinase 2
HOMA-IR homeostatic model assessment of insulin resistance
IL-6/17/22 interleukine-6/17/22
INR international normalized ratio
JAM-A junctional adhesion molecule A
LDL low-density lipoprotein
LPS lipopolysacharides
LXR liver X receptor
MAFL metabolic-associated fatty liver
MASH metabolic dysfunction-associated steatohepatitis
MASLD metabolic dysfunction-associated steatotic liver disease
mGPD mitochondrial glycerophosphate dehydrogenase
MRI magnetic resonance imaging
MRE magnetic resonance elastography
MTTP microsomal triglyceride transport protein
NAFL nonalcoholic fatty liver
NAFLD nonalcoholic fatty liver disease
NAS NAFLD activity score
NASH non-alcoholic steatohepatitis
NF-kb nuclear transcription factor Kappa B
NLPR-3 family pyrin domain-containing 3
NOD nucleotide oligomerisation domain
NR1A2 nuclear receptor subfamily 1, group A, member 2 = TR-β
PAMPs pathogen-associated molecular patterns
PDL1 programmed death-ligand 1
p-HSL phosphohormone-sensitive lipase
PKM2 pyruvate kinase isozyme type M2
PPAR peroxisome proliferator-activator receptor
p-PLIN1 phospho-perilipin 1
PV-1 plasmalemma vesicle-associated protein-1
RCT randomized clinical trial
ROS reactive oxygen species
SAF-A score steatosis activity fibrosis score
SCs stellate cells
SFL simple fatty liver
SGLT-2 sodium-glucose cotransporter 2
sIgA secretory immunoglobulin A
SREBP sterol regulatory element-binding protein
T3 triiodothyronine
T4 thyroxine
T2DM type 2 diabetes mellitus
TG tryglycerides
TGF-β transforming growth factor-β
THR (α and β) thyroid hormone receptor isoforms (α and β)
TLRs toll-like receptors
Tregs regulatory T cells
TSH thyroid-stimulating hormone
VCTE vibration-controlled transient elastography
VLDL very low-density lipoprotein
ZO-1 zonula occludens-1
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