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Background: Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by progressive loss of 
memory and general decline in cognitive functions. Multi-modal imaging such as structural MRI and DTI provide 
useful information for the classification of patients on the basis of brain biomarkers. Recently, CNN methods 
have emerged as powerful tools to improve classification using images.

New Method: In this paper, we propose a transfer learning scheme using Convolutional Neural Networks (CNNs) 
to automatically classify brain scans focusing only on a small ROI: e.g. a few slices of the hippocampal region. 
The network’s architecture is similar to a LeNet-like CNN upon which models are built and fused for AD stage 
classification diagnosis. We evaluated various types of transfer learning through the following mechanisms: (i) 
cross-modal (sMRI and DTI) and (ii) cross-domain transfer learning (using MNIST) (iii) a hybrid transfer learning 
of both types.

Results: Our method shows good performances even on small datasets and with a limited number of slices of 
small brain region. It increases accuracy with more than 5 points for the most difficult classification tasks, i.e., 
AD/MCI and MCI/NC.

Comparison with Existing Method(s): Our methodology provides good accuracy scores for classification over a 
shallow convolutional network. Besides, we focused only on a small region; i.e., the hippocampal region, where 
few slices are selected to feed the network. Also, we used cross-modal transfer learning.

Conclusions: Our proposed method is suitable for working with a shallow CNN network for low-resolution MRI 
and DTI scans. It yields to significant results even if the model is trained on small datasets, which is often the 
case in medical image analysis.
1. Introduction

Alzheimer’s disease (AD) is a major worldwide public health pri-

ority [1], it is a progressive degeneration that devastates cells in the 
human brain, and causes dementia for elderly individuals, mostly for 
people aged 65 or older. Alzheimer’s patients suffer from short-term 
memory loss, deterioration of mood, behavior, and ability to continue 
daily activities. Globally, there are around 44 million people who have 

* Corresponding author at: Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France.

E-mail address: karim.aderghal@u-bordeaux.fr (K. Aderghal).
1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni .loni .usc .edu). As such, 

the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this 
report. A complete listing of ADNI investigators can be found at: http://adni .loni .usc .edu /wp -content /uploads /how _to _apply /ADNI _Acknowledgement _List .pdf.

been diagnosed with AD in the world [2], and this number may reach to 
131.5 million people in 2050 [3]. In USA 5.7 million individuals are liv-

ing with AD in 2018, and this number will approximately triplicate by 
2050 [1]. Recent statistical studies estimate 900.000 persons diagnosed 
with AD in France [2]. Mild Cognitive Impairment (MCI) is considered 
as the transitional stage where subjects have the risk to convert to AD 
[4]. There is no known cure for AD, however specific treatments includ-

ing occupational individual therapy can make it easier for people to live 
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with the disease [5], and that is why it is very important to diagnose 
and detect affected patients in the early stage of MCI before progres-

sion of the disease. MCI patients may remain stable, regress to a normal 
condition (s-MCI), or may develop dementia due to AD considered con-

verters (c-MCI).

Monitoring and observing brain structural changes in AD subjects 
has been well studied, for a long time the structural magnetic resonance 
imaging (sMRI) has been the most used imagery technique for diagnos-

tics and analysis of progressive brain deterioration. It permits tracking 
structural changes in the brain and measuring the inevitable atrophy 
caused by the neurodegenerative aspect of the AD pathology [5]. Most 
studies use the structural MRI to explore the deterioration process of 
some Regions-of-Interest (ROIs) in the brain, known to be affected by 
AD such as the hippocampus. The latter is very sensitive to be affected 
first [6, 7]. Temporal and cingulate gyri, and precuneus are amongst 
other affected structures [8, 9].

However, sMRI scans have insufficient contrast to delineate micro-

structural changes due to AD. For an accurate measuring of the white 
matter integrity, diffusion Tensor Imaging (DTI) is an MRI technique 
based on the motion of water molecules in brain tissues. It quantifies 
the random water diffusion in cerebral gray and white matter tracts. 
The interpretation of diffusion tractography of water infers the tissue 
architecture continuity of the fiber bundles in brain from voxel to voxel 
[10, 11]. For diagnostic tasks, Mean Diffusivity (MD) and Fractional 
Anisotropy (FA) are the main density maps derived from DTI data. 
MD describes the magnitude of self-diffusion of water regardless of di-

rection, while FA is used to characterize the degree of anisotropy of 
the diffusion [11]. In the AD patients studies, the computed DTI maps 
have shown an abnormal increase of MD values and decrease of FA 
values both in gray and white matter, and in some regions including 
Hippocampus. Quantifying the neuro-degeneration in the Hippocampus 
area leads to measure the pathological atrophy changes and discrimi-

nate AD subjects from those with Mild Cognitive Impairment (MCI) or 
those in Normal Control (NC) [12].

Deep learning approaches, and specifically Convolutional Neural 
Networks (CNN) have recently emerged as a powerful analysis ap-

proach for Computer-Aided Diagnosis (CAD) systems. Various CNN-

based frameworks have been used in medical image analysis for disease 
classification, segmentation, detection and shape modeling problems 
[13]. Due to their remarkable performances, there exists a wide range 
of applications for AD classification using multi-modal imaging [14]. 
However, they require a large number of data samples to well train 
a network. If the training dataset is not sufficiently large, then the 
over-fitting phenomena occurs [15]. This happens because the depth 
of the dataset is not representative of the variability of brain struc-

tures, and consequently the classification results on train set are better 
while on the test set are not, whereas they should be the same when 
the over-fitting is absent. Specific data augmentation and regulariza-

tion methods such as Dropout can solve the problem of insufficiency 
of samples [15, 16]. An alternative approach called “Transfer Learn-

ing” can battle the overfitting phenomena, which consists in reusing 
the weights of a trained model implemented for different application 
domain. This approach achieves good results compared to those trained 
only with an arbitrary initialization of network parameters (“from 
scratch”) [17]. Hence, numerous works use models pretrained on large 
publicly available datasets, such as LeNet [18], AlexNet [19], VGGNet 
[20], GoogleNet [21], and ResNet [22] which were built for various 
image classification tasks. For example, cross-domain transfer learning 
using the AlexNet architecture has been reported in various medical ap-

plications, resulting an improved performance [23, 24]. Nevertheless, 
they remain limited in case of considerably small datasets as it is the 
case in AD studies: merely few scans from both sMRI and DTI modal-

ities are available for numerous cohorts in a public ADNI dataset [25] 
or in particular cohorts such as “Bordeaux-3City cohort” [26].

This paper is an extension of previous works [16, 27, 28] where we 
proposed a method that combines sMRI and DTI-MD imaging modali-
2

ties focusing only on the hippocampal region. Moreover, we presented 
a fusion framework based on the concept of using multiple sources, in-

cluding cross transfer learning approach. The method was much more 
promising, not only in improving the accuracy of classification, but also 
reducing the problem of overfitting. The originality of the approach al-

lows to measure improvements of various techniques on small datasets. 
Moreover, the dataset is even smaller since we use just few 2D slices 
from a reduced region of the brain - the hippocampus. These double 
constraints lead us to deal with this challenge by combining various 
techniques, cross-modality being the one in focus in this paper.

In the present work we propose an adapted transfer learning scheme 
based on two processes: first, we implement an inter-modal approach 
using naturally similar dataset (sMRI and DTI-MD). Second, we carry 
out the knowledge transfer between two different datasets with non 
medical data, and use a pretrained model which is very similar to ours. 
As result, we show that such a transfer learning between close domains, 
even with a limited number of samples in source domain and shallow 
network, is more efficient than a plain cross-domain learning when the 
domains are too different.

The remainder of this paper is organized as follows: In section 2, we 
review related work, next in section 3, we describe the data preprocess-

ing and our proposed approach in details. Then in section 4, we present 
the experimental results, and finally we conclude our work and outline 
its perspectives.

2. Related work

An improved classification performance of famous CNN models such 
as AlexNet, VGGNet, GoogleNet, and ResNet with transfer learning has 
been reported in various applications in medical domain. There are 
some recent related works relevant to our methodologies using the 2D-

based CNN classification instead of working with the 3D or 4D imaging. 
In the follow-up, we focus on the works which use these known net-

works and adapt them to the medical image classification, and on the 
application of transfer learning method as a solution for the limited vol-

ume of datasets.

2.1. Works based on popular CNN networks

In [29, 30, 31] the authors presented an adaptive pipeline approach 
for Alzheimer’s Disease binary classification. They used the structural 
and functional magnetic resonance imaging (sMRI, fMRI) modalities 
from the ADNI dataset project. They have designed and adopted archi-

tectures based on the famous networks LeNet [18] and GoogleNet [21] 
and adjusted them to binary classification problem for medical imaging 
data. In the case of sMRI modality, they converted the images from 3D 
data to a stack of 2D slices and resized them to 28 × 28 pixels to match 
the input to LeNet network. The average accuracy for 2-Way (AD/NC) 
classification was 96.85%. In the second setup, they used the adopted 
GoogleNet model for binary classification, and the highest overall ac-

curacy rate achieved was 98.84%. With the same concept of reusing an 
efficient architecture, authors in [32] used a modified version of VG-

GNet [20] network called DemNet that takes 2D images as input. It was 
composed of 13 convolutional layers and of three fully connected lay-

ers with dropout after each pooling layer, to reduce the over-fitting. 
The neural network took as an input a 2D slice from MRI data with 
224 × 224 resolution for both 2-way and 3-way classification problems. 
The authors selected 20 slices for each brain, classified each of them 
and measured the accuracy. The results showed that the first and the 
last two slices (111, 129, and 130) had significantly lower accuracy than 
the average accuracy per slice. They have achieved an overall accuracy 
of 98.33% for AD/NC classification. In [33], the authors used two net-

works, a baseline single-layer CNN and a pretrained ResNet network, 
they used a single 2D axial slice per subject (median slice from the 3D 
volume) as an input, the baseline CNN network was composed of only 
one convolutional layer and two FC layers. They studied the impact 
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of transfer learning from RestNet trained on ImageNet, and the data 
augmentation in a real time, at training phase, they conclude that the 
ResNet architecture successfully fits to the MRI domain, and pretraining 
with data augmentation improves the prediction. In a recent study, Lee

et al. [34] used a modified AlexNet network which is known as a high-

performance pretrained model. The architecture is composed of five 
layers for convolution computation and a last FC layer with two outputs 
for binary classification AD/NC, or three outputs for 3-way classifica-

tion (AD/MCI/NC). Due to the presence of some noisy in the dataset, 
they proposed a data permutation scheme with outlier rejection, and 
slice selection methods by removing pixels to eliminate interfering data. 
All 2D slices (obtained by permutation from axial, sagittal, and coronal 
planes) were used for training the network, and finally the network was 
fine-tuned using OASIS and ADNI datasets. They achieved 98.74%, and 
95.35% accuracy in AD/NC classification task, respectively on the OA-

SIS and ADNI datasets. For 3-way classification their method achieved 
98.06% on ADNI 3T dataset.

2.2. Works based on a transfer learning approach

Overall, the more the architecture is deep the more it needs huge 
data, and consequently a considerable time for training. The crucial is-
sue here is that, in general, data in medical area are not sufficiently 
available. For this reason, numerous research works have used trans-

fer learning approach, whether based on popular networks or on novel 
methods to address the lack of data.

In [35] authors used AlexNet architecture pretrained on a general 
purpose large-scale ImageNet dataset to fine-tune last layers in the 
model on target sMRI and PET modalities. In the conclusion of their 
work, the authors state that as neuroimaging data differs significantly 
from the source domain data, such a transfer method is not optimal. 
Indeed, the accuracy values achieved for classification of AD/NC on 
sMRI modality are rather low (around 66%) and even worse when 
AD/MCI/NC classification problem is addressed. Another study [36] 
employs the transfer learning on the same kind of images, such as brain 
scans from the same modality (sMRI) but with the source database dif-

ferent from target data to deal with the limited target data to recognize 
MCI on MRI images. Here two different datasets OASIS2 and LIDC3 have 
been used for the pretraining stage. They achieved best performance 
with accuracy of 90.6% for MCI/NC. [37] integrates a method called 
Multi-Domain Transfer Feature Selection (MDTFS) to select discrimi-

nant features for classification of AD/NC. In their case, an auxiliary 
domain corresponds to classification problem on the same data but for 
different target classes. When classifying AD/NC they consider s-MCI/c-

MCI and MCI/NC. Their experiments have been conducted on ADNI-1 
sMRI and classification accuracies achieved were of 95.2% and 82.1% 
for AD/NC, and MCI/NC respectively. The DTI image maps are often 
seen as a good modality for the detection of Alzheimer’s disease. Thus 
the authors in [38] have compared the NC, AD and MC using MD and 
FA maps. Their results showed that MD was a better indicator of brain 
atrophy than FA. In a recent work, Ahsan et al. [39] proposed multiple 
deep 2D neural networks for binary AD/NC classification. They intro-

duced two architectures that use the transfer learning approach based 
on the InceptionV3 and Xcepetion models whose weights are pretrained 
on Imagenet LSVRC. In addition, a custom CNN network is built with 
the help of separable convolutional layers. They used 96 central 2D-

slices from each subject’s brain by ignoring the first and the last 40 
outer slices. They used three datasets with different settings from the 
OASIS project, which are composed of 416 T1-weighted MRI scans. The 
two datasets are respectively (i) a balanced with 180 and (ii) unbal-

anced sets with 114 subjects. The third dataset is the one used in the 
work of [40]. The authors used different configurations of fold cross-

2 http://www .oasis -brains .org/.
3 https://wiki .cancerimagingarchive .net /display /Public /LIDC -IDRI/.
3

validation over the three datasets for the experiments. They achieved 
an average accuracy of 64% on the first dataset, 82.79% on the second 
dataset, and 99.45% on the third dataset for AD/NC classification. The 
latter is doubtful as they used the dataset from [40], and it was men-

tioned that there could be a problem of leakage in this dataset [41]. 
They concluded that the transfer learning approaches outperform non-

transfer learning-based approaches. This demonstrates the effectiveness 
of these approaches for the binary AD classification task.

Contrarily to all these approaches we propose a transfer learning 
scheme from one modality to another, on the same dataset. Indeed the 
sMRI modality shows good discrimination performance for AD diagno-

sis in brain atrophy analysis, it is our source modality. The supplemen-

tary modality is of the same nature, it is the DTI-MD modality which 
represent our target domain. Otherwise, in our previous work [28] we 
have shown that multimodal approach increases performances, hence it 
is interesting to explore if the fusion framework can be more efficient 
with a transfer learning. We remain using a shallow CNN-based archi-

tecture with only a small number of convolutional/pooling layers since 
the input region definition is rather low (28×28×28).

The contributions of the paper are as follows:

• we transfer knowledge between sMRI and DTI modalities using 
a shallow architecture specifically designed for our “2-D+𝜀” ap-

proach.

• we use a similar architecture, LeNet trained on a large set (60K) 
of images from MNIST4 which has (28×28) resolution as input, i.e. 
the same size as of our Hippocampal region-of-interest, and then 
fine-tune this model on ADNI dataset.

Hence in both cases we perform the “cross” transfer, therefore in the 
first case, it is a cross-modality transfer. The modalities are similar as 
the target pathology is expressed by the same image deformations yet in 
the opposite luminance. In the second case, it is a cross-domain transfer. 
The domains are different; character images (MNIST) have nothing to 
do with MRI scans except the fact that they are not colored. In the next 
section we present our approaches.

3. Methodology and approach

3.1. Acquisition method and data selection

We work with two brain imaging modalities: sMRI and DTI. We 
briefly describe these modalities, and we also present our selected ADNI 
dataset that we use in the preparation of this work.

3.1.1. Structural MRI and DTI modalities

For a long time, the structural MRI remains a popular technique for 
examining the anatomy and the pathology of the brain, it is a widely 
used imaging technique in research as well as in clinical practice. This 
modality provides information describing the shape, size, enhancement 
patterns and integrity of gray and white matter. In AD diagnosis, High-

resolution T1-weighted sequences are used to distinct the anatomical 
boundaries and to detect structural changes in the brain [5]. Diffusion 
Tensor Imaging (DTI) is another modality used in AD studies, it is a re-

cent imaging technique that is able to track and quantify water diffusion 
along fiber bundles, to detect and describe the anisotropy on surround-

ing tissue micro-structure [42]. Three eigenvalues (𝜆1, 𝜆2 and 𝜆3) and 
eigenvectors are calculated from water’s molecular motion tensor in a 
three-dimensional space to represent the main diffusion directions [42]. 
Fractional anisotropy (FA) and mean diffusivity (MD) are the two most 
common measures (scalar maps) derived from the diffusion tensor imag-

ing. In case of the brain degeneration related to AD, the cerebro-spinal 

4 http://yann .lecun .com /exdb /mnist/.
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Table 1. Demographic description of the ADNI dataset group. Values are reported as mean and ± standard deviation (* Sub-

jects with both modalities).

Classes # Subjects Age [range] / 𝜇(𝜃) Gender (#F/ #M) MMSE [range] / 𝜇(𝜃)

ADNI-1 AD 188 [55.18, 90.99] / 75.37 ± 7.52 99/89 23.3 ± 2.03

MCI 399 [54.63, 89.38] / 74.89 ± 7.30 256/143 27.0 ± 1.78

NC 228 [60.02, 89.74] / 75.98 ± 5.02 118/110 29.1 ± 1.00

ADNI-2/Go AD *48 [55.73, 90.87] / 75.60 ± 8.63 28/20 23.0 ± 2.42

MCI *108 [55.33, 93.62] / 74.40 ± 7.47 66/42 27.4 ± 1.99

NC *58 [59.91, 93.25] / 74.91 ± 5.90 28/30 28.9 ± 1.18

ADNI-3 AD *16 [55.26, 86.10] / 74.63 ± 9.92 4/12 -

MCI *165 [55.88, 95.93] / 75.01 ± 7.91 71/94 -

NC *341 [55.79, 95.39] / 73.52 ± 7.82 209/132 -
fluid fills-in the cavities and these effects are perceived both in FA and 
MD maps as the motion of water molecule becomes chaotic.

• Mean diffusivity: Mean diffusivity is an inverse measure of mem-

brane density. It represents the average magnitude of molecular 
displacement by diffusion, as it informs on the microstructure of 
(WM) being sensitive to cell density, axon size, and quantities of 
water. MD is the average of the three eigenvalues (𝜆1 + 𝜆2 + 𝜆3)∕3. 
A higher MD value reflects more isotropy of the tissue.

MD = 𝜆 =
𝜆1 + 𝜆2 + 𝜆3

3
(1)

• Fractional anisotropy: Fractional anisotropy is a measure of the 
degree of diffusion anisotropy. It reflects the directions of molec-

ular motion in a certain voxel. FA is calculated from the standard 
formula:

FA =
√

3
2

√√√√√ (𝜆1 − 𝜆)2 + (𝜆2 − 𝜆)2 + (𝜆3 − 𝜆)2√
𝜆21 + 𝜆22 + 𝜆23

(2)

Where 𝜆 is the mean diffusivity (MD). The values of FA vary between 
0, which means the voxel space is totally isotropic, and 1, which means 
infinite anisotropic diffusion. In CSF, the value of FA is zero due to the 
equality of the diffusion in all directions.

3.1.2. Brain imaging data: ADNI dataset

Data used in the preparation of this article were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni .
loni .usc .edu). The ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD).

Since we work with multimodal imaging, we consider two subsets 
of the whole data from ADNI. The first one is the data that were se-

lected from the ADNI-1 screening baseline with only anatomical MRI 
T1-weighted sequences, in this set all subjects underwent whole-brain 
MRI scanning on 1.5 Tesla at 14 acquisition sites. It is the same dataset 
as used in [16]. With the same demographic information for each of 
the diagnosis groups (NC, AD and MCI), the data sample consists of 
815 structural MRIs including 188 Alzheimer’s Disease (AD) patients, 
228 cognitively normal (NC) and 399 subjects with Mild Cognitive Im-

pairment (MCI). The second subset includes images of subjects screened 
with both structural MRI and DTI modalities. It is a union of data from 
the ADNI-2&Go, and ADNI-3. The Table 1 presents demographic char-

acteristics of subjects, including age, gender, and the Mini Mental State 
Examination (MMSE) score. The age of different groups ranges between 
54 and 95 years old, and the proportions of male and female are close 
in AD/NC groups while the proportions of male are higher than female 
in MCI groups. We carried out a visual checking step of all sMRI images 
and DTI-MD maps to ensure the data quality, and exclude scans with 
4

excessive motion and/or artifacts. The Mini-Mental State Examination 
(MMSE) was used to provide a global measure of cognitive status [43].

3.2. Image preprocessing

Different imaging modalities of the same subject have to refer to 
the same physical structures in the brain. For this we need to align and 
normalize them, but an important preliminary step is noise removal 
which has not been fulfilled on all subsets of ADNI data we use.

3.2.1. Noise correction

Depending on the equipment used in the data acquisition, the mul-

timodal imaging data are recorded as raw, unprocessed, unthresholded, 
and noisy. Resulting images usually have artifacts caused by the mag-

netic susceptibility in biological tissues. According to the ADNI project, 
in the ADNI-3 phase two main preprocessing steps are to be completed 
for each subject, the eddy current and N4 Bias Field correction, while in 
ADNI-GO and ADNI-2, this correction has been already performed. We 
shortly describe these steps. The DTI scans were first corrected from the 
proprietary scanner formats, by using the eddy current (Foucault cur-

rents) correction tool of FSL (Version 5.0, FMRIB, Oxford, UK5). This 
correction consists in compensating non-linear susceptibility [44] and 
eddy-current distortions induced by head motion [45]. Then the mean 
of the non-diffusion-weighted (b0) volumes was used to create the DTI 
brain mask via the FSL “BET” utility [46]. Fitting of diffusion tensors to 
the data with “DTIfit” module of the Software Library FSL was the last 
step to generate MD maps [47].

Regarding MRI scans, bias field correction was performed to mini-

mize the influence of the bias field signal obscuring gray/white matter 
boundaries [48]. Here N4ITK correction methodology has been used 
from the Advanced Normalization Tools (ANTs) [49, 50]. Note that in 
ADNI-3, and due to the modern MRI scanners, there is no need to pro-

vide MPRAGE / IRFSPGR prepossessing.6

3.2.2. Alignment and normalization

We work on AD biomarker, i.e. the hippocampal region. To select it 
in the brain scans, we need to superimpose on the anatomical atlas AAL 
[51]. Thus we need to align sMRI modality on the common template 
MNI [52] constructed at Montreal Neurological Institute (MNI) which 
corresponds to AAL. The MNI template is built by averaging 152 scans 
of normal subjects. Thus each T1-weighted anatomical (sMRI) scan was 
spatially aligned with MNI as illustrated in Fig. 1 (step 1) [16]. The 
alignment with MNI template is realized with a 3D affine transforma-

tion [53].

The process is based on the search for 12 affine deformation param-

eters (𝑚1 to 𝑚12) of the matrix M which performs the homogeneous 
transformation. The goal is to estimate these parameters for a given 
image (f) to fit a template image (g), including translation, rotation, 
scaling and shearing deformations [54]. In order to guide finding ap-

propriate parameters, the algorithm relies on using objective function 

5 http://www .fmrib .ox .ac .uk /fsl/.
6 http://adni .loni .usc .edu/.
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Fig. 1. Schematic diagram of dataset preprocessing: 1) registration of all MRI scans on MNI space, followed with intensity normalization. 2) ROI selection process 
using the Atlas AAL for both hippocampal regions. 3) 2D-slice extraction from selected 3D-volume. 4) feeding the CNN networks.
to minimize transformation error, e.g. (MSE) mean square error crite-

rion.

The matrix M is decomposed as product of four matrices, translation, 
rotation, scaling and shearing.

M =𝑀𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ×𝑀𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ×𝑀𝑆𝑐𝑎𝑙𝑖𝑛𝑔 ×𝑀𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 (3)

M =

⎛⎜⎜⎜⎜⎝
𝑚1 𝑚4 𝑚7 𝑚10
𝑚2 𝑚5 𝑚8 𝑚11
𝑚3 𝑚6 𝑚9 𝑚12
0 0 0 1

⎞⎟⎟⎟⎟⎠
(4)

We have used the sum of squared differences (SSD) as objective 
function to minimize the error between the subject (𝑓 ) and the tem-

plate images (𝑔) which is the (MNI). The optimization method is the 
Gauss-Newton algorithm [55]. An additional parameter 𝑤 is added to 
the function to correct the difference scale that can be produced in im-

ages. The function to minimize is then:

𝑆𝑆𝐷(𝑓, 𝑔) =
𝐼∑
𝑖=1

(𝑓 (𝑀 ∗ 𝑥𝑖
⏟⏟⏟

𝑦𝑖

) −𝑤𝑔(𝑥𝑖))2 (5)

where 𝑥𝑖 is the position in the image (f), and 𝑦𝑖 is the target in (g), 
we refer this mapping equation as y = M × x, where M is the mapping 
matrix.

Finally, as the scanners provide images in different scale of the in-

tensity, we performed intensity normalization along the whole dataset. 
We used the algorithm developed by “Nyul and Udupam” [56], which 
is based on the use of the image histogram. In order to have similar in-

tensities for similar structures, the method trains a standard histogram 
through the whole dataset, and makes deformation for the histogram 
of each image to obtain a correspondence of intensities of this image 
with the standard histogram. The process was done using the software 
SPM8 (Wellcome Trust Centre for Neuroimaging at UCL, London, UK)7

to fulfill the registration and the normalization [57].

3.2.3. Co-registration for DTI-MD

We aim to extract patches related to the same ROI as in sMRI from 
the DTI-MD map. Therefore, both modalities have to be co-registered 
[58]. This means sMRI and DTI-MD images for each subject must be 

7 http://www .fil .ion .ucl .ac .uk/.
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comparable. The co-registration between sMRI and MD consists in es-

timating transformation parameters using mutual information criterion 
in some specific areas to fit the standard space (MNI). Thus we affinely 
co-register MD image to the coordinate system of its corresponding 
sMRI scan. The co-registration algorithm uses brightness of voxels. In 
order to avoid distortions which may be induced by bright skull voxels, 
skull stripping task has to be performed to pull out only the brain from 
the sMRI modality (see Fig. 2) [59]. The process of skull removal was 
performed with SPM8 software. The brain scans were segmented into 
gray matter (GM), white matter (WM) and Cerebro-Spinal Fluid (CSF). 
Merging these three maps we can subtract skull region from original 
sMRI scans. Thus, for each patient there is an sMRI and MD-DTI aligned 
images of the same definition of 121 × 145 × 121 and each voxel has a
spatial resolution of 1.5 × 1.5 × 1.5 𝑚𝑚3.

3.2.4. Selection of the region of interest (ROI)

The next step is the selection of the hippocampal region which is 
convinced to be the first region in the brain affected by AD [6, 7]. So, 
after alignment of sMRI modality on MNI template and co-registration 
of MD-DTI to same space, the ROI can be selected on the automated 
anatomical labeling Brain atlas (AAL) [51]. By selecting voxels labeled 
as Hippocampal region in AAL and computing their 3D bounding boxes 
we get a sub-volume of the whole 3D scan which encircles Hippocam-

pus in both modalities sMRI and DTI as presented in Fig. 1 (step 2). 
Hippocampus is a symmetrical anatomical structure in the brain consist-

ing of two regions. To get only one ROI for a given patient we calculate 
the mean of the two regions when flipping the left hippocampal region 
𝐹𝑙 on the right 𝐹𝑟. Note that the resolution of normalized sMRI and MD 
volumes is quite low (121×145×121, see above), thus the hippocampal 
ROI occupies a small amount of voxels (28×28×28). Finally, we extract 
2D-slice of 28 × 28 resolution from the computed 3D-volume to feed 
the CNN classifier (Fig. 1 step 3 & 4).

3.3. Domain-specific data augmentation strategy

Basically, deep networks need a sufficient dataset for training the 
model by optimizing network parameters, such as synaptic weights. 
However, we designed a specific domain data augmentation (DA) ap-

proach to increase the number of images introduced in [16, 60]. The 
method consists in applying a number of geometric transformations to 
the original image including random translation and Gaussian blur. For 
the Gaussian blur filter (Formula (6)), the scale sigma-value 𝜎 of the 
kernel varied randomly from 0.1 to 1.2 with a step 0.1. Then for each 

http://www.fil.ion.ucl.ac.uk/
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Fig. 2. Illustration of the co-registration process includes spatial normalization 
and skull stripping.

sigma-value, random translation for each dimension was performed 
with voxel step size in the interval from -2 to 2 in each dimension.

𝐺(𝑥, 𝑦, 𝜎) = 1
2𝜋𝜎2

𝑒
−(𝑥2−𝑦2)

2𝜎2 (6)

The final hippocampal region is then computed as:

𝐹 (𝑥, 𝑦, 𝑧) = 1
2
(𝐹𝑟(𝑥, 𝑦, 𝑧)

+ℱ(𝐹𝑙(𝑥− 𝛿𝑥, 𝑦− 𝛿𝑦, 𝑧− 𝛿𝑧))
(7)

Where ℱ is the flipping operator, and 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧 are the shifts 
between left and right regions, 𝐹𝑙 and 𝐹𝑟 are left and right hippocampal 
regions respectively.

3.4. Convolutional Neural Network approach

3.4.1. The 2-D+𝜀 network architecture

In our previous work we have proposed the so-called “2-D+𝜀” ap-

proach for ROI classification [16]. We use a 2D convolution in a CNN 
architecture feeding it with three neighboring slices for each projection 
Sagittal, Axial, and Coronal. The median slice of Hippocampal ROI and 
its two neighbors have been selected (see Fig. 3). Then the classification 
results of all three projections were fused. The choice of the depth of 
the CNN architecture depends on the resolution of input data. The CNN 
we proposed in [16] is relatively shallow. Indeed, due to the low reso-

lution (28×28) of the ROI in each projection, the optimal architecture 
consisted of two convolutional layers followed by a max pooling layer 
for each one, and a fully connected layer. We get three networks associ-

ated with each modality, for the Sagittal, Axial and Coronal projections. 
Different tested fusion schemes resulted in application of the (best) late 
fusion with majority vote fusion operator [28] on the six binary classi-

fication tasks AD/NC, NC/MCI, and MCI/AD on three projections. We 
use the same fusion scheme in the present work.
6

3.4.2. Transfer learning for brain image

Transfer learning [17] is a popular way of dealing with limited 
volumes of training datasets. Actually, the CNN models can be either 
learned from scratch with random initialization of parameters or with 
the fine-tuning approach from pretrained models. From the domain 
knowledge of medical research, we retain that the shrinkage of hip-

pocampal ROI which accompanies the development of AD is observable 
on both modalities sMRI and MD. Fig. 4 illustrates this phenomenon, 
it presents two examples of subjects: for the left a normal control (NC) 
subject, and the right an (AD) subject, with both modalities; the (A) is 
the MD map, and (B) is sMRI scan. It shows the hippocampal region 
from different projection views. From the top to the bottom, also the 
Axial, Sagittal, and Coronal planes respectively.

As we can observe from the illustrative figure, the atrophy of the 
hippocampus can be recognized from both modalities by conserving 
the same shape, but in inverted representation. This means the signal 
spawned from CSF flows surrounding the Hippocampus portion can be 
interpreted by a dark area in sMRI scans, while it is bright in MD maps. 
For this reason, we could adopt a transfer learning strategy between 
these two types of data, from designing trained models in the source do-

main of sMRI towards the target domain MD called cross-modal transfer 
learning.

In the framework of learning CNN parameters, we can formally de-

fine the transfer learning strategy from the source modality (sMRI) to 
target MD as follows:{

𝑊0 ←𝑊 ′
𝜙

𝑊𝑖+1 ← 𝐹 (𝑊𝑖)
(8)

Where 𝑊 ′
𝜙

is the best trained model on the large sMRI dataset, we 
initialize the training with the parameters of 𝑊 ′

𝜙
, and fine-tune all or 

some layers of the used architecture. 𝐹 is the optimization scheme.

In this work, we fine-tune only FC layer of our proposed architec-

ture. We use Stochastic Gradient Descent with Nesterov momentum as 
in [19], and as a cost function J(𝑊𝑖) to minimize we used cross-entropy 
loss as in [16]. The weights update formula are defined as follows:

𝑉𝑖+1 ← 𝜇𝑉𝑖 − 𝛼∇J(𝑊𝑖 + 𝜇𝑉𝑖) (9)

𝑊𝑖+1 ←𝑊𝑖 + 𝑉𝑖+1

where 𝑊𝑖 are the parameters of each layer at iteration 𝑖, 𝛼 is the learning 
rate, 𝜇 is the momentum and 𝑉𝑖 is the velocity. The transfer of the 
parameters in our CNN architecture is illustrated in Fig. 5. The arrows 
depict initialization of optimization process for each convolutional and 
fully connected layer.

3.4.3. Adapted cross transfer learning schemes

It is believed that transfer learning improves classification perfor-

mance, especially when the source and the target domains are awfully 
close. In order to validate our proposed scheme of intra-domain, we 
compare the classification efficiency across two different domains by

using both known pretrained model and dataset. We have selected the 
LeNet network owing to similarity at the design level [18]. It takes 
the same input definition 28×28 as ours, and almost the same depth 
of layer except the fully connected layers. In this view, we take this 
model which it is already pretrained on MNIST dataset, and apply it to 
our brain image data DTI-MD and sMRI. Nevertheless, the model has 
been modified in FC layers and adapted to 2-way classification problem 
instead of ten. We freeze the two first convolutional layers which are 
already captured the universal features, and then we fine-tune it on the 
Alzheimer’s disease dataset by optimizing weights only in the two FC 
layers of the model.

We evaluate the approach through two mechanisms as follows:

One-level transfer scheme: In this first approach, we realize the trans-

fer using our LeNet-like model for both modalities from MNIST to sMRI
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Fig. 3. Illustration of the 2-D+𝜀 Approach from each projection.

Fig. 4. Example of the hippocampal region with different projections for two Subjects: (A) - MD and (B) - sMRI.

Fig. 5. The scheme of Transfer Learning for parameters optimization from sMRI to MD-DTI modality. In the figure, an example of the proposed architecture for 
2-way classification.
7
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Algorithm 1 DA pseudo algorithm.

Input: 𝒟 dataset, F for augmentation factor, S for Max-Shift, and 𝜎 for Max-Blur.

Output: augmented and balanced dataset.

1: procedure PROCESS() //* Function to generate samples. *//

2: 𝑁 = (max{𝑐𝑎𝑟𝑑(#𝐴𝐷), 𝑐𝑎𝑟𝑑(#𝑀𝐶𝐼), 𝑐𝑎𝑟𝑑(#𝑁𝐶)}) × F

3: while 𝑁 ≠ 0 do

4: 𝑖, 𝑗, 𝑘, 𝑥 ← random_generate_parameters() //* (𝑖, 𝑗, 𝑘) ∈ [ [-S, S] ] and 𝑥 ∈ [0, 𝜎] *//

5: Compute: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ← augmentation_function(i, j, k, x) //* for a given scan. *//

6: Compute: 𝑟𝑜𝑖 ← Hippocampus_cube(element) //* return the mean of the left and right of the ROI. *//

7: Compute: patches_extraction() //* Extraction of 2D patches. *//

8: 𝑁 ←𝑁 − 1
Table 2. Number of subjects for each class, with its corresponding augmenta-

tion, (∗ Both modalities).

Before augmentation After augmentation

AD MCI NC ADa MCIa NCa

Dataset 1 Train 146 482 446 48200 48200 48200

Valid 42 126 117 12600 12600 12600

Test 64 64 64 640 640 640

252 672 627 61440 61440 61440

Dataset 2∗ Train 31 198 299 29900 29900 29900

Valid 13 55 80 8000 8000 8000

Test 20 20 20 200 200 200

64 273 399 38100 38100 38100

and from MNIST to DTI-MD followed by our fusion scheme (Majority 
vote).

Two-level transfer scheme: In this second approach, we multiply the 
transfers; it is applied as MNIST-DTI-MD across sMRI. We first use the 
LeNet-like model trained on MNIST dataset. This model is used as the 
basis for training of sMRI classification model. Next from sMRI model 
we transfer to the DTI-MD images of the same domain. After that, we 
built our fusion framework from this model combined with the model 
we obtained from the cross-modal transfer (sMRI to DTI).

4. Experiments and results

4.1. Learning setup parameters and metrics

Data augmentation parameters: In order to sufficiently increase our 
dataset size, we applied the data augmentation strategy as presented in 
(see Section 3.3). Thus, we have set an augmentation factor 𝐹 upon 
which the calculations are based. Indeed, we have proposed an ap-

proach to increase the data in an equitable manner. The method consists 
in setting the factor (a multiplication coefficient) for the most repre-

sented class, and by multiplying this factor to the cardinal of this class 
we obtain large enough class (this one). The next step of the approach 
is increasing all other classes to reach the same size of the first one. In 
this way we obtain a balanced dataset.

Hence, we defined the factor F to 100 for the both datasets: The 
subset “1” and subset “2” as introduced in Section 3.1.2. However, the 
factor was set for MCI class in subset “1” since it is the most represented 
class, in the same way, NC class was selected for subset “2” as well. The 
max shift was set to 2 slices (note that two slices of sagittal axis for 
example represent about 7.4% of the Hippocampus 3D Bounding Box) 
and the maximum scale parameter of smoothing Gaussian Blur was set 
to 1.2 (See Algorithm 1). Indeed, the original signal on both modalities 
is blurred and a stronger blurring would destroy the structure of the 
ROI. The parameters were generated randomly and selected to avoid 
similar augmentation for the same brain scan. Table 2 describes the 
split of samples before and after the augmentation process. Data are 
divided into Training, Validation, and Test subsets.

Metrics: To evaluate single and fusion binary classification tasks, we 
considered the metrics widely used in medical statistics. We denote tp, 
tn, fp, and fn respectively True positives, True negatives, False positives, 
and False negatives. The metrics used are as follows:

Accuracy (Acc) = 𝑡𝑝+ 𝑡𝑛
(10)
𝑡𝑝+ 𝑡𝑛+ 𝑓𝑛+ 𝑓𝑝
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Sensitivity (Sen) = 𝑡𝑝

𝑡𝑝+ 𝑓𝑛
(11)

Specificity (Spe) = 𝑡𝑛

𝑡𝑛+ 𝑓𝑝
(12)

Finally, balanced accuracy (BAcc) measure, which is the average of 
sensitivity and specificity is defined as:

BAcc = 1
2
(𝑆𝑒𝑛+ 𝑆𝑝𝑒)

= 1
2

(
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
+ 𝑡𝑛

𝑡𝑛+ 𝑓𝑝

) (13)

Hardware configuration: The experiments were conducted on a 
GPU-based high-performance computing platform featuring an In-

tel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz processor, 187 Gb of RAM, 
equipped with two Nvidia TESLA P-100 graphic cards with 16 GB ded-

icated memory. The computational time for one epoch at the training 
step with batch-size of 64 samples takes 2.03 seconds in average.

Optimization settings: To pick the best learning parameters, we have 
trained our basic 2-D+𝜀 network on the sMRI dataset. The choice of 
appropriate hyper-parameters was achieved using various training se-

tups. Thus we finally use the exponential learning rate decay policy, 
𝛼 = 𝛼0 ⋅ 𝛾

𝑖, where 𝛼0 is the initial value of learning rate, and 𝛾 ∈ [0, 1]. 
In our case we set 𝛾 to 0.95, and 𝛼0 = 0.0001, and we use the Gra-

dient Descent with Nesterov Momentum method (See Formula (9)). 
The batch-size set to 64 as mentioned above. After several iterations, 
the stabilization of the training is observed around the 30th epoch. 
The network was implemented with “Caffe” Deep learning Frame-

work [61].

4.2. 2-D+𝜀 single and fusion architecture

We use the “2-D+𝜀” network (see Section 3.4.1) we proposed in 
our previous work [16, 28] on sMRI data, It was shown that further 
improvements can be achieved through the fusion approach in partic-

ular the majority vote. Likewise, in this section of this work we use 
only sMRI data but with a larger number of subjects compared to the 
previous work. In addition, the best fusion method the “Majority Vote” 
as used in [28] is adopted here. We base our classification on two dif-

ferent models: single network for each projection (Axial, Coronal, and 
Sagittal), and a late fusion which is designed to improve and enhance 
classification performances.

We have designed two architectures to perform the classification: 
(i) 3-way classification (AD/MCI/NC) and (ii) 2-way classification 
(AD/MCI, AD/NC, and MCI/NC) as the most works in the literature. We 
built a 3-way classification baseline model, and accuracies of 60.23%, 
58.71%, 56.84%, and 66.49% for Sagittal, Coronal, Axial, and fusion, 
respectively, were obtained. We found that the 3-way model performs 
somewhat faintly. However, we considered only the 2-way classifica-

tion in our work since the application domain requires only to test 
positive or negative for the AD diagnosis. Besides, most of the related 
works provide only binary classification results with which we can 
make the comparison. Hence, we performed our method as presented 
above, and Table 3 presents an overview of the 2-Way classification 
results.
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Table 3. Classification results for each single projection and fusion by majority 
vote on sMRI dataset.

Tasks Projection Acc (%) Sen (%) Spe (%) BAcc (%)

AD vs. NC Sagittal 82.92% 85.72% 79.84% 82.78%

Coronal 81.04% 83.20% 78.63% 80.41%

Axial 79.81% 81.31% 77.65% 79.48%

fusion ∗ 91.86% 93,90% 89.88% 91.89%

AD vs. MCI Sagittal 66.73% 68.52% 63.91% 66.21%

Coronal 67.61% 71.25% 61.88% 66.56%

Axial 65.55% 66.60% 61.57% 64.08%

fusion ∗ 69.95% 73.41% 68.22% 70.81%

MCI vs. NC Sagittal 65.51% 61.64% 69.48% 65.56%

Coronal 66.45% 60.27% 65.11% 62.69%

Axial 63.89% 59.15% 64.57% 61.86%

fusion ∗ 68.52% 65.59% 70.15% 67.87%

Fig. 6. Example of Transfer learning for single network - comparison of AD/NC: 
a) Transfer from sMRI to MD-DTI, b) Training from scratch on MD-DTI Dataset.

On average, the single network on the sagittal projection shows bet-

ter results than other projections, but the fusion method with majority 
vote achieves the best results for each classification tasks in terms of ac-

curacy. For example, for the AD/NC classification we obtain 82.92% of 
accuracy for the single sagittal network, while with the fusion we get 
91.86%. For the classification tasks involving MCI class (e.g., AD/MCI, 
and MCI/NC), we can notice that the accuracy is lower than AD/NC, we 
have 69.65% for AD/MCI, and 68.52% for MCI/NC. This class is a spe-

cial class, as it includes two subclasses: The early MCI (e-MCI), and the 
late MCI (l-MCI). We completely grasp that (l-MCI) have more similar-

ity of the atrophy with AD in our ROI, making it difficult to distinguish 
between subjects in MCI and AD classes. The same conclusion can be 
derived from the MCI/NC classification.
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Fig. 7. Example of Transfer learning - comparison of AD/MCI: a) Transfer from 
sMRI to MD-DTI, b) Training from scratch on MD-DTI Dataset.

4.3. Evaluation of transfer learning

In order to evaluate the efficiency of our method, different adap-

tive transfer learning schemes were adopted, in this section we provide 
experimental results on the two proposed approaches: the cross-modal 
and cross-domain.

4.3.1. Transfer learning from sMRI to DTI-MD with the 2-D+𝜀 approach

With the similarity between the structural MRI and DTI-MD, we pro-

posed a cross-modal transfer learning from sMRI dataset as a source to 
the DTI-MD dataset, which is considered the target dataset. The model 
was first trained on the sMRI dataset and then fine-tuned with the DTI-

MD dataset. Obviously, with the experiments, the cross-modal method 
yields slightly better results than the training from scratch (by random 
initialization of network parameters). We can see the difference of the 
behavior in training (loss) and validation (loss and accuracy) in Figs. 6, 
7 for AD/NC and AD/MCI respectively. We get improved accuracy at 
the final 30th epoch with transfer learning, and the loss is lower on 
both sets along training epochs. Fig. 8 illustrates that with the transfer 
from sMRI to DTI-MD the overfitting is slightly reduced (a) compared 
to training from scratch (b). Table 4 presents the final results of cross-

modal transfer learning for each projection and with the late fusion by 
majority vote. Compared with the results from Table 3, we have clearly 
augmentation of all metrics up to 5% for the most challenging classes 
AD/MCI and MCI/NC.

4.3.2. From MNIST knowledge to sMRT and DTI cross-domain learning

In this part of the experiment, we apply our second proposed method 
for cross-domain transfer learning as presented. We construct the LeNet-

like model, and perform the experiences as follows:

One-level transfer scheme: The transfer is realized for both modalities 
from MNIST to sMRI and from MNIST to DTI-MD followed by our fusion 
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Fig. 8. Temporal loss curves comparison for AD/NC classification: a) From sMRI 
to MD-DTI transfer learning with reduced over-fitting - b) Training from scratch 
with little over-fitting.

scheme. Table 5 presents an overview of results for both experiments 
and also results for the fusion. Analyzing the table, we obtain accuracies 
around 3% in average lower than the previous results for each classifi-

cation task. For AD/NC as example, we passed from 82.92% to 80.02% 
for sMRI, and from 84.93% to 81.85% for DTI-MD on the sagittal pro-

jection. For the other classification tasks, the situation is pretty much 
the same. The results are lower than those for cross-modal transfer in 
the same domain, see Table 4.

Two-level transfer scheme: In this setting we perform the experiments 
using the scheme as explained in 3.4.3. Table 6 presents the results. We 
can notice that the use of the Two-level transfer scheme, may clearly 
give better results which we will analyze in the following section.
Table 4. Binary classification results with Transfer Learning from

Tasks Modalities Projection Acc

AD vs. NC MD Sagittal 84.

Coronal 80.

Axial 79.

Fusion (*) 92.

AD vs. MCI MD Sagittal 65.

Coronal 72.

Axial 64.

Fusion (*) 74.

MCI vs. NC MD Sagittal 65.

Coronal 69.

Axial 64.

Fusion (*) 73.
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4.4. Discussion and comparison with literature review

Hence, we experienced three knowledge transfer types: cross-modal 
with LeNet-like designed architecture and cross-domain one-level and 
two-level transfer using LeNet Architecture. Comparing the results pre-

sented in Tables 4, 5, and 6, we can conclude the following. The 
cross-domain transfer, which is a very popular transfer learning scheme, 
performs the worst even on very distinct classes such as AD and NC. 
Hence definitely, the cross-modal transfer in the same domain (sMRI 
and DTI in our case) is a better solution. When multiplying transfers 
such as in the two-level cross-domain transfer scheme, we manage to 
get slightly better results for the most difficult classification tasks.

Indeed with the transfer from MNIST to sMRI and then DTI, we get a 
nearly 5% accuracy increase in the classification AD/MCI and MCI/NC. 
We note that in other metrics, such as Specificity, Sensitivity, and BAcc, 
the methods perform similarly. Thus, the two-level transfer increases 
the metrics by more than 5% for the most difficult classification tasks, 
which is an interesting result. Indeed, the transfer from a pre-trained 
model does not cost too much; hence the first step of it can be done 
from a different domain using publicly available trained models such 
as LeNet on MNIST. Although further transfer in the same domain is 
needed to improve the result.

Now we will compare our best results with methods from literature, 
see Table 7. We have to note that an exact comparison in the medical 
image domain is not possible, as different ADNI databases are used in 
each work. To illustrate this, we show the number of analyzed brain 
scans for AD, MCI, and NC subjects in the first three columns of this ta-

ble. The authors of [62, 63, 64] use 3D convolutions. The authors of 
[31, 32, 33, 65] use the whole brain scans. Our method remains “light” 
in the sense that we focus only on one ROI, which is the biomarker of 
AD, the Hippocampal ROI. Afterward, we do not use the 3D volume en-

tirely, but only a light version of it, such as three slices. Even with this 
lightweight method, we get quite decent results, namely in the separa-

tion of AD/NC.

However, for the most challenging classifications MCI/NC and 
AD/MCI, even though we earn some accuracy points, the results remain 
slightly weaker compared to AD/NC. This leads to the investigation of 
other brain structures and regions or even implies the entire brain for 
this study. Indeed, as our models focus on the hippocampus atrophy for 
the discrimination task, working on the hippocampus’s limbus can in-

volve more advantages to improve performances, where it encompasses 
the outermost surface of the hippocampus, which seems to be the most 
affected by the passage of the MCI stage. Going back to our approach 
“2-D+𝜀”, we take only three slices where only a fraction of that sur-

face, i.e., “the limbus” intersects, which could explain why MCI/AD and 
NC/MCI discrimination scores relatively low compared to a method that 
would be full 3D. Therefore, at the resolution at which we operate, the 
disease’s characterization could be better determined at the hippocam-

pus limbus level than with its whole internal structure [66].
 sMRI to MD-DTI data and fusion (* both modalities).

(%) Sen (%) Spe (%) BAcc (%)

93% 86.07% 81.23% 83.65%

62% 81.15% 79.75% 80.45%

50% 81.91% 78.04% 79.97%

11% 94.53% 90.02% 92.27%

12% 72.25% 68.44% 70.34%

87% 76.58% 71.93% 74.25%

79% 69.14% 66.28% 67.71%

41% 80.13% 76.02% 78.07%

59% 66.48% 69.32% 67.90%

14% 67.97% 70.82% 69.39%

98% 67.71% 71.06% 69.38%

91% 76.79% 79.63% 78.21%
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Table 5. Classification results with One-level scheme Transfer Learning: From MNIST to SMRI & From MNIST to DTI-MD 
data.

Tasks Modalities Projection Acc (%) Sen (%) Spe (%) BAcc (%)

AD vs. NC SMRI Sagittal 80.02% 81.95% 79.26% 80.60%

Coronal 79.94% 80.59% 78.18% 79.38%

Axial 79.11% 81.05% 79.42% 80.23%

MD Sagittal 81.85% 83.24% 79.49% 81.36%

Coronal 79.22% 83.01% 78.56% 80.78%

Axial 78.69% 82.44% 79.71% 81.07%

Fusion (*) 86.83% 90.94% 87.14% 89.04%

AD vs. MCI SMRI Sagittal 65.32% 66.81% 64.52% 65.66%

Coronal 64.57% 65.63% 63.74% 64.68%

Axial 61.74% 63.05% 59.88% 61.46%

MD Sagittal 64.95% 70.19% 66.45% 68.32%

Coronal 68.60% 72.51% 67.96% 70.23%

Axial 62.36% 68.24% 62.47% 65.35%

Fusion (*) 71.45% 78.66% 73.16% 75.91%

MCI vs. NC SMRI Sagittal 64.75% 62.35% 66.72% 64.53%

Coronal 60.49% 58.62% 63.40% 61.01%

Axial 60.15% 59.14% 62.63% 60.88%

MD Sagittal 63.59% 63.18% 66.93% 65.05%

Coronal 67.14% 64.24% 69.86% 67.05%

Axial 64.98% 63.91% 68.55% 66.23%

Fusion (*) 69.85% 70.46% 75.73% 73.10%

Table 6. Classification results with Two-level scheme Transfer Learning: From MNIST to DTI-MD crossed sMRI data.

Tasks Modalities Projection Acc (%) Sen (%) Spe (%) BAcc (%)

AD vs. NC MD Sagittal 85.14% 87.95% 84.14% 86.04%

Coronal 82.57% 84.55% 80.84% 82.69%

Axial 81.21% 84.26% 81.10% 82.68%

Fusion (*) 92.30% 93.95% 90.65% 92.30%

AD vs. MCI MD Sagittal 70.84% 77.25% 73.51% 75.38%

Coronal 76.53% 78.39% 76.64% 77.51%

Axial 69.21% 73.08% 68.52% 70.8%

Fusion (*) 79.16% 82.72% 78.36% 80.54%

MCI vs. NC MD Sagittal 71.09% 70.15% 74.95% 72.55%

Coronal 75.34% 72.41% 76.39% 74.40%

Axial 70.21% 69.10% 73.64% 71.37%

Fusion (*) 78.48% 77.72% 81.44% 79.58%

Table 7. Comparison of classification performances reported in the literature.

Study Subjects Classifier Modality Approach Accuracy

AD MCI NC AD vs. NC AD vs. MCI MCI vs. NC

Sarraf et al. [31] 52 - 92 CNN - LeNET-5 sMRI 2D slice-level 97.88% - -

211 - 91 CNN - GoogleNet sMRI 2D slice-level 98.74% - -

Khvostikov et al. [64] 53 228 250 CNN sMRI+DTI 3D ROI-based 93.3% 86.7% 73.3%

Gupta et al. [65] 200 411 232 CNN sMRI 2D slice-level 93.80% 86.30% 83.30%

Billones et al. [32] 53 228 250 CNN - VGG-Net sMRI 2D slice-level 98.33% 93.89% 91.67%

Lee et al. [34] 192 398 229 CNN - Alexnet sMRI 2D slice-level 98.74% - -

100 - 316 CNN - Alexnet sMRI 2D slice-level 95.35% - -

Valliani et al. [33] 188 243 229 CNN - ResNet sMRI 2D slice-level 81.3% - -

Cheng et al. [63] 199 - 229 CNN sMRI 3D subject-level 83.88% - -

Glozman et al. [35] 200 132 221 CNN - AlexNet sMRI 2D slice-level 66.51% - -

Hon et al. [40] 100 - 100 CNN - VGG-Net sMRI 2D slice-level 92.30% - -

- CNN - Inception V4 sMRI 2D slice-level 96.25% - -

Payan et al. [62] 755 755 755 CNN sMRI 3D subject-level 95.39% 86.84% 92.13%

Lian et al. [67] 358 - 429 H-FCN sMRI 3D patch-level 90,00% - -

Proposed cross-modal transfer (1) 252 672 627 CNN sMRI+DTI 2D ROI-based 92.11% 74.41% 73.91%

Cross-domain One-level transfer (2) 64 273 399 CNN - LeNet sMRI+DTI 2D ROI-based 86.83% 71.45% 69.85%

Proposed Two-level transfer (3) 64 273 399 CNN - LeNet sMRI+DTI 2D ROI-based 92.30% 79.16% 78.48%
11
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Despite our classification results still need to be improved by intro-

ducing other regions of interest or additional information, as mentioned 
above, the proposed cross-modal transfer learning definitely yields in-

creased performances. It can thus be re-used in combination with other 
methods of classification, as those using whole brain or full 3D in-

formation. Specifically, in such a field as medical image analysis and 
classification where large corpora of annotated data are not available, 
proposed transfer learning will help in circumventing the lack of train-

ing data. The cross-domain transfer learning method presents good 
results in applications on natural images. On the contrary, cross-domain 
transfer from natural images to medical image domain remains limited 
as our results show. This is due to the large difference in terms on con-

tent between natural and medical images. In this work, we have shown 
the efficiency of implementing a cross-modal transfer in medical diag-

nostic applications. We hope that this finding will be successfully used 
by the research community for medical image classification tasks.

5. Conclusion

In this paper, we have shown that intelligently initializing the net-

work parameters, through transfer learning, allows to obtain better 
classification of AD stages by more than 5 points in some classification 
tasks (MCI/AD and NC/MCI). We compared various transfer learning 
schemes: cross-modal transfer learning using sMRI and DTI-MD brain 
images, cross-domain transfer learning from non-medical data to med-

ical brain scans and a combination of both using a shallow LeNet net-

work. Our approach remains light-weight in the sense that we used the 
“2-D+𝜀” scheme we previously developed on the hippocampal region, 
avoiding both 3D convolutions and full-brain usage. As an interpreta-

tion of our results, filters trained on a modality have similar geometrical 
characteristics that need a small adaptation when transferred to another 
modality. We think that this is due to the fact that underlying structures 
of the hippocampus present similar geometrical patterns, visual mark-

ers, on both modalities that characterize the progression of the disease. 
We think that proposed multi-modal transfer learning approach can be 
useful in other classification tasks on medical images.
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