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Single-cell programmed cell death regulator patterns guide 
intercellular communication of cancer-associated fibroblasts that 
contribute to colorectal cancer progression
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Background: The significance of programmed cell death (PCD) in the context of cancer development and 
progression is widely acknowledged, yet its specific impact on cancer-associated fibroblasts (CAFs) remains a 
topic of ongoing investigation. Therefore, the study aims to explore the role of PCD in regulating CAFs and 
its potential implications for CRC progression.
Methods: CAFs from single-cell data of 23 colorectal cancer (CRC) patients were clustered by non-
negative matrix factorization (NMF) and the impact of these subpopulations on the prognosis of CRC 
patients was predicted using public database cohorts.
Results: In total, we screened eight PCDs that are associated with significant prognostic impacts for CRC 
patients, and based on PCD regulators, we defined multiple subpopulations of CAFs associated with PCDs. 
Additionally, we found that the PCD key regulators may be closely related to the clinical and biological 
characteristics of CRC and the pseudotime trajectory of major CAFs subpopulations. Bulk RNA sequencing 
analyses revealed that subpopulations of CAFs mediated by PCD hold prognostic value for CRC patients. 
CellChat analysis further illustrated the extensive interactions between PCD-associated CAFs subpopulations 
and tumor epithelial cells. Following Cox regression and survival analyses, it was determined that the 
paraptosis-mediated CAFs subpopulation had the most pronounced impact on CRC patient prognosis, with 
DDIT3 identified as a marker protein influencing patient outcomes.
Conclusions: Our study reveals for the first time how PCD-mediated communication between CAFs 
regulates tumor growth in CRC patients and influences their prognosis, and has identified that DDIT3+ 
CAFs associated with paraptosis exhibit the most pronounced influence on the prognosis of individuals 
with CRC.
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Introduction

Colorectal cancer (CRC) ranks as the third most prevalent 
cancer globally and the fourth highest contributor to 
cancer-related mortality, with increasing morbidity 
observed on a global scale (1). CRC progresses insidiously 
with subtle symptoms, often making early detection 
challenging. Consequently, the majority of patients are 
diagnosed at an advanced stage, complicating treatment 
efforts significantly (2). Despite significant breakthroughs 
in CRC surgery, radiotherapy, and chemotherapy, the 
prognosis for patients with advanced-stage disease remains  
disheartening (3). Thus, it is imperative to elucidate the 
molecular mechanisms underlying CRC and to explore 
more effective therapeutic strategies.

Cancer-associated fibroblasts (CAFs) are a significant 
component of the tumor microenvironment (TME), 
with pivotal involvement in various processes such as 
angiogenesis, tumor metastasis, immune modulation, 
metabolic reprogramming, and resistance to treatment. CAFs 
hold clinical significance and can serve as both prognostic 
indicators and potential therapeutic targets that influence 
the clinical treatment of CRC (4,5). In recent years, with 
the increasing research on the mechanism of action of CAFs 
on CRC, the important role of CAFs in CRC has become 
increasingly prominent. While CAFs can contribute to 

chemotherapy resistance in CRC (6) and promote tumor 
progression through certain gene upregulations (7), they 
are also linked to liver metastasis in CRC (8). However, 
despite the increasing clarity on the mechanisms of CAFs in 
CRC, it is recognized that distinct subpopulations of CAFs 
may exert varying functions. For instance, the ANGPTL2+ 
CAFs subpopulation is associated with liver metastasis in 
CRC (9), whereas the CD143+ CAFs subpopulation may 
suppress the development of CRC (10). Hence, investigating 
the functional roles of different CAFs subpopulations is 
imperative for advancing research on CRC.

Programmed cell  death (PCD) is  an important 
physiological process that maintains tissue homeostasis and 
removes damaged or abnormal cells, and plays a crucial 
role in the normal functioning of organisms. Up to now, 
19 mechanisms of PCD have been identified, among which 
representative apoptosis, pyroptosis, autophagy, ferroptosis, 
cuproptosis, necroptosis, lysosome-dependent cell death, 
anoikis and paraptosis have been shown to be key processes 
in tumorigenesis with a growing body of evidence (11). 
Recent studies have demonstrated that PCD is integral 
to the regulation of CAFs and significantly influences 
their behavior within the TME. Various forms of PCD 
exert distinct effects on CAFs, impacting processes such 
as cancer proliferation, treatment resistance, and immune 
evasion (12). For instance, the activation of the apoptosis 
pathway may facilitate CAFs death by inhibiting the AKT 
signaling pathway, thereby enhancing the efficacy of anti-
PD1 therapy (13). Pyroptosis, mediated by the NLRP3 
inflammasome pathway, induces CAFs death and further 
promotes the growth and metastasis of breast cancer 
through the release of interleukin-1β (IL-1β) (14). CAFs 
also employ NUFIP1-dependent autophagy to secrete 
nucleotides, which support pancreatic tumor growth (15); 
conversely, targeting CAFs autophagy has the potential to 
augment the effects of immunotherapy (16). Furthermore, 
CAFs can inhibit tumor cell ferroptosis and contribute to 
drug resistance by modulating key molecules associated 
with ferroptosis (17,18). Other forms of PCD, including 
cuproptosis, necroptosis, anoikis, and paraptosis, similarly 
influence the activity and functionality of CAFs, thereby 
affecting tumor progression and treatment outcomes  
(19-22). Given the intricate relationship between PCD and 
CAFs, comprehensive research into the mechanisms by 
which PCD impacts CAFs in CRC is anticipated to yield 
novel insights for CRC research.

In this research, single-cell sequencing data from 65,362 
cells of 23 CRC patients were employed to perform non-
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negative matrix factorization (NMF) clustering analysis 
on CAFs based on genes regulated by PCD. The analysis 
identified distinct subpopulations of CAFs regulated by PCD 
that exhibit significant interactions with tumor epithelial 
cells. These subpopulations are closely linked to metabolic 
pathways, transcriptional characteristics, and clinical 
outcomes. This investigation provides novel insights into 
the potential role of PCD in facilitating cellular crosstalk 
between CAFs and tumor cells, thereby impacting the 
progression of CRC. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-1301/rc).

Methods

Data collection

The single-cell RNA sequencing (RNA-seq) dataset 
GSE132465 was downloaded from the Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo), comprising 23 tumor tissue samples and 10 adjacent 
normal tissue samples. Furthermore, transcriptome 
sequencing data and clinical details of 1,591 CRC patients 
were collected from The Cancer Genome Atlas (TCGA) 
Program (https://portal.gdc.cancer.gov/) [TCGA-colon 
adenocarcinoma (COAD), TCGA-rectum adenocarcinoma 
(READ)] and GEO databases (GSE17536, GSE29621, 
GSE39582, GSE72970). After literature search (23,24), 
a compilation of 19 pivotal regulatory genes associated 
with PCD was assembled, encompassing 580 apoptosis-
related genes, 367 autophagy-related genes, 7 alkaliptosis-
related genes, 338 anoikis-related genes, 19 cuproptosis-
related genes, 15 entotic cell death-related genes,  
88 ferroptosis-related genes, 34 immunogenic cell death- 
associated genes, 220 lysosomal cell death-associated genes, 
220 genes related to lysosome-dependent cell death, 101 
genes related to necroptosis, 8 genes related to netotic 
cell death, 24 NETosis-related genes, 5 oxeiptosis-related 
genes, 52 pyroptosis-related genes, 9 parthanatos-related 
genes, 8 methuosis-related genes, 23 entosis-related genes, 
24 disulfidptosis-related genes, and 66 paraptosis-related 
genes (table available at https://cdn.amegroups.cn/static/
public/10.21037tcr-24-1301-1.xlsx).

Screening for major PCD in CRC

In this study, the combined cohort TCGA-CRC, merged by 
TCGA-COAD and TCGA-READ, was utilized to detect 

differentially expressed genes (DEGs) between cancerous 
and adjacent normal tissues using the R package “limma” 
[|log2 fold change (FC)| >0.585, false discovery rate (FDR) 
<0.05]. Subsequently, the R package “VennDiagram” was 
employed to identify common genes between DEGs and 
genes associated with specific PCD. To investigate the 
involvement of diverse cell death mechanisms in CRC 
comprehensively, the random forest algorithm was applied 
to select the top 17 genes from various PCD gene sets 
that significantly impact the overall survival (OS) of CRC 
patients. PCD types with less than 17 common genes were 
deemed to have a minor role in CRC and were therefore 
excluded from the analysis.

Visualization of TME cell types and subtypes in CRC

We utilized the R package Seurat (version 5.0.1) to generate 
a Seurat object using the cell annotation data from the 
GSE132465 dataset. Subsequently, quality control measures 
were applied to the Seurat object, which included ensuring 
that the proportion of mitochondrial genes was below 
25%, the proportion of ribosomal genes exceeded 3%, 
and the proportion of red blood cell genes was under 5%. 
Following quality control, we executed NormalizeData, 
FindVariableFeatures, ScaleData, and RunPCA functions to 
compute principal components (PCs) based on the Seurat 
objects. The t-distributed stochastic neighbor embedding 
(t-SNE) technique was then employed to reduce the 
dimensionality for enhanced visualization of the primary 
PCs. Lastly, leveraging the provided cell annotation data, 
we identified and visually represented the major TME cell 
types and their respective subtypes.

Analysis of cellular communication between subtypes/
clusters of cells

CellChat (25) is an R package that specifically analyzes 
inter-cellular communication networks in single-cell RNA-
seq data labeled with different cell populations, and contains 
a database of ligand-receptor interactions in humans and 
mice. Firstly, CellChatDB.human was used to evaluate 
the main signal input and output of each cell subtype/
group. Then, by using the netVisual_circle function, 
the cell-cell communication network between each cell 
subtype/population is displayed, reflecting the intensity of 
communication from the target cell subtype/population 
to different cell subtypes/populations. Finally, using the 
netVisual_bubble function, we generated a bubble diagram 

https://tcr.amegroups.com/article/view/10.21037/tcr-24-1301/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-1301/rc
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/10.21037tcr-24-1301-1.xlsx
https://cdn.amegroups.cn/static/public/10.21037tcr-24-1301-1.xlsx
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to show the key ligand-receptor interactions between the 
target cell subtype/population and other cell subtypes/
populations. Visualization of intercellular receptor-ligand 
interactions primarily involves a statistical analysis of 
the quantity of receptor-ligand pairs and the strength of 
communication between distinct cell populations. The 
thickness of the connecting lines represents the intensity 
of the interaction, while the color of the lines and the 
corresponding points indicates the source cell, with the 
opposite end representing the target cell.

Gene set enrichment analysis (GSEA) analysis of cancer 
signature gene sets

Fifty feature gene sets were obtained from the Molecular 
S ignatures  Database  (MSigDB;  ht tp : / / sof tware .
broadinstitute.org/gsea/msigdb/) (26). The scoring 
methodology for these gene features was detailed in a 
previous publication (27). Specifically, the gene feature 
score for individual cells was determined by averaging the 
expression levels of all genes within the feature. To detect 
significant alterations in gene feature scores between normal 
and tumor samples, the “limma” package was used to 
compute the score variances between normal and tumor cells 
within each cell subtype. These differences were illustrated 
using a bubble plot, where the bubble size corresponded to −
log10 FDR and the bubble color indicated log2 FC values.

Non‑negative matrix factorization of PCD regulators in 
CAFs

To delve deeper into the impact of PCD-mediated regulatory 
factor expression on CAFs from tumor tissue, we employed 
the NMF algorithm to decrease the dimensionality of the 
expression data pertaining to pivotal regulatory factors 
in CAFs from tumor tissue. Subsequently, utilizing the 
single-cell RNA (scRNA) expression matrix, distinct cell 
subtypes were discerned for these cellular entities. These 
analytical procedures were conducted in accordance with the 
methodology outlined in prior research studies (28,29).

Pseudotime trajectory analysis of PCD regulators for CAFs

To investigate the correlation between cell pseudotime 
trajectories and critical regulators of PCD, we utilized the 
“Monocle R” package to analyze single-cell RNA-seq data 
of CAFs in CRC as reported in a previous study (30). The 
selection criteria for highly variable genes were defined as 

having an average expression level of 0.1 or higher, and a 
dispersion value at least twice the fitted dispersion value. 
Subsequently, we utilized the “plot_pseudotime_heatmap” 
function to generate a heatmap illustrating the evolving 
expression profiles of key PCD regulators in CAFs within 
CRC along the proposed temporal trajectories.

Identification of malignant epithelial cells

Our research utilized the R package “inferCNV” (https://
github.com/broadinstitute/inferCNV) to detect malignant 
epithelial cells. In summary, we assessed copy number 
variation (CNV) across all cell types using single-cell 
RNA-seq data, with T cells, B cells, myeloid cells, and 
mast cells chosen as reference cell populations. Following 
the completion of the inferCNV analysis, we identified 
malignant cells. Initially, we employed the k-means 
algorithm to partition cells into 20 clusters by integrating 
expression data and cell annotation information within the 
inferCNV object. Subsequently, these clustering outcomes 
were amalgamated and organized alongside cell type 
information. To visually represent the CNV profiles of 
cells within distinct clusters, we randomly selected 100 cells 
from each cluster and generated a detailed heat map using 
R package “ComplexHeatmap”. Furthermore, we validated 
the identification of malignant cells by computing the CNV 
score. This involved converting and squaring the expression 
data, calculating CNV scores for each cell, and correlating 
these scores with the clustering results.

Single‑cell regulatory network inference and clustering 
(SCENIC) analysis of PCD‑associated CAFs subpopulations

SCENIC method was employed to investigate the 
transcriptional regulatory network at the single-cell level. 
By utilizing gene locus rankings from the RcisTarget 
(https://www.bioconductor.org/packages/release/bioc/html/
RcisTarget.html) database, the hg19-tss-centered-10 kb  
and hg19-500 bp-upstream rankings, transcription start 
sites were identified within the single-cell transcriptome 
data of CRC. Subsequently, a gene regulatory network was 
constructed to elucidate alterations in cellular states and 
mechanisms of transcriptional regulation.

Functional enrichment and metabolic activity analysis for 
PCD‑associated CAFs subpopulations 

To identify the specific biological pathways associated 

http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://www.bioconductor.org/packages/release/bioc/html/RcisTarget.html
https://www.bioconductor.org/packages/release/bioc/html/RcisTarget.html
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with PCD-related cell subtypes, we initially utilized the 
FindAllMarkers function to detect DEGs from single-cell 
data. We set the logfc.threshold to 0.25 and the minimum 
percentage (min.pct) to 0.25. Subsequently, we conducted 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis for each cell subtype based on the 
DEGs, and generated a heat map by ggplot2 to visualize 
the top three significantly enriched KEGG pathways in 
each cell subtype. Assessment of metabolic activity was 
performed using the scMetabolism package (31). Notably, 
particular emphasis was placed on the KEGG metabolic 
pathway, enabling the determination of the activity score 
for each metabolic pathway in every CAFs subpopulation.

Survival analysis of PCD‑associated subpopulation features 
in public datasets

Gene profiles for various PCD cell subtypes were created 
utilizing the Seurat R package’s FindAllmarker function. 
These profiles were subsequently employed to compute 
gene profile scores across all accessible CRC datasets 
through the gene set variation analysis (GSVA) function. 
The association between PCD cell subtypes and OS was 
investigated using log-rank test and Cox proportional 
hazard regression analyses.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of Bengbu Medical 
University (No. 2023243). All participants provided written 
informed consent before the study, and we obtained 
informed consent from the parents and/or legal guardians 
of patients under the age of 18 years.

Immunohistochemistry

The tumor tissue sections (5 μm) from the patients, who 
were from The First Affiliated Hospital of Bengbu Medical 
University, were subjected to dewaxing using xylene and a 
series of gradient alcohols, followed by rinsing in phosphate 
buffer saline (PBS) with a pH of 7.2 for 10 minutes. To 
restore the antigenicity, the sections were heated in a 
1.0% citric acid solution at pH 6.0 for 2 minutes and then 
boiled for an additional 10 minutes to block endogenous 
peroxidase activity. Subsequently, the sections were washed 
with PBS, treated with goat serum for 20 minutes at room 

temperature, and then incubated overnight at 4 ℃ with 
rabbit monoclonal anti-DDIT3 (1:250, A20987, ABclonal, 
Wuhan, China). Finally, the sections were exposed to the 
corresponding secondary antibody-horseradish peroxidase 
(HRP) conjugate, subjected to 3,3'-diaminobenzidine (DAB) 
coloration, hematoxylin restaining, alcohol dehydration, 
sealed with neutral gum, and air-dried before examination.

Statistical analysis

All statistical analyses were conducted utilizing the R 4.3.2 
software. Various statistical tests such as the log-rank test, 
Wilcoxon rank-sum test, analysis of variance (ANOVA), 
and Kruskal-Wallis test were employed to assess disparities 
in continuous or categorical variables across distinct 
cell groups. A significance level of P<0.05 was deemed 
statistically significant.

Results

Distribution of key regulators of PCD in CRC TME cells

We explored the distribution of PCD regulators in CRC 
TME cells using single-cell transcriptomic data from the 
GSE132465 dataset (Figure 1A), which contains TME cells 
from 33 samples from 23 CRC patients. We annotated 
major cell subpopulations including epithelial cells, mast 
cells, myeloid cells, stromal cells, T cells and B cells  
(Figure 1B). In addition, based on the expression levels 
of typical markers, we confirmed the accuracy of the 
annotation (Figure 1C). To identify the key regulatory 
genes for PCD in CRC, we subjected cancer tissues from 
the TCGA-CRC cohort to differential gene expression 
analysis with paracancerous tissues (Figure 1D) and 
took the intersection of DEGs with PCD-related genes  
(Figure S1A). The results showed a large disparity in the 
number of intersections of different kinds of PCD genes 
with DEGs. We used the random forest algorithm to 
select the top 17 genes with more significant effects on 
OS of CRC patients from a variety of PCD-related genes 
for subsequent studies (Figure S1B). If the number of 
intersecting genes for a PCD type was less than 17, we 
assumed that these PCD types did not play a major role 
in CRC and therefore did not include them in this study. 
Finally, we screened eight PCD mechanisms that play 
important roles in CRC, which are apoptosis, pyroptosis, 
ferroptosis, autophagy, lysosome-dependent cell death, 
necroptosis, anoikis, and paraptosis. By performing cell 

https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
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Figure 1 Overview of PCD regulators in colorectal cancer single-cell data. (A) Schematic diagram of the study process; (B) UMAP plot of cell subpopulation 

classification; (C) classical marker expression plot of cell subpopulations; (D) volcano plot of differentially expressed genes in tumor tissues and paraneoplastic 

tissues of the TCGA-CRC cohort; (E) cellular communication plots of various cell subtypes; (F) enrichment results of the hallmarks pathway of various cell 

subtypes; (G) eight major PCD-regulated gene expression in each cell subtype. ICD, immunogenic cell death; FC, fold change; FDR, false discovery rate; 

PCD, programmed cell death; UMAP, uniform manifold approximation and projection; TCGA, The Cancer Genome Atlas; CRC, colorectal cancer. 
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communication analyses, we further identified diverse 
and unique modes of interactions among these cell 
subpopulations (Figure 1E). To investigate the changes in 
the regulatory networks of these cellular subpopulations, 
we used a set of 50 marker gene sets from MsigDB 
and analysed the changes in the pathways between 
epithelial, mast, myeloid, stromal, T and B cells between 
adjacent normal and tumor tissues (Figure 1F). Finally, 
we demonstrated the expression of eight major PCD-
regulated genes in different cellular subpopulations by 
heatmap (Figure 1G).

Novel apoptosis‑mediated CAFs have an impact on TME 
in CRC

In recent years, CAFs have been recognised as key 
regulatory cells in TME (32). Therefore, we classified 
tumor tissue stromal cells into fibroblasts and endothelial 
cells based on classical markers of CAFs (Figure S2A). 
Moreover, it has been shown in the literature that CAFs are 
no longer only regarded as the physical support of mutant 
epithelial cells, but they are also important regulators and 
even drivers of tumor pathogenicity (33). To explore the 
regulatory network between CAFs and tumor epithelial 
cells, we classified the epithelial cells of tumor tissues into 
malignant and non-malignant epithelial cells by inferCNV 
method (Figure S2B,S2C) and did enrichment analysis 
of the two subpopulations (Figure S2D). Then, seven 
apoptosis-associated isoforms were identified among CAFs 
by NMF clustering, which were CLU+ CAFs-C1, P2RX4+ 
CAFs-C2, TRAP1+ CAFs-C3, SNAI1+ CAFs-C4, HSPA1A+ 
CAFs-C5, GGCT+ CAFs-C6 and non-apop-CAFs-C7 
(Figure 2A). Based on pseudotime trajectory analysis  
(Figure 2B), we found that apoptosis-important regulators 
were expressed at all periods of CAFs development. For 
instance, nitric oxide synthase (NOS3), inhibin subunit beta 
B (INHBB), and gamma-glutamylcyclotransferase (GGCT) 
are associated with the initial development of CAFs, whereas 
nucleolar protein 3 (NOL3), purinergic receptor P2X 4 
(P2RX4), and TNF receptor-associated protein 1 (TRAP1) 
are linked to the subsequent stages of CAF development 
(Figure 2C). We analyzed cellular communication between 
malignant and non-malignant epithelia in tumor tissues. 
Interestingly, our study revealed a higher frequency of 
interactions between CAFs and non-malignant epithelial 
cells compared to malignant epithelial cells. Additionally, we 
identified three subpopulations of CAFs, CLU+ CAFs-C1, 
P2RX4+ CAFs-C2, and SNAI1+ CAFs-C4, that may exert a 

significant influence based on the observed communication 
patterns with tumor epithelial cells (Figure 2D,2E). It is 
noteworthy that these subpopulations, which play important 
roles in cellular communication, have higher activities in 
many metabolic pathways (Figure 2F). In addition, KEGG 
enrichment analysis showed that the DEGs of these 
important subgroups were mainly associated with pathways 
such as proteoglycan and glutathione metabolism in cancer 
and protein processing in the endoplasmic reticulum (ER) 
(Figure 2G).

Next, gene regulatory network analysis revealed 
differences in transcription factors (TFs) among these major 
subgroups. Among them, the activities of ELK3, NFKB1, 
REL, HMGA1_extended, NFE2L1_extended, NFATC2_
extended, and MEIS2 TFs were significantly elevated in the 
subpopulation of CLU+ CAFs-C1 (Figure 2H). In addition, 
we collected key CAFs phenotypic marker surface protein 
genes and compared their expression levels in apoptosis-
mediated CAFs subpopulations. The results showed that 
most of them were highly expressed in CLU+ CAFs-C1 
(Figure 2I).

Novel pyroptosis‑mediated CAFs have an impact on TME 
in CRC

Based on NMF clustering, we identified 11 pyroptosis-
associated subpopulations in CAFs, which are IL1B+ 
CAFs-C1, CHMP2B+ CAFs-C2, BAK1+ CAFs-C3, IL6+ 
CAFs-C4, CASP5+ CAFs-C5, CHMP6+ CAFs-C6, PLCG1+ 
CAFs-C7, CYCS+ CAFs-C8, PRKACA+ CAFs-C9, unclear-
pyro-CAFs-C10 and non-pyro-CAFs-C11 (Figure 3A). 
After pseudotime trajectory analysis (Figure 3B), we found 
that the main regulators of pyroptosis were expressed at all 
developmental periods of CAFs (Figure 3C). CHMP6 and 
PLCG1 are highly expressed mainly in the early stages of 
CAFs development, whereas PRKACA is highly expressed 
mainly in the late stages of CAFs development. Analysis 
of cell communication indicated that the identified CAFs 
exhibited a higher level of communication with non-
malignant epithelial cells compared to malignant epithelial 
cells. Notably, the number of interactions between these 
subpopulations and tumor epithelial cells, specifically 
IL1B+ CAFs-C1, CHMP2B+ CAFs-C2, BAK1+ CAFs-C3, 
CHMP6+ CAFs-C6, and PRKACA+ CAFs-C9, suggests that 
these five subpopulations may exert a significant influence 
(Figure 3D,3E). Interestingly, the CHMP6+ CAFs-C6 
subpopulation, which communicates with the highest 
number of tumor epithelial cells, has higher activity in many 

https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
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Figure 2 Analysis of CAFs characteristics based on apoptosis regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of 
apoptosis genes in CAFs; (D,E) cell-cell communications from apoptosis-mediated CAFs to malignant and non-malignant epithelial cells; (F) 
metabolic activity results; (G) KEGG enrichment results; (H) SCENIC analysis results; (I) heatmap of key genes expression. CAFs, cancer-
associated fibroblasts; UMAP, uniform manifold approximation and projection; NMF, non-negative matrix factorization; TCA, tricarboxylic 
acid; KEGG, Kyoto Encyclopedia of Genes and Genomes; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; TGF, transforming growth 
factor; MMPs, matrix metalloproteinases; ECM, extracellular matrix; SCENIC, single-cell regulatory network inference and clustering. 
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Figure 3 Analysis of CAFs characteristics based on pyroptosis regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of 
pyroptosis genes in CAFs; (D,E) cell-cell communications from pyroptosis-mediated CAFs to malignant and non-malignant epithelial cells; 
(F) metabolic activity results; (G) KEGG enrichment results; (H) SCENIC analysis results; (I) Heatmap of key genes expression. CAFs, 
cancer-associated fibroblasts; UMAP, uniform manifold approximation and projection; NMF, non-negative matrix factorization; TCA, 
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metabolic pathways (Figure 3F). The results of KEGG 
enrichment analysis based on the differential genes of each 
cellular subpopulation showed that CHMP6+ CAFs-C6 
was mainly associated with lysosomal and cytosolic actions 
(Figure 3G). In addition, the IL6+ CAFs-C4 subpopulation 
was significantly enriched in the tumor necrosis factor 
(TNF), interleukin-17 (IL-17) and hypoxia-inducible 
factor-1 (HIF-1) pathways.

Gene regulatory network analysis revealed differences 
in TFs between these subpopulations (Figure 3H), with the 
most significant differences being in the IL6+ CAFs-C4 and 
PRKACA+ CAFs-C9 subpopulations. In the IL6+ CAFs-C4 
subpopulation, the activities of SFPQ, HMGA1_extended, 
FOSL1, JUND, NFKB1, and REL were significantly 
elevated; NR3C1_extended, ETS1, YY1_extended, NR2F2_
extended and MEF2C activities were significantly elevated 
in the PRKACA+ CAFs-C9 subpopulation. In addition, 
gene expression analysis of CAFs phenotypic marker surface 
proteins revealed that inflammatory response-associated 
proteins were significantly overexpressed in the IL6+ 
CAFs-C4 subpopulation (Figure 3I).

Novel ferroptosis‑mediated CAFs have an impact on TME 
in CRC

We obtained nine subpopulations of ferroptosis-related 
CAFs, which were SLC1A5+ CAFs-C1, ZEB1+ CAFs-C2, 
CRYAB+ CAFs-C3, HMOX1+ CAFs-C4, NCOA4+ 
CAFs-C5, PRNP+ CAFs-C6, CD44+ CAFs-C7, unclear-
ferro-CAFs-C8, non-ferro-CAFs-C9 (Figure 4A) . 
Pseudotime trajectory analysis (Figure 4B) revealed that 
NCOA4, HMOX1, ACSF2, and AKR1C3 are characteristic 
proteins of CAFs in early development; PROM2 and CYBB 
are characteristic proteins of CAFs in late development. It 
is worth mentioning that HMOX1, although significantly 
highly expressed in early development, was significantly 
under-expressed in late development (Figure 4C). In 
addition to this, there were also other proteins that were 
significantly underexpressed in late development, such as 
CD44, ACACA, CRYAB, and SLC7A11. Similarly, the 
number of these CAFs communicating with non-malignant 
epithelial cells was still higher than that with malignant 
epithelial cells, and SLC1A5+ CAFs-C1, ZEB1+ CAFs-C2, 

HMOX1+ CAFs-C4, and non-ferro-CAFs-C9, the four 
subpopulations, may play a dominant role (Figure 4D,4E). 
The metabolic pathway activity of SLC1A5+ CAFs-C1 
was significantly upregulated in all cellular subpopulations 
(Figure 4F). KEGG enrichment analysis of differential 
genes in each cellular subpopulation showed that the 
HMOX1+ CAFs-C4 subpopulation was mainly associated 
with ferroptosis and IL-17 signaling pathway (Figure 4G).  
It is worth mentioning that the activity of fatty acid 
biosynthesis metabolism pathway was significantly elevated 
in the HMOX1+ CAFs-C4 subpopulation (Figure 4F), which 
further verified that the HMOX1+ CAFs-C4 subpopulation 
might be closely related to the occurrence of ferroptosis.

In the gene expression regulatory network analysis, we 
also noted that in the HMOX1+ CAFs-C4 subpopulation, 
the activities of ELK3_extended, ETS2_extended, and 
ELF2_extended, in addition to the activity of HIF-
1A, were significantly elevated (Figure 4H), suggesting a 
possible relationship between these TFs and ferroptosis. 
Some inflammation-related factors such as CXCL12 and 
IL33 were significantly highly expressed in the HMOX1+ 
CAFs-C4 subpopulation (Figure 4I).

Novel autophagy‑mediated CAFs have an impact on TME 
in CRC

Using NMF clustering, we defined six subpopulations of 
autophagy-associated CAFs, which are CLU+ CAFs-C1, 
DRAM1+ CAFs-C2, OPTN+ CAFs-C3, LZTS1+ CAFs-C4, 
HSPA8+ CAFs-C5, and non-auto-CAFs-C6 (Figure 5A). 
Through pseudotime trajectory analysis by Monocle 
we found (Figure 5B) that autophagy genes that play an 
important role in CRC are mainly expressed in CAFs 
during early and late development, with PINK1, LZTS1, 
OPTN, TMEM59, ATP6V1C2, and HSPB8 being early 
developmental markers; and MTM1, CLU, TRIM27, 
MAPK15, DAPK1, and SH3BP4 being late developmental 
markers (Figure 5C). Cell communication analysis revealed 
that these six subpopulations of autophagy-associated CAFs 
communicated with non-malignant epithelial cells in greater 
numbers (Figure 5D,5E). And, based on the number of 
communications between these subpopulations and tumor 
epithelial cells, three subpopulations, CLU+ CAFs-C1, 

tricarboxylic acid; KEGG, Kyoto Encyclopedia of Genes and Genomes; TNF, tumor necrosis factor; IL-17, interleukin-17; HIF-1, hypoxia-
inducible factor-1; ECM, extracellular matrix; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; TGF, transforming growth factor; MMPs, 
matrix metalloproteinases; SCENIC, single-cell regulatory network inference and clustering. 
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Figure 4 Analysis of CAFs characteristics based on ferroptosis regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of ferroptosis genes 

in CAFs; (D,E) cell-cell communications from ferroptosis-mediated CAFs to malignant and non-malignant epithelial cells; (F) metabolic activity results; 

(G) KEGG enrichment results; (H) SCENIC analysis results; (I) Heatmap of key genes expression. CAFs, cancer-associated fibroblasts; UMAP, uniform 

manifold approximation and projection; NMF, non-negative matrix factorization; TCA, tricarboxylic acid; KEGG, Kyoto Encyclopedia of Genes and 

Genomes; IL-17, interleukin-17; HIF-1, hypoxia-inducible factor-1; ECM, extracellular matrix; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; TGF, 

transforming growth factor; MMPs, matrix metalloproteinases; SCENIC, single-cell regulatory network inference and clustering. 
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Figure 5 Analysis of CAFs characteristics based on autophagy regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of 
autophagy genes in CAFs; (D,E) cell-cell communications from autophagy-mediated CAFs to malignant and non-malignant epithelial cells; 
(F) metabolic activity results; (G) KEGG enrichment results; (H) SCENIC analysis results; (I) Heatmap of key genes expression. CAFs, 
cancer-associated fibroblasts; UMAP, uniform manifold approximation and projection; NMF, non-negative matrix factorization; TCA, 
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DRAM1+ CAFs-C2 and LZTS1+ CAFs-C4, were dominant 
in CAFs cellular communications. In addition, metabolic 
pathway activity analysis revealed that the three cellular 
subpopulations that dominated cellular communication had 
higher metabolic pathway activity compared with other 
cellular subpopulations (Figure 5F). KEGG enrichment 
analysis showed that these cellular subpopulations were 
mainly associated with human diseases such as Ruan viral 
disease, Parkinson’s disease, hepatocellular carcinoma, etc. 
(Figure 5G).

Gene expression regulatory network analysis showed that 
most of the TFs were highly active in CLU+ CAFs-C1 and 
DRAM1+ CAFs-C2 subpopulations (Figure 5H). In addition, 
gene expression of key CAFs phenotypic marker surface 
proteins showed that the CLU+ CAFs-C1 subpopulation of 
inflammatory factors possessed higher expression (Figure 5I).

Novel necroptosis‑mediated CAFs have an impact on TME 
in CRC

The NMF clustering results showed that we newly defined 
a total of 11 subpopulations of CAFs: CHMP6+ CAFs-C1, 
BID+ CAFs-C2, TNFRSF10B+ CAFs-C3, BIRC3+ CAFs-C4, 
CHMP2B+ CAFs-C5, CYLD+ CAFs-C6, IL1B+ CAFs-C7, 
SMPD1+ CAFs-C8, TNFRSF1A+ CAFs-C9, IRF9+ CAFs-C10 
and non-necro-CAFs-C11 (Figure 6A). By pseudotime 
trajectory analysis (Figure 6B), we found that necroptosis major 
regulators were expressed at all periods of CAFs development, 
and that SMPD1 and CHMP6 were characteristic genes in 
early development; TRAF5, TNFASF1A, and PGAM5 were 
characteristic genes in late development (Figure 6C). Cellular 
communication analysis revealed that these 11 subpopulations 
of necroptosis-associated CAFs communicated more with 
non-malignant epithelial cells compared to malignant 
epithelial cells (Figure 6D,6E). And, based on the number 
of communications between these subpopulations and 
tumor epithelial cells, CHMP6+ CAFs-C1, BID+ CAFs-C2, 
TNFRSF10B+ CAFs-C3, and CHMP2B+ CAFs-C5, were 
dominant in CAFs cellular communications. Metabolic 
pathway activity analysis revealed that the four cellular 
subpopulations dominating in cellular communication had 
higher metabolic pathway activity (Figure 6F). By KEGG 
enrichment analysis we found that these cell subpopulations 

were mainly associated with focal adhesion, platelet 
activation, rheumatoid arthritis, mineral absorption, p53 
signaling pathway, and lysosomes (Figure 6G). Notably, the 
BIRC3+ CAFs-C4 subpopulation was mainly associated with 
inflammation-related signaling pathways such as TNF,
nuclear factor kappa-B (NF-κB) and IL-17.

TF activities such as TCF4, TCF7L2_extended, FOXO1_
extended, GABPB1_extended and MAF_extended were 
found to be higher in all cell subtypes by gene expression 
regulatory network analysis (Figure 6H). Notably, key CAFs 
phenotypic markers for surface protein gene expression 
showed that the BIRC3+ CAFs-C4 subpopulation not only 
exhibited enrichment of inflammatory pathways, but also 
relatively high expression of inflammatory factors (Figure 6I).

Novel lysosome‑dependent cell death‑mediated CAFs have 
an impact on TME in CRC

Based on NMF clustering, we obtained nine subgroups 
of lysosome-dependent cell death-associated CAFs, 
CLU+ CAFs-C1, SMPD1+ CAFs-C2, CTSH+ CAFs-C3, 
GNPTAB + CAFs-C4,  GLA + CAFs-C5,  IL13RA2 + 
CAFs-C6, HSPA8+ CAFs-C7, FES+ CAFs-C8 and non-
lyso-CAFs-C9 (Figure 7A). Through Monocle (Figure 7B), 
we identified the specific highly expressed genes SMPD1, 
GNPTAB and the specific low expressed genes AP1S3, 
HSPA8 in the early phase of CAFs development and the 
specific highly expressed gene PIK3CG and the specific 
low expressed genes IDUA, CTSH in the late phase of 
CAFs development (Figure 7C). By cellular communication 
analysis we found that these nine subpopulations of 
lysosomal-dependent cel l  death-associated CAFs 
communicated with non-malignant epithelial cells in 
greater numbers compared to malignant epithelial cells 
(Figure 7D,7E). Based on the number of communications 
between these subpopulations and tumor epithelial cells, 
it was evident that five subpopulations, CLU+ CAFs-C1, 
SMPD1+ CAFs-C2, CTSH+ CAFs-C3, GNPTAB+ 
CAFs-C4, and IL13RA2+ CAFs-C6, were predominant in 
CAFs cellular communications. Metabolic pathway activity 
analysis revealed higher metabolic pathway activity in the 
CLU+ CAFs-C1, IL13RA2+ CAFs-C6 subpopulations 
among the nine lysosome-dependent cell death-associated 

tricarboxylic acid; IL-17, interleukin-17; AGE-RAGE, advanced glycation end products-receptor for advanced glycosylation end products; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; TGF, transforming growth factor; 
MMPs, matrix metalloproteinases; ECM, extracellular matrix; SCENIC, single-cell regulatory network inference and clustering. 



Translational Cancer Research, Vol 14, No 1 January 2025 447

© AME Publishing Company.   Transl Cancer Res 2025;14(1):434-460 | https://dx.doi.org/10.21037/tcr-24-1301

Component 1

Umap_1

NMF_cell type

BID+CAFs-C2 
BIRC3+CAFs-C4 
CHMP2B+CAFs-C5 
CHMP6+CAFs-C1 
CYLD+CAFs-C6 
IL1B+CAFs-C7 
IRF9+CAFs-C10 
Non-Necro-CAFs-C11 
SMPD1+CAFs-C8 
TNFRSF10B+CAFs-C3 
TNFRSF1A+CAFs-C9

−10 −5

−10 0

0 5

10 20 30

C
om

po
ne

nt
 2

U
m

ap
_2

6

3

0

−3

10

0

−20

−10

C
H

M
P

6+
C

A
Fs

-C
1 

B
ID

+
C

A
Fs

-C
2 

B
IR

C
3+

C
A

Fs
-C

4 

TN
FR

S
F1

0B
+

C
A

Fs
-C

3 

C
H

M
P

2B
+

C
A

Fs
-C

5 

C
Y

LD
+

C
A

Fs
-C

6 

IL
1B

+
C

A
Fs

-C
7 

TN
FR

S
F1

A
+

C
A

Fs
-C

9 

IR
F9

+
C

A
Fs

-C
10

 

N
on

-N
ec

ro
-C

A
Fs

-C
11

C
H

M
P

6+
C

A
Fs

-C
1 

B
ID

+
C

A
Fs

-C
2 

TN
FR

S
F1

0B
+

C
A

Fs
-C

3 
B

IR
C

3+
C

A
Fs

-C
4 

C
H

M
P

2B
+

C
A

Fs
-C

5 
C

Y
LD

+
C

A
Fs

-C
6 

IL
1B

+
C

A
Fs

-C
7 

S
M

P
D

1+
C

A
Fs

-C
8

TN
FR

S
F1

A
+

C
A

Fs
-C

9 
IR

F9
+

C
A

Fs
-C

10
 

N
on

-N
ec

ro
-C

A
Fs

-C
11

M
et

ab
ol

ic
 p

at
hw

ay

KEGG pathways

Value

Value

0.00

0.25

0.50

1.00

0.75

0.50

0.25

0.00

0.75

1.00

C
lu

st
er

Cluster
Number of interactions

Number of interactions

Log.p.adjust

20

15

10

5

NMF_cell type

C D

E

F G
H

I

B

A

Figure 6 Analysis of CAFs characteristics based on necroptosis regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of 
necroptosis genes in CAFs; (D,E) cell-cell communications from necroptosis-mediated CAFs to malignant and non-malignant epithelial 
cells; (F) metabolic activity results; (G) KEGG enrichment results; (H) SCENIC analysis results; (I) Heatmap of key genes expression. CAFs, 
cancer-associated fibroblasts; UMAP, uniform manifold approximation and projection; NMF, non-negative matrix factorization; TCA, 
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tricarboxylic acid; KEGG, Kyoto Encyclopedia of Genes and Genomes; TNF, tumor necrosis factor; IL-17, interleukin-17; HIF-1, hypoxia-
inducible factor-1; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; TGF, transforming growth factor; MMPs, matrix metalloproteinases; 
ECM, extracellular matrix; SCENIC, single-cell regulatory network inference and clustering. 

CAFs subpopulations (Figure 7F). KEGG enrichment 
analysis based on the differential expressed genes of 
each cellular subpopulation revealed that these cellular 
subpopulations were mainly associated with kaposi sarcoma-
associated herpesvirus infection, cellular senescence, carbon 
metabolism, transforming growth factor beta (TGF-beta), 
and NOD-like receptor signaling pathways (Figure 7G).

In addition, SCENIC analysis showed that lysosome-
dependent cell death-associated CAFs subpopulations 
activated potential TFs to different degrees (Figure 7H). 
Notably, the expression of key CAF phenotypic marker 
surface protein genes was also very different for different 
cel lular subpopulations,  whereas CLU+ CAFs-C1 
predominantly expressed inflammatory factors (Figure 7I).

Novel anoikis‑mediated CAFs have an impact on TME in 
CRC

We newly defined nine subpopulations of anoikis-
associated CAFs by NMF clustering, PLAU+ CAFs-C1, 
CLU+ CAFs-C2, CRYAB+ CAFs-C3, CCND1+ CAFs-C4, 
TIMP1+ CAFs-C5, INHBB+ CAFs-C6, BIRC3+ CAFs-C7, 
CD36+ CAFs-C8 and non-anoik-CAFs-C9 (Figure 8A). 
We found that loss-of-nest apoptosis major regulatory 
genes were highly expressed during late CAF development 
(Figure 8B,8C). Cellular communication analysis revealed 
that these nine subpopulations of anoikis-associated CAFs 
communicated more with non-malignant epithelial cells 
compared to malignant epithelial cells (Figure 8D,8E). 
Based on the number of communications between these 
subpopulations and tumor epithelial cells, it is evident that 
the CLU+ CAFs-C2 and INHBB+ CAFs-C6 subpopulations 
dominate CAFs cellular communication. Metabolic pathway 
activity analysis revealed that the metabolic pathway activity 
of CLU+ CAFs-C2 and CD36+ CAFs-C8 subpopulations 
was higher among the nine anoikis-associated CAFs 
subpopulations (Figure 8F). KEGG enrichment analysis 
revealed that CLU+ CAFs-C2 was mainly associated with 
TNF signaling pathway, proteoglycans and cancers; whereas 
CD36+ CAFs-C8 was mainly associated with Nguyen virus 
disease, Parkinson’s disease and Huntington’s disease, 
among other human diseases (Figure 8G).

SCENIC analysis showed that subpopulations of anoikis-

associated CAFs were differentially activated by potential 
TFs (Figure 8H). In addition, the expression of key CAFs 
phenotypic markers surface protein genes was distinctly 
different in different cell subpopulations, and CLU+ 
CAFs-C2 predominantly expressed inflammatory factors 
(Figure 8I).

Novel paraptosis‑mediated CAFs have an impact on TME 
in CRC

We used NMF clustering to newly define 11 subpopulations 
of paraptosis-associated CAFs (Figure 9A), and they are 
LPAR1+ CAFs-C1, MYLK+ CAFs-C2, CFD+ CAFs-C3, 
DDIT3+ CAFs-C4, PDCD6IP+ CAFs-C5, CDK4+ 
CAFs-C6, CTDSP2+ CAFs-C7, HSPB8+ CAFs-C8, 
CSF1+ CAFs-C9, unclear-para-CAFs-C10, and non-
para-CAFs-C11. After pseudotime trajectory analysis  
(Figure 9B), we found that the major regulatory genes 
of paraptosis were expressed at all periods of CAFs 
development (Figure 9C) and that the genes characteristic 
of CAFs in early development: TNK2, CASP7, CTDSP2, 
HSPB8; and genes characteristic of late development: 
CDKN3, PDCD6IP, MCU. By cellular communication 
analysis we found that these 11 subpopulations of 
paraptosis-associated CAFs communicated with non-
malignant epithelial cells in greater numbers compared 
to malignant epithelial cells (Figure 9D,9E). Based on the 
number of communications between these subpopulations 
and tumor epithelial cells, it was seen that the LPAR1+ 
CAFs-C1, CFD+ CAFs-C3, DDIT3+ CAFs-C4, and 
unclear-para-CAFs-C10 subpopulations were dominant 
in CAFs cellular communications. Metabolic pathway 
activity analysis revealed that the LPAR1+ CAFs-C1, CFD+ 
CAFs-C3, and unclear-para-CAFs-C10 subpopulations 
had higher metabolic pathway activities among the 11 
subpopulations of paraptosis-associated CAFs (Figure 9F). 
It is noteworthy that all of these cellular subpopulations 
dominated cellular communication. Furthermore, through 
the KEGG enrichment analysis of genes exhibiting 
variances across different subpopulations (Figure 9G), it 
was observed that the 11 CAFs subpopulations linked to 
paraptosis were connected with processes such as protein 
processing in ER, protein digestion and absorption, 
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Figure 7 Analysis of CAFs characteristics based on lysosome-dependent cell death regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of 

lysosome-dependent cell death genes in CAFs; (D,E) cell-cell communications from lysosome-dependent cell death-mediated CAFs to malignant and non-

malignant epithelial cells; (F) metabolic activity results; (G) KEGG enrichment results; (H) SCENIC analysis results; (I) Heatmap of key genes expression. 

CAFs, cancer-associated fibroblasts; UMAP, uniform manifold approximation and projection; NMF, non-negative matrix factorization; TCA, tricarboxylic 

acid; KEGG, Kyoto Encyclopedia of Genes and Genomes; TGF, transforming growth factor; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; MMPs, matrix 

metalloproteinases; ECM, extracellular matrix; SCENIC, single-cell regulatory network inference and clustering.
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Figure 8 Analysis of CAFs characteristics based on anoikis regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of anoikis genes in CAFs; (D,E) 

cell-cell communications from anoikis-mediated CAFs to malignant and non-malignant epithelial cells; (F) metabolic activity results; (G) KEGG enrichment 

results; (H) SCENIC analysis results; (I) Heatmap of key genes expression. CAFs, cancer-associated fibroblasts; UMAP, uniform manifold approximation and 

projection; NMF, non-negative matrix factorization; TCA, tricarboxylic acid; KEGG, Kyoto Encyclopedia of Genes and Genomes; TNF, tumor necrosis factor; 

COVID-19, coronavirus disease 2019; RAS, rat sarcoma; Neo-Angio., neo-angiogenesis; TGF, transforming growth factor; MMPs, matrix metalloproteinases; 

ECM, extracellular matrix; SCENIC, single-cell regulatory network inference and clustering. 
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Figure 9 Analysis of CAFs characteristics based on paraptosis regulatory factors. (A) NMF clustering results; (B,C) trajectory analysis of paraptosis genes in 
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TNF and IL-17 signaling pathways, extracellular matrix 
(ECM) receptor interaction. Notably, two specific cell 
subpopulations, namely DDIT3+ CAFs-C4 and CDK4+ 
CAFs-C6, were found to be associated with ferroptosis.

SCENIC analysis showed that subpopulations of 
paraptosis-associated CAFs were differentially activated 
by potential TFs (Figure 9H). In addition, the expression 
of key CAFs phenotypic markers surface protein genes 
was distinctly different in different cellular subpopulations 
(Figure 9I).

Various PCD‑mediated CAFs have an impact on the 
prognosis of CRC

After comprehending the roles of eight PCD-mediated 
CAFs, an investigation was conducted to assess the influence 
of these cellular subpopulations on the prognosis of CRC 
patients. This involved a reassessment of the differential 
genes associated with these cell subpopulations in order 
to elucidate their distinct characteristics. Subsequently, 
we employed the GSVA method to compute the scores 
for each set of DEGs, and then conducted a univariate 
Cox analysis to investigate the correlation between these 
genes and the prognosis of CRC patients. As illustrated 
in Figure 10A, the subpopulations of CAFs characterized 
by apoptosis had a relatively constrained impact on the 
prognosis of patients with CRC. The most notable among 
these subpopulations of CAFs was the HSPA1A+ CAFs, 
identified as a risk factor impacting the prognosis of CRC 
patients in only two cohorts (TCGA-CRC, GSE39582). 
The pyroptosis-mediated subpopulations of CAFs 
collectively influenced the prognosis of patients with CRC. 
However, the PRKACA+ CAFs subpopulation, which 
was the most notable, also served as a risk factor in just 
two cohorts (GSE39582, GSE17536) (Figure 10B). The 
ferroptosis-mediated subpopulations of CAFs exhibited 
a diminished impact on patients with CRC, acting as a 
potential risk factor in just one of the cohorts analyzed 
(GSE17536) (Figure 10C). The various subpopulations of 
autophagy-mediated CAFs exhibit a significant prognostic 
influence on CRC patients, with each subpopulation 
serving as a risk factor in one to two cohorts. Notably, 
in the GSE17536 cohort, CLU+ CAFs, DRAM1+ CAFs, 
OPTN+ CAFs, and LZTS1+ CAFs were identified as risk 
factors, while HSPA8+ CAFs were found to be risk factors 
in the GSE39582 and TCGA-CRC cohorts (Figure 10D). 
The necroptosis-mediated subpopulation of CAFs had a 
limited influence on the prognosis of patients with CRC, 

serving as a risk factor in just one cohort (TCGA-CRC 
or GSE17536) (Figure 10E). The lysosome-dependent 
cell death-mediated CAFs subpopulation collectively 
influenced the prognosis of CRC patients, with the most 
notable subpopulations being HSPA8+ CAFs and non-
lyso-CAFs (Figure 10F). Conversely, the impact of the 
anoikis-mediated CAFs subpopulation on CRC patient 
prognosis was less pronounced, with only the CRYAB+ 
CAFs subpopulation identified as a risk factor in both 
cohorts (TCGA-CRC, GSE17536) (Figure 10G). Among 
the various PCD mechanisms studied, the paraptosis-
mediated CAFs subpopulation had the most significant 
effect on CRC patient prognosis, particularly the DDIT3+ 
CAFs subpopulation, which was identified as a risk factor 
in three cohorts (TCGA-CRC, GSE39582, GSE17536) 
(Figure 10H). Furthermore, the MYLK+ CAFs and HSPB8+ 
CAFs subpopulations were also identified as risk factors in 
two cohorts.

DDIT3 may affect the prognosis of CRC patients

In order to identify critical genes that influence the prognosis 
of CRC patients, we conducted an analysis of subpopulations 
of CAFs that are significantly associated with prognosis, 
specifically focusing on DDIT3+ CAFs, HSPB8+ CAFs, and 
MYLK+ CAFs. Initially, patients were categorized into high-
score and low-score groups based on the median GSVA 
scores within each cohort, followed by the generation 
of Kaplan-Meier survival curves. The findings indicated 
that in the cohorts GSE17536 (Figure 11A), GSE39582  
(Figure 11B), and TCGA-CRC (Figure 11C), there were 
notable differences in survival outcomes between the high 
and low score groups of CRC patients with DDIT3+ CAFs. 
Conversely, HSPB8+ CAFs (Figure S3A,S3B) and MYLK+ 
CAFs (Figure S3C,S3D) exhibited significant survival 
differences in only two of the cohorts analyzed. Furthermore, 
within the TCGA-CRC cohort, we constructed Kaplan-
Meier survival curves based on the median expression 
levels of the three characteristic genes associated with the 
subpopulations, revealing that only the survival difference 
between the high and low expression groups of DDIT3 was 
statistically significant (Figure 11D, Figure S3E,S3F). We 
further analyzed the expression of DDIT3 in various types 
of cells and showed the differential expression between 
cancer tissues and adjacent non-cancer tissues. The results 
indicated significant differential expression of DDIT3 in B 
cells, T cells, epithelial cells, and stromal cells (Figure 11E), 
and in the TCGA-CRC cohort, DDIT3 was significantly 

https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1301-Supplementary.pdf
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Figure 10 Overall prognosis of CAFs subtypes (GSVA score) in the public cohort. (A) OS analysis for apoptosis-associated CAFs; (B) OS 
analysis for pyroptosis-associated CAFs; (C) OS analysis for ferroptosis-associated CAFs; (D) OS analysis for autophagy-associated CAFs; (E) 
OS analysis for necroptosis-associated CAFs; (F) OS analysis for lysosome-dependent death-associated CAFs; (G) OS analysis for anoikis-
associated CAFs; (H) OS analysis for paraptosis-related CAFs. All of the results were obtained from the data of five CRC cohorts. OS, 
overall survival; CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CAFs, cancer-associated fibroblasts; GSVA, 
gene set variation analysis; NA, not available.
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Table 1 Information about the CRC patients involved in the study

ID Gender Age (years) TNM LNM OS DDIT3 IHC score

201838158 Female 66 II Yes Yes High positive

201814697 Male 64 II Yes Yes High positive

201809418 Female 58 II–III Yes Yes Positive

201816826 Male 65 II–III Yes Yes High positive

201833176 Female 43 II–III Yes Yes Positive

201835370 Male 72 I No Yes Positive

201833323 Female 58 II No Yes Low positive

201815661 Female 70 II–III No Yes Positive

201816484 Male 82 II–III No Yes Positive

201846696 Male 72 II–III Yes Yes High positive

201840608 Male 55 II–III No Yes Positive

201831504 Female 65 II–III Yes Yes Positive

201807722 Male 73 I–II No No Low positive

201810330 Male 54 I Yes No Positive

201838988 Male 70 I Yes No Positive

201850118 Male 49 I Yes No Low positive

201812559 Female 68 I No No Low positive

201824151 Female 54 I Yes No Positive

201822781 Male 64 I–II No No Low positive

CRC, colorectal cancer; TNM, tumor-node-metastasis; LNM, lymph node metastasis; OS, overall survival; DDIT3 IHC score, 
immunohistochemical score of DDIT3.

higher expressed in cancer tissue cells compared to adjacent 
non-cancer tissues (Figure 11F). It is noteworthy that there is a 
positive correlation between the T-stage (Figure 11G), N-stage 
(Figure 11H), M-stage (Figure 11I), and stage (Figure 11J)  
with the expression of DDIT3 (Figure 11G-11J). Besides, 
immunohistochemical analysis also showed high expression 
of DDIT3 in CRC tissue (Figure 11K). To explore the 
clinical relevance of DDIT3 in CRC, a study was conducted 
analyzing the association between DDIT3 protein levels 
and clinicopathological characteristics in 19 CRC patients  
(Table 1). The results indicated a significant correlation 
between DDIT3 expression and tumor node metastasis (TNM) 
stage (P=0.008) as well as OS (P=0.04) (Table 2). These findings 
align with data obtained from bulk-seq analysis, suggesting a 
potential prognostic impact of DDIT3 on CRC patients.

Discussion

Up to date, there is limited research on the involvement of 
PCD regulatory genes in cancer progression, particularly 
in CRC (34,35). This study is the first to extensively 
investigate the expression of crucial PCD regulatory genes 
in CRC-CAFs and to elucidate the interactions between 
various PCD-mediated CAFs subpopulations and cancer 
cells. This unique approach provides insights into how 
different CAFs subpopulations influence the prognosis of 
CRC patients.

During cell differentiation, there is a notable variation 
in gene expression between cells before and after 
differentiation (36). Our study utilizing pseudotime analysis 
revealed alterations in the expression of critical regulators 
of PCD during the differentiation process of CAFs, leading 
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to the identification of distinct genes associated with 
early and late-stage CAFs development. Notably, certain 
characteristic genes identified in this study have been 
found to have specific functions in CRC cells. For instance, 
TRAP1, an apoptosis-related gene, has been shown to 
modulate the response of CRC cells to hypoxia (37,38), 
while HMOX1, a gene related to ferroptosis, enhances 
the growth, tolerance, and survival of CRC cells under 
oxidative stress (39). Additionally, PINK1, an autophagy-
related gene, has been found to reprogram metabolism by 
activating p53, thereby reducing acetyl-CoA production 
and inhibiting colon tumor growth (40). These findings 
underscore the significance of investigating key genes 
involved in the regulation of PCD.

Epithelial cells play a crucial role in tumor development 
as they are the primary component of tumor tissue. 
The heterogeneity of cancer epithelial cells influences a 
patient’s response to treatment and prognosis. Our study 
utilized the inferCNV algorithm to determine the CNV 

score of cancer epithelial cells, categorizing them into 
malignant and relatively non-malignant cells. Through 
differential gene functional enrichment analysis of cell 
subpopulations, relatively non-malignant cells exhibited 
higher enrichment in energy metabolism and pathways 
related to cancer formation. Research suggests that tumor 
progression is not solely driven by genetic mutations but 
is also influenced by the TME (41). Recent literature 
highlights the significance of CAFs as key regulators in 
tumor pathogenesis (42). Communication analysis revealed 
a higher number of interactions between all PCD-mediated 
CAFs subpopulations and relatively non-malignant cells 
compared to malignant cells. Furthermore, differential 
gene enrichment analysis of CAFs subpopulations, such as 
IL1B+ CAFs and IL6+ CAFs, suggests their involvement in 
ECM receptor signaling and HIF-1 pathways, potentially 
contributing to CRC development (43,44). These findings 
lead us to hypothesize that CAFs may promote malignant 
tumor growth, and the identification of distinct CAFs 
subpopulations may aid in further elucidating their role in 
tumor progression.

In order to investigate the cell-specific gene regulatory 
network, an analysis of TFs at the single-cell level was 
conducted. Each subpopulation of CAFs exhibited distinct 
characteristics in terms of TF expression. The process 
of epithelial-to-mesenchymal transition (EMT) in CRC 
cells has been identified to enhance metastasis (45,46), 
consequently impacting patient prognosis. Previous 
research has indicated that heightened activity of TF 
families such as Snail, ZEB, and Twist can facilitate EMT in 
tumor cells (47). Our study revealed that specific subgroups 
like ZEB1+ CAFs, DRAM1+ CAFs, and CTSH+ CAFs 
exhibited a notable increase in ZEB1 transcriptional activity. 
ZEB1 was observed to influence YAP1 activity in diverse 
contexts and regulate the YAP1 pathway in CAFs (48),  
thereby modulating the ECM through upregulation 
of various cytoskeletal regulatory factors (e.g., ANLN 
and DIAPH3) and control of MYL9 protein levels (49). 
Consequently, ZEB1 can directly and indirectly impact 
the organization and remodeling of extracellular fibers by 
transmitting tension through adhesion. Ultimately, pivotal 
regulatory genes associated with PCD may influence 
specific TF regulatory systems, consequently contributing 
to the metastasis of CRC cells.

Utilizing Cox regression analysis and Kaplan-Meier 
survival analysis of DEGs within distinct subpopulations, 
insights have been garnered regarding the influence of 
these subpopulations on patient prognosis. Notably, 

Table 2 Correlations between DDIT3 expression and clinicopathologic 
parameters in patients with CRC

Patients’ 
characteristics

High positive 
(n=4)

Low positive 
(n=5)

Positive 
(n=10)

P value

Gender 0.83

Female 1 (25.0) 2 (40.0) 5 (50.0)

Male 3 (75.0) 3 (60.0) 5 (50.0)

Age (years) 0.32

<60 0 (0.0) 2 (40.0) 5 (50.0)

≥60 4 (100.0) 3 (60.0) 5 (50.0)

TNM 0.008

I 0 (0.0) 2 (40.0) 4 (40.0)

I–II 0 (0.0) 2 (40.0) 0 (0.0)

II 2 (50.0) 1 (20.0) 0 (0.0)

II–III 2 (50.0) 0 (0.0) 6 (60.0)

LNM 0.06

No 0 (0.0) 4 (80.0) 4 (40.0)

Yes 4 (100.0) 1 (20.0) 6 (60.0)

OS 0.04

No 0 (0.0) 4 (80.0) 3 (30.0)

Yes 4 (100.0) 1 (20.0) 7 (70.0)

CRC, colorectal cancer; TNM, tumor-node-metastasis; LNM, lymph 
node metastasis; OS, overall survival. 
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the paraptosis-mediated DDIT3+ CAFs subpopulation 
emerged as particularly impactful on the prognosis of CRC 
patients. A recent study has reported that genes mediating 
paraptosis in CAFs promote tumor development (22). At 
the same time, inducing paraptosis in CRC cells is gradually 
being recognized as a potential therapeutic approach. 
Interventions targeting this mechanism may open new 
avenues for the treatment of CRC (50-52). Intriguingly, 
enrichment analysis of DEGs within the paraptosis-related 
DDIT3+ CAFs subpopulation unveiled an association 
with ferroptosis. Additionally, research has demonstrated 
that DDIT3 can trigger ferroptosis in conditions such 
as ankylosing spondylitis and non-small cell lung cancer 
(53,54). A previous review has explored the interplay 
between ferroptosis and apoptosis via ER stress (55). 
Likewise, paraptosis processes mediated by the ER may 
intersect with ferroptosis through this organelle, warranting 
further investigation in forthcoming studies.

In order to delve deeper into the association between the 
DDIT3 gene and CRC, it was observed that DDIT3 exhibits 
elevated expression levels in cancerous tissues, impacting 
the TNM staging and OS rates of CRC patients. A review 
of existing literature revealed that DDIT3 functions as 
a versatile TF within the ER stress response (56,57). Its 
pivotal role involves responding to diverse cellular stressors, 
leading to cell cycle arrest and apoptosis upon ER stress 
induction. Despite its established functions in cellular stress 
responses, the involvement of DDIT3 in cancer, particularly 
in CRC, remains relatively underexplored. Consequently, 
future research endeavors are encouraged to delve into 
the specific mechanisms through which DDIT3 operates 
in cancer, with the potential to unveil novel insights for 
targeted therapeutic interventions in oncology.

The primary limitations of our preliminary analysis 
stem from the shallow depth of single-cell sequencing and 
inadequate sample size, necessitating further validation of our 
findings through additional basic and clinical experiments. 
Given that reliance on a singular random forest algorithm 
may impose constraints on the identification of prognostic-
related genes, it is advisable to employ multiple machine 
learning techniques in future research endeavors aimed 
at screening for these genes. Furthermore, the unique 
characteristics of the NMF algorithm pose constraints on 
our study, as it tends to offer only partial data representation, 
potentially introducing bias into the clustering methods 
employed. Moreover, the limited sample size constrains the 
interpretative strength of the DDIT3 immunohistochemistry 
findings. Nonetheless, this research presents a fresh 

viewpoint by elucidating the regulatory patterns of various 
PCDs in CAFs from a single-cell perspective. It also 
highlights the notable impact of paraptosis regulatory pattern 
in CAFs on the prognosis of CRC patients, thereby offering 
novel insights for CRC investigations.

Conclusions

In this research, we characterized distinct subtypes of CAFs 
influenced by eight key regulators of PCD that are crucial in 
CRC. Furthermore, our findings suggest that PCD-related 
intercellular signaling mechanisms may be involved in the 
control of malignant tumor progression and could impact 
patient outcomes. Notably, DDIT3+ CAFs associated with 
paraptosis exhibited the most pronounced influence on the 
prognosis of individuals with CRC.
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