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Abstract
Highly heterogeneous acute myeloid leukemia (AML) exhibits dysregulated transcriptional programs. Transcription factor (TF)
regulatory networks underlying AML subtypes have not been elucidated at single-cell resolution. Here, we comprehensively
mapped malignancy-related TFs activated in different AML subtypes by analyzing single-cell RNA sequencing data from AMLs
and healthy donors. We first identified six modules of regulatory networks which were prevalently dysregulated in all AML
patients. AML subtypes featured with different malignant cellular composition possessed subtype-specific regulatory TFs
associated with differentiation suppression or immune modulation. At last, we validated that ERF was crucial for the development
of hematopoietic stem/progenitor cells by performing loss- and gain-of-function experiments in zebrafish embryos. Collectively,
our work thoroughly documents an abnormal spectrum of transcriptional regulatory networks in AML and reveals subtype-
specific dysregulation basis, which provides a prospective view to AML pathogenesis and potential targets for both diagnosis and
therapy.
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1. INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive hematologi-
cal malignancy with increasing incidence and poor prognosis in
the elderly.1,2 AML is highly heterogeneous and harbors
recurrent genetic abnormalities, which involve in the dysregu-
lation of transcriptional regulatory networks (TRNs) that may
directly change the expression of transcription factors (TFs) or
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affect the binding of TFs to regulatory regions, resulting in
farraginous clonal proliferation of blasts in bone marrow.3 TFs
such as CEPBa, GATA2, and RUNX1 are essential in
hematopoietic regulation and cell fate decision, and their
frequent genetic alterations would give rise to abnormal
hematopoietic differentiation in AML.3–7 A deep survey of
AML at the regulatory network level will help shed light on the
pathogenesis of AML.
By classifying AML according to different genetic mutations,

Assi et al defined distinctive TF networks for each AML subtype,
providing new insights for finding therapeutic targets.8 How-
ever, blast cells mingled with nonmalignant cells in bulk analysis
might decrease the sensitivity of identifying aberrant TRNs. In
recent years, single-cell sequencing technologies have contrib-
uted to dissecting the molecular and cellular heterogeneity in
physiological and pathological hematopoiesis.9 Previous studies
showed that AML cells were stagnated at different stages of
hematopoietic differentiation, including primitive cells with the
features of self-renewal, quiescence, and resistance to apoptosis,
and differentiated cells lacking self-renewal ability that affect
hematopoietic function.10,11 Nevertheless, it remains unclear
about the characteristics and mechanisms of TRNs underlie
AML subtypes with different malignant cellular composition at
single-cell level.
Here, we comprehensively mapped malignancy-related TF

regulatory networks by analyzing scRNA-seq data in AML
patients, which were classified by their cellular composition of
primitive and differentiated blasts.12 AML subtype-specific
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regulatory aberrations were identified and significantly
enriched in cell cycle arrest, differentiation suppression, and
immune modulation, which were closely relevant to the varied
malignant cell blocking in AMLs. Moreover, we validated the
effects of ERF dysfunction on stem/progenitor cells by loss- and
gain-of-function in zebrafish embryos. Collectively, our work
unveiled the regulatory aberrations and diversities of AML in
view of TFs, therefore, provides a valuable perspective for
understanding the pathogenesis of AML and exploring
potential therapy targets.
Figure 1. Differences of transcriptional regulatory networks between normal andm
the scRNA-seq datasets and computational procedures used in this study. (B) t-S
were labeled by cell-type annotations from the reference.12 (C) Correlation analysi
KEGG enrichment analysis of TFs in each module. Top one enriched term an
corresponding normal cells of the 6 modules in (C) (P< .001, Wilcoxon test). (E) Tr
AML and corresponding normal cells. Circles indicate TFs; colors indicate cell clus
specific TFs in AML cells and corresponding normal cells. AML=acute myeloid le
Lymphocyte, early Ery=early erythroid progenitor, GMP = granulocyte-macropha
late erythroid progenitor, Mono=monocyte, NK=natural killer cell, pDC=plasm
progenitor, ProMono=promonocyte, RAS= regulon activity scores, T=naïve T
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2. RESULTS

2.1. Prevalent and common network dysregulations in
AML patients

To investigate the aberrant regulations at network level in
AML, we analyzed scRNA-seq data of 30,712 AML (n=16)
derived cells and 4677 donor (n=4) derived cells and subjected
to pySCENIC to define the TF regulatory networks (hereafter
named regulons) (Fig. 1A).12 In total, we obtained 196 regulons
representing the activation status of TFs and their target genes.
alignant hematopoiesis based on scRNA-seq data. (A) Schematic overview of
NE plot based on RAS of total normal and malignant hematopoietic cells. Cells
s of regulons based on RAS of total AML and healthy donor datasets. GO and
d related TFs were displayed. (D) Comparison of RAS between AML and
anscriptional regulatory network (TRN) constructed by TFs and their targets in
ters; dots around a circle mean target genes. (F) Heatmap of the RAS of tumor-
ukemia, B=mature B cell, cDC=conventional dendritic cell, CTL=cytotoxic T
ge progenitor, GO=gene ontology, HSC = hematopoietic stem cell, late Ery=
acytoid dendritic cell, Plasma=plasma cell, Pro B=progenitor B cell, Prog=
cell.
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As expected, regulon activity scores (RAS) could recapitulate the
hematopoietic hierarchy and AML derived cells were aligned to
the myeloid compartment, including 6 AML cell types (HSC-
like, Prog-like, GMP-like, Promono-like, Mono-like, and cDC-
like malignant cells) (Fig. 1B and Supplemental Figure 1D, http://
links.lww.com/BS/A44). Cell clusters were dominated by their
cell types instead of donors, indicating that RAS were capable to
remove batch or individual effects (Supplemental Figure 1A-B,
http://links.lww.com/BS/A44).
To systematically characterize the regulatory patterns of AML

and normal cells and further evaluate the regulatory differences
between them, we first performed unsupervised clustering of 196
regulons based on RAS by integrating cells from both AMLs and
healthydonors.Sixmoduleseachcontainingregulonswithpotential
co-regulation were determined (Fig. 1C and Supplemental Table 1,
http://links.lww.com/BS/A45).Remarkably,wefoundthat regulons
in M3 were highly activated in malignant cells and strongly
associated with transcriptional misregulation in cancer, involving
AML-relatedTFs such asRUNX1,HOXA9, and PBX3, suggesting
that M3 might play important roles in AML progression.
Meanwhile, the activity scores of regulons in M4 and M5 were
downregulated and these regulons were related to leukocyte
differentiation and myeloid cell differentiation (Fig. 1C–D),
indicating a common suppress of myeloid differentiation in all
AMLpatients. In addition, othermodules related to peptidyl-lysine
modification in M1, DNA-templated transcription in M2, and
transcriptional regulation in M6 were differentially activated
(P< .001,Wilcoxontest;Fig.1D).These results revealedaprevalent
dysregulation at TF level shared by all AMLpatients, conferring the
molecular basis of myeloid suppression and AML pathogenesis.
To further identify regulatory differences between AML and

corresponding normal cells, we constructed the TRNs based on
regulationweight scores and revealed the cell-type-specific TFswith
high regulatory activity in malignant cells (Fig. 1E; seeMethods for
details). Concretely, the RAS of TFs such as RUNX1, GATA2, and
MEF2C in primitive AML cells were higher than that of
corresponding normal cells. PBX3 and HOXA9 were activated
and upregulated in ProMono-like cells.Highly activated regulons in
Mono-like cells include STAT6 and PURA, while RARA was
upregulated in cDC-like cells. These TFs were reported to be
associated with the pathogenesis of AML,13–15 and we found that
their dysregulation occurred in specific AML cell types. Notably,
stem/progenitor AML cells exhibited a relatively similar transcrip-
tional regulatory pattern, in contrast, differentiated AML cells
featuredwiththeirownspecificTFs,whichfurtherinspiredustostudy
AMLsubtypesaccordingtodifferentmalignantcellularcomposition
(Fig. 1F). Therefore, we performed unsupervised clustering of AML
patients based on tumor cellular composition and defined three
distinct AML subtypes, whichwere represented by AML707Bwith
primitive AML cells, AML556 with differentiated AML cells, and
AML921AwithmultipleAMLcelltypes.Thesepatientswereselected
to representatively explore AML subtype-specific dysregulations at
TF level (Supplemental Figure 1C, http://links.lww.com/BS/A44).
Collectively, these results indicated an overall and common

dysregulation in AML at transcriptional regulatory level.
Meanwhile, malignant cell-type-specific aberrations suggested
the demands for in-depth analysis of AML subtypes classified
based on cellular composition.

2.2. Inhibition of cell differentiation in AML subtype with
malignant primitive cells
Next, we focused on AML subtypes to reveal the regulatory

networks involving different hematopoietic blockades. We first
www.blood-science.org
generated regulons and estimated the RAS for each TF in cells
obtained from 4 healthy donors and AML707B featured with
malignant stem/progenitor cells (Supplemental Figure 1C, http://
links.lww.com/BS/A44). Eight cell clusters were well-separated
and patient derived malignant cells were grouped together as a
unique cluster, comprised of malignant stem/progenitor cells,
which was adjacent to its corresponding normal population C3
(Fig. 2A). Cell type annotations were further verified by
independent gene expression analysis (Supplemental
Figure 2A, http://links.lww.com/BS/A44).
We subsequently investigated the regulatory dynamics of

stem/progenitor blockade by comparing C2 and C3 cells
(Supplemental Table 2, http://links.lww.com/BS/A46). Notably,
the highly activated TFs in malignant cells were enriched for
positive regulation of cell cycle arrest, negative regulation of cell
differentiation, and transcriptional misregulation in cancer,
which might explain the regulatory basis of differentiation
blockade at primitive stage. Besides, TFs including MEF2C,
SOX4, and IRX3, have been reported to be closely associated
with the occurrence, development, and poor prognosis of AML
(Fig. 2B–C).16,17. To further verify the reliability of the disrupted
cell cycle and cell differentiation in primitive AML cells, we
scored the transcriptional activity of C2 and C3 using the gene
sets generated from AmiGO.18 We found that scores of C2 were
lower than that of C3 in terms of cell cycle arrest and cell
differentiation inhibition, while G2M scores of C2 were higher
than that of C3 (P< .001, Wilcoxon test; Fig. 2D and
Supplemental Figure 2B, http://links.lww.com/BS/A44). To
make the results more reliable, we also performed the parallel
transcriptional regulatory analysis for other patients in this AML
subtypes and got the same conclusions (Supplemental
Figure 2C–F, http://links.lww.com/BS/A44). Taken together,
these results indicated that AML subtype predominated by
malignant stem/progenitor cells exhibited cell cycle and cell
differentiation inhibition at regulatory network level.
To further identify potential key factors in AML, we obtained

the top differentially activated TFs including IRX3, ERF, and
FOXD2 in C2 (Fig. 2E–F). Previous studies showed that elevated
expression of IRX3 could inhibit terminal differentiation of
AML cells,19 while dysregulation of FOXD2 would result in
abnormalities in epigenetic programming of leukemia cells and
was associated with poor prognosis.20 However, the roles of
ERF in AML progression have not been investigated. Notably,
the regulatory networks composed by differentially activated
TFs and their target genes in C2 suggested that ERF might be
closely related to SOX4. In addition, both ERF and SOX4
regulated RUNX1T1, which could pathologically fuse with
RUNX1 to affect RNA transcription, block cell differentiation,
and promote AML progression (Fig. 2G).21 Hence, these
results suggested that ERF might play an important role in
malignant transformation of stem/progenitor cell-dominated
AMLs.

2.3. Aberrations of immunoregulation and relevant TFs in
AML subtype with malignant differentiated cells
By contrast to the typical stem/progenitor-malignant AML

subtype described above, malignant differentiated cells were
significantly enriched in AML556 (Supplemental Figure 1C,
http://links.lww.com/BS/A44). To figure out the regulatory
dynamics in this AML subtype, a total of 9659 single cells from
4 healthy donors and AML556 were grouped into 8 clusters.
Likewise, the malignant population C2 composed of differen-
tiated AML cells were separated frommajority normal cells and
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Figure 2. AML subtype featured with malignant stem/progenitor cells exhibited cell differentiation related dysregulation. (A) t-SNE plot based on RAS in AML
subtype (AML707B) featured with malignant stem and progenitor cells. Points are color-coded by cell-type annotations. t-SNE plot located on the lower right
emphasizes the distribution of AML cells (colored in red). (B) Heatmap of differentially activated TFs in Prog-like/GMP-like population C2 and its corresponding
normal population C3. (C) Enrichment analysis of differentially activated TFs in (B). Related signaling pathways and corresponding TFs are listed on the right. (D)
Transcriptional activity of cell cycle and differentiation related genes in C2 and C3 using the gene sets generated from AmiGO corresponding to the GO terms
marked in red in (C) (P< .001, Wilcoxon test). (E) Differentially activated TFs between C2 and C3. The colors represent logarithmic transformed adjusted P values
(Benjamini-Hochberg correction). (F) High regulon activity scores of ERF in C2 cells. (G) TRN constructed by differentially activated TFs and their target genes in
C2. Circles colored in orange indicate TFs; dots around a circle indicate target genes; dots colored in red represent highly expressed target genes; dots colored in
blue mean target genes with low expression; dot sizes indicate the average log2(fold change); line thickness represents the regulatory weight score. The enlarged
section of TRN located on the right illustrates that ERF, SOX4, and ZFHX2 co-regulate the target gene RUNX1T1. AML=acute myeloid leukemia, GO=gene
ontology, RAS= regulon activity scores, TF= transcription factor, TRN= transcriptional regulatory network.
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close to normal population C1 (Fig. 3A and Supplemental
Figure 3A, http://links.lww.com/BS/A44).
To explore the differences between malignant C2 and

corresponding normal C1, and their relationship with stem/
progenitor population C3, we leveraged Monocle to construct
the differentiation trajectory.22 We found a single branch point
from progenitors to two termini corresponding to Prog/GMP
and ProMono-like/Mono-like fates, revealing the progressive
differentiation of Prog/GMP cells into ProMono-like/Mono-
like and ProMono/Mono populations, respectively. Notably,
the trajectory diverged and terminated at C1 and C2, indicating
the significant differences between AML and corresponding
normal cells (Fig. 3B and Supplemental Figure 3B, http://links.
lww.com/BS/A44). Moreover, to identify branch-dependent
68
gene expression and potential drivers of cell fate specification,
we carried out branch expression analysis modeling (BEAM)
analysis between C2 and C1. One thousand two hundred
ninety-one branch-dependent genes (P<1e-6) were differen-
tially expressed and 4 kinetic modules were generated by
unsupervised clustering (Supplementary Table 3, http://links.
lww.com/BS/A47). Concretely, genes highly expressed in
differentiated AML cells including GRN, BTG1, and CFD
were enriched for interferon signaling, oxidative stress and
immune-related processes, indicating that the immunomodula-
tory functions of differentiated malignant cells might contrib-
ute to the pathogenesis of AML as previously reported12

(Fig. 3C and Supplemental Figure 3C, http://links.lww.com/BS/
A44). We further investigated the molecular basis of C1 and C2
www.blood-science.org
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Figure 3. Transcriptional regulatory aberrations underline AML subtype with differentiated malignant cells. (A) t-SNE plot based on RAS in AML subtype
(AML556) with differentiated malignant cells. Points are color-coded by cell-type annotations. t-SNE plot located on the lower right emphasized the distribution of
AML cells (colored in red). (B) Trajectory analysis of Prog/GMP, ProMono/Mono, and ProMono-like/Mono-like cells based on gene expression. (C) Heatmap
shows branch-dependent genes and unsupervised clustering of four kinetic modules with corresponding enrichment analysis. Related enriched GO terms and
-log10q value were listed on the right. (D) Spectrum of ligand-receptor pairs (rows) between C1/C2 and T/CTL/NK cells C0 (columns). Dot sizes represent
logarithmic transformed P values (permutation test) and dot colors mean the expression of interacting molecules in corresponding cell subsets. (E) Volcano plot
shows the differentially activated TFs in C1 (dots colored in blue) and C2 (dots colored in red). (F) TRN constructed by differentially activated TFs in C2 and target
genes enriched in immune-relatedGO terms in (E). Circles colored in orange represent TFs; dots colored in purple around a circle indicate target genes; circle sizes
indicate the number of regulated targeted genes; line thickness represents the regulatory weight scores. AML=acute myeloid leukemia, GO=gene ontology,
RAS= regulon activity scores, TF= transcription factor, TRN= transcriptional regulatory network.
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crosstalk with C0 (T/CTL/NK population) by assessing the
expression of paired ligand receptor. We detected 12 actively
expressed cell-type-specific ligand-receptor pairs in C1 and 9
in C2. In detail, immune-related receptor ligand pairs
www.blood-science.org
TNFRSF1B_GRN, HLA-E_KLRK1, CD99_PILRA, and
CD47_SIRB1 complex appeared only in C2 (Fig. 3D),
supporting the aberrant immunoregulatory role of differenti-
ated AML cells.
69
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Next, to investigate the dysregulated TRNs related to
immunoregulation in C2 and find TFs that regulated the
immunomodulatory genes mentioned above, we identified the
differentially activated TFs between C2 and corresponding
normal population C1. Notably, the elevated activity of MEIS1
and HOX-related TFs in C2 was associated with NPM1
mutations in AML556 (Fig. 3E).23 We constructed TRNs
derived from highly activated TFs and target genes enriched in
immune-related processes in C2. We observed that JUN and
DDIT3, both of which regulated lots of immune-related genes
(Fig. 3F). As the first oncogenic TF discovered, JUN could
increase proliferation and prevents differentiation in AML by
inhibiting C/EBPa DNA binding.24 Besides, JUN targeted
immune-regulatory molecule GRN,25 suggesting its role in
immune regulation during AML progression. DDIT3 is a
member of C/EBP family, which functions in endoplasmic
reticulum stress response, thereby inducing cell cycle arrest.26 In
addition, we also performed the parallel transcriptional
regulatory analysis on patient AML419, and the results showed
that differentiated AML cells were associated with immune-
related signaling pathways such as oxidative stress and cytokine
response compared with corresponding normal cells, which
verified the rationality of our previous analysis (Supplemental
Figure 3D–G, http://links.lww.com/BS/A44). Collectively, these
results indicated the abnormal immunomodulatory functions of
malignant differentiated cells and uncovered the underlying
dynamics of TFs relevant to immune functions in AMLs.

2.4. Dysregulated transcriptional regulatory patterns and
enhanced cell differentiation capacity of primitive
malignant cells in AML subtype with multiple cell types
Unlike the two AML subtypes mentioned above, the third

subtype represented by AML921A had multiple malignant cell
types along the HSC to myeloid axis (Supplemental Figure 1C,
http://links.lww.com/BS/A44).We distinguished 9 clusters based
on RAS of TFs from healthy donors and AML921A, among
which C0 and C2 were mainly composed of malignant cells
(Fig. 4A and Supplemental Figure 4A, http://links.lww.com/BS/
A44). As recent studies showed that AML cells exhibited
abnormal gene expression patterns, we further investigated
whether the transcriptional regulatory patterns of AML cells
were dysregulated compared with normal cells. To relate the
differentiation states of AML and normal cells at transcriptional
regulatory level, we first generated TF signatures in normal cells
including HSC/Prog, GMP and Myeloid. As expected, these TFs
could clearly distinguish the normal cell types. However, when
we applied the same TFs to AML cells, we found that HSC/Prog-
like and GMP-like cells followed similar regulatory patterns that
majority TFs turned down their activities as compared to normal
cells. By contrast, differentiated myeloid-like cells maintained
the normal regulatory networks. Therefore, in addition to the co-
expression of genes, these results showed the aberrations of
transcriptional regulatory patterns of primitive malignant cells
in AML (Fig. 4B and Supplemental Figure 4B, http://links.lww.
com/BS/A44).
Next, we identified the highly activated TFs in primitive AML

cells to examine the transcriptional regulatory differences
between AML921A and AML707B, representing patients
belong to subtypes dominated by multiple cell types and
primitive cells, respectively. Gene ontology (GO) enrichment
analysis revealed that the former was active in leukocyte/myeloid
differentiation and cell fate commitment, while the latter was
enriched for negative regulation of cell differentiation, suggest-
70
ing an enhanced differentiation capacity of primitive cells in
AML921A, in concordant with the multiple malignant cellular
composition in this type of patients (Fig. 4C and Supplemental
Table 4, http://links.lww.com/BS/A48). Besides, dysregulated
TFs such as HOXB6, NKX2-1, RELA, STAT6, and their target
genes were associated with cell differentiation, transcriptional
misregulation in cancer, and immune signals, which further
supported a distinct phenotype of AML patients with multiple
malignant cell types (Fig. 4D–E and Supplemental Figure 4E,
http://links.lww.com/BS/A44). Parallel transcriptional regula-
tory analysis was also performed on patient AML475 whose
primitive AML cells were associated with cell differentiation
(Supplemental Figure 4F–I, http://links.lww.com/BS/A44).
Notably, among the top ranked TFs based on regulon specificity
score (RSS), HOXB6, a structural protein with many character-
istics of carcinogenesis, had been implicated in the development
of AML (Supplemental Figure 4C, http://links.lww.com/BS/
A44).27 Indeed, we found that patients with higher HOXB6
signals had significantly worse outcomes (Fig. 4F). In addition to
previously reported AML associated TFs, we also identified new
TFs with potential roles in AML. For instance, NKX2-1 was
reported as a potential oncogene in T cell acute lymphoblastic
leukemia,28 but its regulatory mechanism in AML had not been
further studied yet. Additional survival analysis showed poor
prognosis of patients with NKX2-1 and other highly activated
TFs (Fig. 4F and Supplemental Figure 4D, http://links.lww.com/
BS/A44). Collectively, these results revealed an abnormal co-
regulatory network related to cell differentiation capacity that
might confer the formation of cellular composition by multiple
malignant cell types in this AML subtype.

2.5. ERF is required for stem/progenitor cell development
To verify the functions of our defined key TFs in hematopoie-

sis, we selected ERF as an illustration of the potential role in
stem/progenitor cells. The zebrafish has been known as an
excellent vertebrate model system to study hematopoiesis due to
several appealing advantages, including external fertilization,
genetic accessibility, and optical transparency for live imaging.29

More importantly, the developmental process and molecular
mechanism involved in zebrafish hematopoiesis are highly
conserved with mammals.30,31 Therefore, to investigate whether
ERF is essential for stem/progenitor cells, we first examined the
expression pattern of erf in zebrafish embryos by whole-mount
in situ hybridization (WISH). Our results showed that the
expression of erf was observed in aorta-gonad-mesonephric
(AGM) region at 36hours post-fertilization (hpf) (Supplemental
Figure 5A, http://links.lww.com/BS/A44). We further performed
double fluorescence in situ hybridization (FISH) and found that
erf was co-expressed with runx1, which is as a master regulator
of hematopoiesis,32,33 indicating that erf was specifically
expressed in HSPCs (Supplemental Figure 5B, http://links.
lww.com/BS/A44).
Next, we performed knockdown experiments by injecting

antisense morpholino (MO) into zebrafish embryos at the one-
cell stage to block endogenous erf expression. TheMO efficiency
was validated by co-injection of erfMO and erf-EGFP construct
with MO binding sites, and the results showed EGFP expression
was blocked efficiently in co-injection embryos (Supplemental
Figure 5C, http://links.lww.com/BS/A44). WISH data showed
that the expression of runx1/cmyb, the HSPC markers, was
absent in embryos upon erf knockdown (Fig. 5A). Consistent
results were also achieved by the quantitative RT-PCR (qPCR).
The expression of runx1 and cmybwas significantly decreased in
www.blood-science.org
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Figure 4. Aberrant regulation and cell differentiation of primitive malignant cells in AML subtype with multiple cell types. (A) t-SNE plot based on RAS of AML
subtype (AML921A) with multiple malignant cell types along the HSC to myeloid axis. Points are color-coded by cell-type annotations. t-SNE plot located on the
lower right emphasized the distribution of AML cells (colored in red). (B) Heatmaps show RAS of normal TF signatures for HSC/Prog, GMP, and differentiated
myeloid cells in normal cells (left) and malignant AML cells (right). (C) GO and KEGG pathway analysis of highly activated TFs of primitive malignant cells in
AML921A and AML707B. Color shows the -log10(q value). (D) Heatmap shows the RAS of TFs related to the signaling pathways marked in red from (C) in the
primitivemalignant cells of AML921A and AML707. (E) Enrichment analysis of cell differentiation related TFs and their targets. Dot sizes represent number of genes
enriched in each GO term and dot colors represent logarithmic transformed adjusted P values (Benjamini-Hochberg correction). (F) RAS of HOXB6 and NKX2-1 in
all AML921A cell clusters (left) and their overall survival curves (right). AML=acute myeloid leukemia, GO=gene ontology, RAS= regulon activity scores, TF=
transcription factor.
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erf morphants, compared with the control group (Fig. 5B). To
visualize the developmental dynamics of HSPCs in vivo, we
injected erf MO into Tg (kdrl:mCherry/cmyb:EGFP) transgenic
embryos, in which kdrl+ cmyb+ cells were indicated as hemogenic
endothelial cells.34 As expected, time-lapse confocal imaging
showed that the number of kdrl+cmyb+ cells in the AGM was
decreased at 36hpf in erf morphants (Fig. 5C). And the number
of cmyb+ cells, which labeled HSPCs, in the CHT was also
reduced at 50hpf compared with control embryos (Fig. 5D).
Moreover, overexpression of erf induced an increased expres-
sion of runx1 and cmyb by qPCR and WISH (Supplemental
Figure 5D–F, http://links.lww.com/BS/A44). Similarly, live
imaging using Tg (kdrl:mCherry/cmyb:EGFP) double transgenic
www.blood-science.org
embryos showed that the number of kdrl+ cmyb+ cells was
increased at 36hpf in erfmRNA-injected embryos, as well as the
number of cmyb+ cells at 50hpf (Fig. 5G–H). Taken together,
these data indicated that erf is required for stem/progenitor cell
development; overexpression of erf could enhance the expansion
of stem/progenitor cells and might confer the AML phenotype
dominated by primitive malignant cells in patients.

3. DISCUSSION

AML is characterized by the suppression of hematopoiesis
which caused accumulation of immature myeloid cells. Here, we
analyzed available scRNA-seq data of AMLs and healthy donors
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Figure 5. Functional validation of ERF in stem/progenitor cells. (A) Expression of runx1 and cmyb in control and erfmorphants at 36hpf and 2dpf, respectively.
Black arrowheads denote runx1 and cmyb expression in AGM region. Scale bar, 100mm. (B) qPCR analysis of runx1 and cmyb in control and erfmorphants at 36
hpf. The expression level of runx1 and cmybwere normalized to b-actin (mean±SD, Student t test; n=3;

∗∗
P< .01,

∗∗∗∗
P< .0001). (C) Confocal microscopy of Tg

(kdrl:mCherry/cmyb:EGFP) transgenic line at 36hpf in control and erf morphants (upper panel). White arrowheads mark the hemogenic endothelial cells. The
bottom panel showing quantification of kdrl+ cmyb+ cells in AGM region of control and erfmorphants at 36hpf (mean±SD, Student t test, n=12,

∗∗∗∗
P< .0001).

Scale bar, 50mm. (D) Visualization of cmyb+ cells in CHT region of control and erfmorphants at 50hpf (upper panel) with quantification (bottom panel) (mean±SD,
Student t test, n=10,

∗∗∗∗
P< .0001). White arrowheads mark HSPCs. Scale bar, 50mm.
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and focused on the dysregulated TRNs underline different AML
subtypes.We found global differences betweenAMLsandhealthy
donors at transcription factor regulatory network level. Further-
more, we classified different types of AMLs by their malignant
cellular composition and unveiled the subtype-specific aberrant
regulatory networks and properties of distinct malignant cell
types. Overall, our study illustrates an abnormal spectrum of
TRNs in AML and provides insights for targeted therapy.
Our single-cell analysis precisely identified the aberrant

regulation of malignant cells which were robust to confounding
signals from nonmalignant cells. Based on the published bone
marrow-derived AML and normal single-cell RNA-seq data, we
have comprehensively revealed how abnormally activated TFs
shape the distinct TRNs of AMLs. Remarkably, AML presented
prevalent dysregulation as compared to normal cells at network
level, which were strongly associated with tumoral transcrip-
tional misregulation and suppressed cell differentiation. Though
heterogeneity exists in AML patients, for instances, cellular
compositions and gene expressions at the whole transcriptome
level, the aberrations of six modules of TFs were shared among
patients. This result may suggest a possible hint of common
therapy strategy by interfering pathways enriched in these
modules for AML patients.
We also analyzed specific TRNs in AML subtypes with

different malignant cellular compositions. Patients predomi-
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nated by malignant stem/progenitor cells showed disrupted cell
cycle and cell differentiation at regulatory network level. Highly
activated TFs including IRX3, ERF, and FOXD2 were identified
in malignant stem/progenitor cells. To verify the malignancy-
related functions of TFs dysregulated in this AML subtype, we
evaluated the effects of knockdown and overexpression of ERF
on hematopoiesis in zebrafish embryos, confirming its contribu-
tion toHSPC development. Other key TFs identified in this study
need efforts to distinguish from passenger aberrations.
We further documented regulatory aberrations of immune

functions and identified two TFs with high immune-regulatory
activity (JUN and DDIT3) in AML subtypes dominated by
malignant differentiated cells. Studies have shown that JUN is a
positive regulator of myeloid differentiation and involved in
directingmonopoiesis during normal hematopoiesis, andDDIT3
emerges as a regulatory node during erythro-myeloid cell fate
bifurcation.35,36 As the abnormal expression of these two TFs
was recognized as the mechanisms leading to leukemia
progression, our analysis further elucidated their regulatory
roles in immunity, which paved the way to study AML immune
microenvironment.26

In patients with multiple malignant cell types, primitive cells
exhibited a disordered stemness and myeloid regulatory pattern,
and an enhanced cell differentiation capacity. We also identified
cell differentiation-related TFs including HOXB6 and NKX2-1
www.blood-science.org
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in primitive AML cells, which were associated with worse
clinical outcomes. The regulated pattern of HOXB6 for normal
monocytopoiesis and granulopoiesis has been extensively
characterized and abnormalities of the HOXB6 expression
may contribute to the development of the leukemic phenotype,
which is consistent with our findings.27,37 Besides, NKX2-1 has
been proved to promote leukemogenesis in T-cell progenitors,
especially in T cell acute lymphoblastic leukemia.38 Our findings
further suggest its regulatory role in AML progression. Taken
together, these key TFs we identified are potentially essential in
physiological and pathological hematopoiesis and worthy of
investigation.
In summary, we comprehensively explored the TRNs in AML,

unveiled properties of malignant cell types, and identified key
TFs in AML subtypes at single-cell resolution. Importantly,
TRNs in AML subtypes dominated by different malignant cells
revealed the specific regulatory characteristics and mechanisms
for aberrant hematopoiesis. Our findings provide clues for future
efforts to identify potential therapy targets for AML patients.
4. MATERIALS AND METHODS

4.1. Experimental model and subject details
Zebrafish strains including Tubingen and transgenic lines,

kdrl:mCherry/cmyb:EGFP were raised in a standard circulating
water system at 28°C. Zebrafish embryos were obtained by the
natural mating and grown at 28.5°C in embryo medium. All
zebrafish work was approved by the Ethical Review Committee
of State Key Laboratory of Experimental Hematology, National
Clinical Research Center for Blood Diseases, Institute of
Hematology & Blood Diseases Hospital, Chinese Academy of
Medical Sciences & Peking Union Medical College, China.

4.2. Source of AML Data
The UMI matrix of single cells for AML and normal samples

and the corresponding cell type annotations were downloaded
from the processed data previously published (https://www.ncbi.
nlm.nih.gov/geo/GSE116256).12

4.3. Regulatory network analysis
Here we used pySCENIC (v0.10.4), a lightning-fast python

implementation of the SCENIC pipeline (Single-Cell rEgulatory
Network Inference and Clustering),39 to construct the regulatory
networks through three steps: (i) inferring the co-expression
relationship between TFs and genes with GRNBoost2, (ii) create
candidate regulons from TF-target gene interactions and prune
indirect targets from candidate regulons based on motif
discovery using cisTarget. We chose motifs-v9-nr.hgnc-
m0.001-o0.0.tbl and hg19–500bp-upstream-10species.mc9nr.
feather database for our cisTarget analysis. Each TF together
with its potential direct targets is a regulon, and (iii) calculating
the activity of each TF and then generate the Regulon Activity
Matrix using AUCell. The TF list were merged from Animal
TFDB,40 JASPAR41 and the supplementary data.42 Thus, we
obtained the activity scores of each TF in each cell based on the
integrated UMImatrix fromAML and normal bonemarrows. In
the following, Seurat package (v 2.3.2)43 was applied to explore
the regulatory clusters and detect their specifically activated TFs,
on the basis of activity matrix. Noticeably, the activity matrix
was submitted to Seurat without any filtering and all the
enriched TFs were used to dimensionality reduction. Further-
more, the scale data was replaced by the raw activity matrix for
subsequent t-SNE and clustering analysis. Finally, regulatory
www.blood-science.org
networks made up of specific TFs and their direct targets were
displayed by Cytoscape (v3.5.1) software.44

4.4. Regulon module analysis
To evaluate the transcriptional regulatory patterns, we

identified 6 regulon modules by unsupervised clustering of a
correlation matrix, which was generated by calculating the
Pearson correlation coefficient of single-cell RAS scores between
every two TFs in total AML and normal cell datasets. GO and
KEGG enrichment analysis of regulon sets in each module was
performed by Metascape (http://metascape.org/gp/index.html#/
main/step1) and we listed the enriched terms with the highest
-log10(P) value for each module.45 Related boxplots were
generated by comparing the RAS of TFs in the same module
between AML and corresponding normal cells using the ggplot2
package (v3.3.5).

4.5. Interaction analysis of cell-type-specific TFs and
target genes
Interactions between cell-type-specific TFs and target genes in

Figure 1Ewas generated by following steps: (i) we first calculated
the logarithm of regulatory weight score of every regulon pair
generated by pySCENIC, and filtered out pairs with regulatory
weight scores less than 1; (ii) we selected top 10 markers of 6
AML clusters and corresponding normal cells generated by
Seurat; (iii) we took the intersection of the TFs in two datasets
mentioned above, and finally obtained 49 TFs and 1195 target
genes. Next, TF-target pairs were entered into Cytoscape.44

Subsequent TRNs of different AML subtypes were also
constructed based on Cytoscape software.

4.6. Generation of differentially activated TFs
Seurat package was applied to identify cell cluster-highly

activated TFs based on RAS matrix. TFs with adjusted P-value
lower than .05 and average fold change higher than 1.5 were
defined as significantly differentially activated. Pheatmap
package (v1.0.12) in R language (v3.4.3) was used to plot
heatmaps. Highly activated TFs in heatmap were derived from
the AML-related TFs circled in Figure 1E and the RAS of those
TFs in malignant cells were 1.5 times higher than that in
corresponding normal cells, as shown in Figure 1F. Besides, the
cell-type-specific TF signatures in Figure 4B were generated by
correlating RAS of TFs to cell type prediction scores from
previously published in normal and malignant cells types along
the HSC to myeloid axis.

4.7. Cell cycle and cell differentiation scoring
The AddModuleScore function in Seurat was used to score

malignant C2 and normal C3 in AML707B at gene expression
level. The gene sets related to signaling pathways of cell cycle and
cell differentiation used for scoring were generated from
AmiGO18 (http://amigo.geneontology.org/amigo) and GSVA
(v1.32.0).46

4.8. Trajectory and pseudotime analysis
We applied single-cell trajectory and pseudotime analysis to

cells of normal C1, malignant C2, and stem/progenitor
population C3 in AML556 using Monocle2 (v2.18.0)22 with
default parameters. Besides, we performed BEAM to identify the
branch-dependent genes and chose P value <1e-6 as the
threshold to filter genes generated by BEAM analysis. Finally,
1291 branch-dependent genes were identified and clustered into
4 kinetic modules for further functional enrichment analysis.
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4.9. Cell-cell communication analysis
CellPhoneDB (v2.1.7)47 was used with default parameters to

estimate cell-cell communications of C1 andC2 crosstalk with T/
CTL/NK population C0 in AML556.

4.10. Survival analysis
Overall survival time was calculated from diagnosis to first

recurrence or death from disease. The survival curves were
estimated according to the Kaplan-Meier algorithm by the
GEPIA2 web-based tool (http://gepia2.cancer-pku.cn/), which
calculated the P value through log-rank test from the coxph
function48

4.11. Calculation of RSS
The cell cluster specificity of a TF was evaluated by RSS

previously reported.49,50 RSS was defined as:

RSS ¼ 1� JSD

where JSD is the Jensen-Shannon Divergence, and was used to
quantify the difference between a TF RAS probability distribu-
tion (R) and a cluster-specific control RAS probability distribu-
tion (C). The calculation formula of JSD was:

JSDðR;CÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H
Rþ C

2

� �

�HðRÞ þHðCÞ
2

2

s

where H was the Shannon entropy of a probability distribution,
R was a probability distribution of a TF RAS value in all cells,
and C was a control distribution in which the interesting cluster
cells were 1 and others were 0. BothR andCwere normalized by
the sum.

Morpholinos, mRNA synthesis, and microinjection
Antisense MO was purchased from GeneTools and prepared

as 1mM stock solutions using ddH2O. The full-length ERF
mRNA was synthesized from a pCS2 plasmid using the
mMessage mMachine SP6 kit (Ambion). For fish embryo
injections, erf MO (0.8ng) and erf mRNA (100pg) was injected
into one-cell stage embryos at the yolk/blastomere boundary.
The sequence of erf MO used was described in Supplemental
Table 5, http://links.lww.com/BS/A49.

4.12. Whole-mount and FISH
WISH for zebrafish embryos was performed as reported

previously with RNA probes targeting the genes of erf, runx1,
and cmyb.51 Briefly, fixed embryos were permeabilized with
Proteinase K (10mg/ml) after rehydration, re-fixed in 4%
paraformaldehyde, and then hybridized with antisense DIG
labeled RNA probe at 65°C overnight. After washing with
sodium citrate buffer and blocking with MAB, embryos were
incubated in anti-DIG antibody (1:5000) at 4°C overnight. After
removing antibody and washing embryos with MABT, embryos
were stained with BM Purple. The embryos after staining were
mounted in 90% glycerol and photographed with Nikon
SMZ18 camera. Double FISH was performed as previously
described,52 with FLU-labeled runx1 and DIG-labeled erf
probes.

4.13. Quantitative Real-Time PCR
Total RNA used for qPCR was collected from dissected AGM

regions of control and mRNA-injected embryos (50 embryos
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pooled for each sample) at 36hpf, and extracted by TRNzol
reagent. The cDNA templates were all reversely transcribed from
total RNA by M-MLV Reverse Transcriptase and subsequently
diluted 5 times. The qPCR experiment was performed using
QuantStudio3 Real-Time PCR system. P values were determined
using two-sided Student t test for three samples with equal
variance.

∗
P< .05;

∗∗
P< .01;

∗∗∗∗
P< .0001. Primer sequences

used were provided in Supplemental Table 5, http://links.lww.
com/BS/A49.

4.14. Plasmids Construction
The erf-EGFP fusion construct was generated to validate the

efficiency of erf MO using PEGFP-N1 basic vector. The
construct contained a partial sequence of erf gene including
the MO recognition site and fused EGFP in frame. The primers
were listed in Supplemental Table 5, http://links.lww.com/BS/
A49.

4.15. Confocal Microscopy
After anesthetized and mounted in 1.2% low melting agarose,

transgenic zebrafish embryos were imaged by Dragonfly 200
spinning disk confocal microscope with 20� objective. And the
imaging was edited by ImageJ.

4.16. Quantification and Statistical Analysis
All statistical analyses of qPCR and confocal imaging were

performed at least three independent biological or experimental
replicates. Student’s two-tailed unpaired t test was used for
statistical comparisons and data are shown as mean±SD. P
value was used for significance.

∗
P< .05;

∗∗
P< .01;

∗∗∗∗
P

< .0001.
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