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Abstract: When it comes to understanding the spread of COVID-19, recent studies have shown that
pathogens can be transmitted in two ways: direct contact and airborne pathogens. While the former
is strongly related to the distancing behavior of people in society, the latter are associated with the
length of the period in which the airborne pathogens remain active. Considering those facts, we
constructed a compartmental model with a time-dependent transmission rate that incorporates the
two sources of infection. This paper provides an analytical and numerical study of the model that
validates trivial insights related to disease spread in a responsive society. As a case study, we applied
the model to the COVID-19 spread data from a university environment, namely, the Institut Teknologi
Bandung, Indonesia, during its early reopening stage, with a constant number of students. The
results show a significant fit between the rendered model and the recorded cases of infections. The
extrapolated trajectories indicate the resurgence of cases as students’ interaction distance approaches
its natural level. The assessment of several strategies is undertaken in this study in order to assist
with the school reopening process.

Keywords: SIR model; socio-behavioral aspects; interaction distance; school reopening strategy

1. Introduction

In epidemiology, compartmental models are general modeling techniques used to
understand the spread of disease, and they commonly consider three variables: S for those
who are susceptible, I for those who are infected, and R for individuals who have recovered.
Variations of the generic SIR model are available: the SIS model accommodates temporal
immunity [1], the SEIR model best represents the spread of disease with a significant
latency period [2], and there are even combinations of the two [3]. The convenience of
compartmental models in respect of adding more variables has resulted in their being
widely used in infectious disease modeling [4]. Besides providing each state’s estimated
figure, this approach can also provide the reproductive ratio, which represents the expected
number of secondary cases generated by one primary case [5–7]. In most of the constructed
models, the reproductive ratio acts as a crucial threshold; above one indicates endemic,
while below one indicates disease-free [8]. This is crucial for policymakers when regulating
whether or not to ease restrictions amid disease spread.
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However, generic compartmental models are sometimes based on assumptions that
are not necessarily relevant; the population is considered closed in SIR models, whereas
complete isolation was not followed in most regions, making them vulnerable to changes
in the neighboring communities [9]. Another assumption that is commonly used in a
generic model is that transmission and recovery rates are assumed to remain constant
over time. Such a scenario will best represent disease that spreads in a population with no
response to current disease prevalence, meaning that a high or low number of recorded
cases will not affect the average socio-behavior of the population. The simplest case to
consider is a disease spread within a closed population of sheep in a field [10]. When it
comes to a human population, people’s psychological behavior causes them to reduce their
interaction intensity as the declared number of cases increases, which ought to vary the
viral transmissibility [11]. Moreover, setting constant rates of transmission and recovery
results in a high number of projected infected cases once the model is applied to a vast and
highly populated community; this could be at the scale of entire nations [12]. According
to recent studies, SIR-based predictions using early data for COVID-19 cases have shown
an enormous figure for predicted cases, with the peak reaching up to 15–30% of the
total population [13,14]. Nevertheless, an absence of the psychological behavior of the
population could overestimate the prediction figure [15].

According to recent studies, there are so many studies that discuss the spread of the
COVID-19 disease. Researchers developed various models and approaches from all over the
world [16,17]. However, in this paper, we will discuss two major sources of transmission in
some infectious diseases: direct contact and airborne transmission. In respect of the former,
it is quite obvious that human-to-human transmission is mainly caused by direct contact
such as talking at a close distance. The smaller the average interaction distance of people
within a population, the greater the chance for pathogens to spread. By incorporating the
effect of human psychological behaviors, it is natural to expect an increase in the average
interaction distance given a high disease prevalence in a specific population, which will lead
to a reduction in viral transmissibility. However, the latter source of transmission opens up
possibilities for infections induced by the presence of airborne pathogens. This method of
transmission is found in the spread of TB [18] and SARS-CoV-2 [19]. Although airborne
pathogens can infect susceptible individuals, some studies have shown that most airborne
pathogens can only last for a certain period. Mycobacterium tuberculosis, which attacks lungs
and causes TB, can stay in the air for several hours depending on the environment [20], and
SARS-CoV-2 can only last for hours in the air but can survive for up to a week on plastic [21].
In disease modeling, taking airborne pathogens into account is crucial, especially for those
that have a significant period of viral survivability in the air.

The incorporation of the psychological behavior of society into responses to disease
prevalence has been introduced in several works, such as Hua-Li et al. [11] and Oluyori
et al. [22]. In practice, the authors define saturated transmission rates that are dependent
on the figure of disease prevalence. The transmission rate is expected to increase for a low
disease prevalence and start decreasing once the prevalence exceeds its critical point [11].
In 2021, Cabrera et al. [23] introduced a compartmental model that incorporates a socio-
behavioral aspect in a slightly different way; they introduced the interaction distance
to measure societal behaviors in response to disease prevalence. Hence, the nonlinear
transmission rate integrates the interaction distances. However, the effect of airborne
pathogens is rarely incorporated. One study conducted by Bazant and Bush in 2021 [24]
demonstrates the significant effect of airborne transmissions on society regarding activities.
Although airborne pathogens, especially SARS-CoV-2, can only last for hours, indoor
transmission is crucial for infectious disease modeling, especially for school or office
environments involving many indoor activities.

In this study, we constructed an SIR-based mathematical system that accommodates
the two major causes of infection: direct contact and airborne transmission. The former
source of infection, representing the socio-behavioral aspect, is based on the measure of
the interaction distance of people in society. In 2021, Cabrera et al. [23] proposed adding a
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new variable that determines the interaction distance over time. The closer the interaction
distance, the higher the chance of disease spread. The latter cause of infection, which
represents viral characteristics, is incorporated by defining another variable that solely
represents the concentration of pathogens in the air over time. We expect that the longer
the pathogens can last in the air, the higher the concentrations over time, which leads
to a higher chance of disease spread. Hence, the newly added variables will govern the
transmission rate that eventually depends on the socio-viral behavioral aspects. In the
analysis of the constructed model, we provide numerical results in respect of infections
under different socio-viral behavioral aspects. The model performs well in depicting the
spread of disease in societies under different rates of response, different rates of resistance
to adopting new habits, and under different characteristics of the concerned diseases. As a
case study, we applied the constructed models to the SARS-CoV-2 spread data that were
collected in a university environment (Institut Teknologi Bandung College) in January
2022. The choice to use data from a university was made to ensure homogeneous socio-
behavioral aspects for the whole society; no demographic is taken into account due to the
homogeneity assumption [25–27]. The small scale of a university environment also ensures
the involvement of pathogens in the air; the larger the scale of the observation, the smaller
the effect of pathogens in the air. Lastly, we utilized the extrapolated figures to assess some
strategic action plans related to SARS-CoV-2 infections in educational environments; school
reopening schemes and vaccination implementation [28].

2. Context

Humans are mobile creatures who move in their part of an environment; they may
meet an acquaintance or not. When the former scenario happens, they will likely move
closer to reaching out to that acquaintance [29]. This phenomenon exemplifies the im-
portance of interpersonal space (IPS) and peripersonal space (PPS) in which humans can
perform body–environment interactions [30]. Although the dimensions of IPS and PPS
include all directions, previous studies have only focused on a specific distance, i.e., the
distance from the front of the person [31]. When it comes to understanding infectious
diseases, the front-directed PPS is essential since most diseases, including SARS-CoV-2, are
transmitted via the front parts of the human body. One unit that measures the intensity of
PPS contact is the interaction distance, in which the closer the distance, the more intense
the contact, which leads to an increase in the risk of disease transmission [32]. According
to Sorokowska et al. [33], the preferred interpersonal distance of humans differs between
different types of social relations (strangers, acquaintances, and partners). Table 1 provides
a global comparison in respect of interaction distance.

Other than the interaction distance that causes direct transmissions, airborne trans-
mission of some diseases is now widely recognized, especially for the spread of COVID-
19 [34,35]. This approach accounts for the plausibility of infections caused by pathogen-
bearing aerosols that are fine enough to be continuously mixed through an indoor space.
Every infected individual present will contribute to the production of droplets containing
the virus. Bazant and Bush [24], in their COVID-19 study, estimated the concentration of
pathogens produced by a single infected individual in a well-mixed room for every breath,
and for whispering and talking indoors.

However, other studies have shown that pathogens can remain active on other media,
such as copper, cardboard, and plastic [21], for a certain period. Hence, other than signifi-
cant airborne transmission indoors, pathogens that are attached to other media can also
infect susceptible individuals. A study by Doremalen et al. provides the estimated critical
periods of SARS-CoV (1 and 2) before they become inactive; these are given in Table 2.
The estimations show that SARS-CoV can last up to 12 h in the air but can last longer on
other media. This fact should indicate the importance of airborne pathogens and their
attachment to other media in respect of understanding viral transmission. In this study
we construct a mathematical model that incorporates both socio-behavioral and airborne
pathogen effects.
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Table 1. Average preferred interpersonal distance (in meters) for different types of social relations:
strangers, acquaintances, and partners/close relations across all nations. The figure estimations were
conducted by Sorokowska et al. [33].

Countries Social Distance Personal Distance Intimate Distance

Romania, Hungary, Saudi
Arabia, Turkey, Uganda 1.20–1.40 m 0.90–1.20 m 0.45–0.90 m

Pakistan, Estonia,
Colombia, Hong Kong,
China, Iran, Malaysia,

Czech Republic, Portugal,
Kenya, Switzerland, India,
Indonesia, Croatia, Ghana,

South Korea

1.05–1.20 m 0.75–1.05 m 0.40–0.75 m

Norway, Canada, Nigeria,
Brazil, England, Mexico,
Poland, Germany, USA,

Kazakhstan, Italy, Serbia,
Greece, Spain

0.90–1.05 m 0.60–0.75 m 0.40–0.60 m

Russia, Slovakia, Austria,
Ukraine, Bulgaria, Peru,

Argentina
0.70–0.90 m 0.60–0.70 m 0.30–0.50 m

Table 2. Estimated critical periods for SARS-CoV to remain active on several media.

Media SARS-CoV-2 SARS-CoV-1

Aerosol 10.00 ± 2.00 h 8.00 ± 2.00 h

Copper 11.00 ± 6.00 h 19.00 ± 7.50 h

Cardboard 39.00 ± 9.00 h 8.00 ± 5.00 h

Stainless steel 72.00 ± 15.00 h 50.00 ± 10.00 h

Plastic 90.00 ± 10.00 h 90.00 ± 10.00 h

3. Proposed Model

In this study we used a generic model, but we separated those who had and had not
received vaccines. This modification was based on the fact that the presence of immune titer
in the human body can significantly prevent people from becoming infected, offering up to
90% protection [36]. Hence, there are three main state variables: susceptible (S), currently
infected individuals (I), and removed individuals (R), with the total of six state variables
created by adding subscripts v and u to each of the main states, representing the categories
of being vaccinated and not, respectively. As shown in Figure 1, new infected individuals
are generated from both Su and Sv, caused by a direct interaction between susceptible
and infectious individuals. After a specific period of infections, infected individuals
will enter R, which represents being immune or deceased. We assume that there is no
demographic change, which implies a constant population size: Nu = Su(t) + I(t) + Ru(t)
and Nv = Sv(t) + Iv(t) + Rv(t), for t ≥ 0, and N = Nu + Nv with a constant proportion of
vaccinated and unvaccinated individuals. The model also assumes no significant difference
in the recovery rates of vaccinated and unvaccinated individuals.
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As shown in Figure 1, there are three parameters involved: transmission rate (β),
recovery rate (γ), and vaccine effectiveness (ρ). The last two parameters are observable,
i.e., their values can be measured and estimated using relevant information. Vaccine
effectiveness, which ranges from 0 to 1, represents the protection induced by the vaccine.
The higher this value, the lower the chance of people becoming infected once they interact
with infectious individuals. Limited to the COVID-19 vaccine, the vaccine efficacy should
vary depending on the manufacturer and COVID-19 variants [36]. The value of γ represents
the rate of recovery, which governs the speed of transition from I to R. To make this realistic,
γ−1 can be considered as the average infection period. In contrast, the rate of transmission
β is unclear in terms of its physical representation; it summarizes all factors that produce
infections. Hence, the value of β is considered unobservable. To incorporate the two major
causes of infection as mentioned in Section 2, we added two additional lines to the system
that represent the dynamics of the interaction distance D and the pathogen concentrations
V. The final two variables dictate the dynamics of β resulting in the transmission rate
that depends on the socio-viral behavioral aspect. A mathematical representation of the
constructed model is given in the following form:

S′u= −β(Iu + Iv)Su/N
I′u= β(Iu + Iv)Su/N − γIu
R′u= γIu
S′v= −β(1− ρ)(Iu + Iv)Su/N
I′v= β(1− ρ)(Iu + Iv)Su/N − γIv
R′v= γIu

(1)

with a constant population size N. The other two additional variables are D (in meters) and
V (in quanta/m3), representing the average interaction distance and viral loads over time.
The formulation of D was first introduced by Cabrera et al. [23] along with the definition
of the natural distancing habit D∗ that could differ from one society to others—symbol
D∗ denotes the average of natural distancing behavior of society. The complete additional
lines are given in the following systems:{

D′ = −λ1(D− D∗) + λ2(Iu + Iv)/N
V′ = λ3(Iu + Iv)− λ4V

(2)

with non-negative initial conditions
{

S0
u, I0

u, R0
u, S0

v, I0
v , R0

v, D0, V0} that are evaluated at the
initial point t = 0. It is natural to assume that I0

u = (1− α)I0 and I0
v = αI0, for I0 = I0

u + I0
v ,

with α (in percent relative to the population size) representing the vaccine coverage. The
addition of the two variables involves another four parameters. On one hand, the value of
λ2 (distance/time) represents how quickly people react to the current disease prevalence,
i.e., the so-called rate of social response. By neglecting the first term, there are two scenarios
that increase the interaction distance D: high values of the rate of response λ2 or the disease
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prevalence I. Interestingly, setting λ2 equals zero will lead to a situation where a society
pays no attention to the current disease spread. Such a scenario drives the society to resort
to their natural interaction distance D for λ1 6= 0. On the other hand, the rate λ1 (1/time)
measures the rate of resistance in society, per distance unit, to changing distancing behavior.
It represents how quickly individuals return to their natural interaction distance D∗ or their
natural distancing habits. This rate is strongly related to the distancing culture. When we
set a high value of λ1, this results in a situation in which the society has a strong culture
embedded, making it resistant to changes in behavior amid the current pandemic. In this
study, we restrict the plausibility of λ1 = 0 since we assume that every society has its
own resistance in changing habits. When the disease prevalence approaches zero, then
D′ approaches −λ1(D− D∗), which leads to the convergence of D to D∗ regardless of
the initial condition D0. More detailed formal analysis of System (1) and (2) are given in
Appendix A.

While the first equation of System (2) portrays the socio-behavioral aspects, the sec-
ond equation portrays the concentration of the pathogens. The rate λ3 (quanta/(time
m3·person)) denotes the average concentration of viral/pathogens emitted by one infected
individual per unit time. Face coverings and the practice of other social and respiratory
etiquette will likely reduce the value of λ3 and hence reduce the number of pathogens
emitted into the air. The discharged microbes will remain suspended in the air in dust
particles, respiratory particles, and water droplets [37]. However, pathogens will not last
forever in the air (or other media); they will decay due to natural and human intervention.
On the other hand, parameter λ4 (1/time) denotes the removal rate of viral quanta in the
air. A higher intervention of humans in the community, including through air filtering
and periodical sanitation, can increase λ4 and hence allow more microbes to decay or
be inactive [38]. However, in most cases, λ4 will only account for the natural effect of
pathogen removal (subject to ambient temperature, humidity [21,39], and sunlight [40]),
while human intervention can be represented by another functional term added to the
dynamic of V [41]. Eventually, λ1, λ2, and λ3 represent the socio-behavioral aspects in
society while λ4 represents the characteristics of the pathogens.

D(t) = D∗ +
(

D0 − D∗
)

e−λ1t +
λ2

N

∫ t

0
I(s)e−λ1(t−s)ds (3)

V(t) = V0e−λ4t + λ3

∫ t

0
I(s)e−λ4(t−s)ds (4)

Since the model adopts a uni-flow, then there exists τ such as I(t) < ε, t > τ, for every
ε > 0. In terms of epidemiology, the virus will always be eradicated to zero for large values
of t since people will accumulate in the removed compartments. For the dynamics of D,
the second and third terms approach zero as t approaches infinity, leaving only the first
term that converges to D∗. However, the presence of V is strongly related to the presence of
infectious individuals, who will vanish once the disease vanishes, no matter how large the
initial condition. It should be noted that the proposed models do not consider reinfection
or susceptible newborns. Hence, multiple disease outbreaks (if any) are expected to be
driven by the change in interaction distance in society.

3.1. Observability of Socio-Behavioral Parameters

As discussed in the previous section, the model has 3 parameters that are related to
the socio-behavioral aspects of society: λ1, λ2, and λ3. It is clear from its definition that
λ3 is observable and that its value follows the estimations of the pathogen concentration
per person per m3. Bazant and Bush [24] and Miller et al. [42] provided estimated concen-
trations for several expiratory activities. Calibrated normal speaking activity is estimated
to produce 72 infections quanta/m3 while superspreading activity can contribute up to
970 infections quanta/m3. However, the first two socio-behavioral parameters are not
observable, i.e., the rate of social resistance λ1 is not something that we can determine from
the field. It combines all aspects that inhibit society in the change of behaviors.
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The rate of social response, denoted by λ2, has a dimension of meters per unit of time.
In the absence of λ1, the formula of D′ reduces to only D′ = λ2(I/N), with I = Iu + Iv.
When I = N, then D′ = λ2, which is interpreted as the interaction distance increasing at
the rate of λ2 meters per unit time when the whole population is infected. Taking another
scenario, I = 1 person results in D′ = λ2/N, which is considered as the λ2/N increment
of the interaction distance per unit of time when the society contains 1 infected individual.
Henceforth, λ2 is related to the quantity of the change in D for a certain disease prevalence.
To understand this parameter more, let us take the solution of D′ = λ2(I/N); D(t)−D0 =

λ2
∫ t

0 (I(s)/N)ds. By taking D0 = D∗, then λ2 = (D(t)− D∗)/
∫ t

0 (I(s)/N)ds. Expecting
the presence of an average prevalence of I in the length of time T2 will drive people in
society to interact at the distance of D, then λ2 can be estimated using the following formula:

λ2 =

(
D− D∗

)
T2

(
I
N

) (5)

Note that I/N represents the percentage of infections in society, i.e., the so-called
point prevalence, denoted by a%. Therefore, by knowing that the society is practicing
distancing habits of D = D once the point prevalence is roughly a%, we can estimate the
expected value of λ2 as the rate of social response amid the disease spread. Henceforth,
λ2 =

(
D− D∗

)
/(aT2).

We can also consider the dynamics of D in the given system. When (Iu + Iv)/N tends
to zero, the effect of λ2 is no longer significant; the whole second term will tend to zero, leav-
ing D′ = −λ1

(
D− D∗

)
. This simple ODE has a unique solution of D(t) = D∗ + D0e−λ1t.

The higher the value of λ1, the faster the dynamics of D to approach D∗. It is easy to prove
that lim

t→∞
D(t) = D∗, regardless of the value of D0. Hence, for an arbitrary small value ε > 0,

there exists a value of T1 that satisfies the following condition.

|D(t)− D∗|< ε for t >T1 ↔
|D(t)− D∗|

D0 <
ε

D0 = ε for t >T1 (6)

We can manipulate the solution of D(t) to reach D∗ + ε in t = T1 by adjusting the
value of λ1 as given by:

D∗ + ε = D∗ + D0e−λ1t → λ1 =
−In

(
ε

D0

)
T1

= − In(ε)
T1

(7)

Henceforth, the rate of social resistance λ1 can be evaluated using the estimated time
for society to return to their natural interaction distance in the absence of disease spread,
denoted by T1; see Figure 2 for illustration. It should be noted that ε is an arbitrary small
number ε > 0 divided by D0. According to Equation (7), λ1 takes the log value of ε, which
will be sensitive to the choice of ε. Hence, it is natural to assume the relative deviation from
D∗ as ε = 1%, although the formula of λ1 should clearly confirm that the value of λ1 is
dependent on the assumption.
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3.2. Contact and Airborne-Based Transmission Rate

The rate of transmission is defined to be related to the interaction distance (D) and con-
centration of pathogens (V). In this study we accommodate two methods of transmission:
contact-based and airborne-based transmission. Contact-based transmission is affected by
the average interaction distance; the transmission rate decreases as the average interaction-
distance increases, as people practice social-distancing. However, a high concentration of
airborne pathogens contributes to an increase in the transmission rate.

β(D, V) = β∗
(

2D∗

D∗ + D

)v(V + V∗

V∗

)w
(8)

The definition of the contact-related transmission rate is adopted from [23], but we
have added the effect of the current concentration of pathogens. The basic transmission rate
β∗(1/time) is defined as constant, representing the basic probability of transmission per
unit time. The second term (dimensionless) represents the effect of the average interaction-
distance, which will decrease the overall β as D increases. The third term, however,
represents how the concentration of pathogens affects the overall β value at which the risk
of infection will rise as V increases. To keep the effect of V dimensionless, we divide V by
the standard number of quanta exhaled by infectors per individual per m3 per unit time.
The adjuster levels of v and w are added to be fitted to the data, representing the strength
of each source of infection in society.

3.3. Recovery Rate

Recovery rates (1/time) denote the quantity representing how fast infected individ-
uals recover from the disease and, hence, build their immunity [43]. For some infectious
diseases, the absence of healthcare might cause a longer infection period [27,44,45], specifi-
cally for COVID-19. Not limited to this disease, we define the implicitly time-dependent
recovery rate as follows:

γ(I, K) = γ0 + (γ1 − γ0)
K

I + K
(9)

where I denotes the state variable for infectious individuals and K denotes the constant
healthcare capacity (beds). In addition, γ1 and γ0 are both recovery rates but represent
different situations: excessive beds and collapsing health systems. On one hand, when the
number of beds is excessive, then each of the infected individuals receives proper treatment
and this leads to a shorter period of infections [45]. In other words, γ(I, K) will achieve
its maximum rate of recovery as K approaches infinity. Otherwise, γ(I, K) will converge
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to γ0 as the number of burdens is higher relative to the healthcare services [11]. Hence,
the former denotes the maximum recovery rate given the proper treatment, while the
latter denotes the lowest recovery rate achieved by patients treating themselves in order to
recover. Figure 3 depicts the functional parameters and their dependent variables. Figure 3
(left) illustrates the effect of the average interaction distance that results in higher values of
β(D, V) as D approaches D∗. On the other hand, the rate of recovery follows Equation (9),
which lessens the rate of the increase in the burden of cases down to γ0. For the case with
excessive healthcare capacities, the rate of recovery can be maximized up to γ1, as shown
in Figure 3 (right).
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Figure 3. (a) Dependency of transmission rate β to D and V, by taking β∗ = 0.444, v = 7.680,
w = 0.051 and D∗ = 0.7 m; (b) Effect of K and I to the rate of transmission by taking γ1 = 1/6
(infection period of 6 days) and γ0 = 1/14 (infection period of 14 days).

4. Numerical Results

In this study, the behavior of society that is being accommodated by the model is
the rate of social resistance and social response. Socio-resistance rate, denoted by λ1,
represents the resistance of society to distancing their interactions due to the prevalence
of people when I is not significantly zero. When the prevalence of people is close to
zero, the resistance rate represents how fast the society moves back towards their natural
interaction-distance D∗. In contrast, the rate of societal response represents the increase in
interaction distancing per increase in point prevalence, which inhibits the disease spread
when this value is high. In this section, we provide the number of infected individuals (per
one thousand members of the population) for several values of λ1 and λ2.

4.1. Variations under Different Society Behaviors

The rate of social response is given in three scenarios (low, moderate, and high re-
sponse), by taking values of λ2 = 0.20, 0.53, and 0.87, respectively. These are based on the
physical distancing campaign: (i) low social response drives people to physical distancing
limited to D = 1 m only, (ii) moderate can reach D = 1.5 m, and (iii) high social response
can reach up to 2 m. Table 3 shows the diverse approaches of countries in campaigning
for physical distancing. We also set the rates of social resistance to λ1 = 0.15, 0.07, and
0.05, which are based on T1 = 30, 60, and 90 days, respectively. The ranges of λ1 and λ2
produced by Formulas (5) and (7) conform to those used in Cabrera et al. [23].
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Table 3. Physical distancing campaigns among countries [46,47].

Countries Physical Distancing (m)

Singapore, United Kingdom, Denmark, France, Hong Kong,
China and France 1 m

Australia, Belgium, Greece, Germany, Italy, Spain, Portugal,
Switzerland 1.5 m

Canada, United States 2 m

Figure 4 provides the numerical simulations for Iu + Iv and D for the different pairwise
scenarios of λ1 and λ2. As expected, the value of D(t) will vary over time—increases as the
disease prevalence increases. In all sub-figures, all dynamics for D(t) always start from D∗

as its natural distancing behavior when disease prevalence is around zero (no new cases
recorded). However, as the disease prevalence rises, people in society build awareness to
practice physical distancing which then increases the average distancing behavior D. As
the new cases decrease to zero, it is natural that people in society return to their natural
distancing D∗.
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Figure 4. Numerical simulations for different values of the rate of resistance λ1 and response to
disease prevalence λ2. Blue lines represent the average interaction distance, while the orange lines
represent the burden of cases. The values of λ1 and λ2 are provided for three different values (low,
moderate, high); λ2 = 0.20, 0.53, 0.87 and λ1 = 0.05, 0.07, 0.15. All figures were generated by
choosing N = 1000 and D∗ = 0.7 m and other parameters that evaluate the values of R0 to exceed 1;
ρ = 0.5, γ0 = 1/14, λ1 = 1/6.

The sub-figure in the left upper corner depicts the simulation results for a society with
a lower response yet a higher resistance rate. Such a scenario results in a higher peak of
the burden of cases relative to other scenarios. This result shows that if the society does
not have enough awareness about the disease’s prevalence, and has a strong resistance
that inhibits the practice of physical distancing, the dynamics of D will be likely in around
D∗, which results in a higher number of cases. Societies that campaign for close physical
distancing (e.g., 1 m only), and have tendencies to always practice their natural habits, are
likely represented by the left upper corner sub-figure. The figure situated at the center
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of the nine depicts simulations that apply to a society that has a considerably moderate
level of resistance and response rate. The right lower corner depicts shows societies with
a higher rate of response but a lower rate of resistance. Due to higher values of λ2, every
individual in the society moves further away relative to other scenarios and this results
in a significant change in D relative to the value of D∗. When it comes to the figure of
the burden of cases, this scenario estimates the lowest number of cases relative to other
scenarios. Societies that practice physical distancing and have a tendency to keep practicing
it in a longer period, even after the disease is no longer present, are best represented by this
scenario, resulting in a lower burden of cases relative to other scenarios.

4.2. Variations under Different Pathogen Characteristics

Different pathogens lead to different survivability periods in the air or other media.
The longer the pathogens are active as airborne pathogens, the more they accumulate, which
increases the risk of infections. Characteristics of the observed pathogens are governed by
parameter λ4. In System (2), the term −λ4V represents the concentration of pathogens per
unit of time to become inactive. Figure 5 shows the dynamics of the disease prevalence
Iu + Iv under different periods of pathogens lasting in the air for the same parameters as
used in Figure 4. In the lower-right picture, it is shown that pathogens that can last up to
48 h (red) can accumulate up to 300,000 quanta pathogens per m3 and drive infections to as
high as 23%. Figure 5a demonstrates how the dynamics of Iu + Iv precede V on reaching a
peak for exactly 2 days (48 h). It is natural to accept that the longer the period, the wider
the gap between the occurrences of the two peaks. By setting a smaller period (higher λ4),
the dynamics of V decrease and so does Iu + Iv. Moreover, the peak of Iu + Iv shifts to the
right (see Figure 5b,c). More results on the model’s sensitivity analysis are provided in
Appendices B and C.
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Figure 5. Numerical simulations of System (1) and (2) under different removal rates of air-
borne pathogens, that is implicated in the critical period of pathogens to remain active airborne:
(a) comparison between the dynamics for infected individuals and viral load for a critical period
of 48 h, which shows an exact lag of 48 h between the peak of infections and its viral loads,
(b,c) dynamics for Iu + Iv and its viral load under different critical periods of the airborne pathogen.
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5. Case Study: SARS-CoV-2 Spread in School

As mentioned in the previous section, the proposed model incorporates the socio-
behavioral aspects of people in the society combined with the effect of airborne transmission.
When it comes to socio-behavioral aspects, we included social resistance and social re-
sponse amid the disease spread, which limit the scope of the implementation. At the
scale of nations, people in society comprise all levels of education, culture, habits, or even
wealth [48], which leads to a variety in perceptions when dealing with disease spread; some
may have higher awareness but some may not. This fact challenges the modeler regarding
how to estimate λ1 and λ2 that will accurately portray the society. Hence, we designed the
model to be applied to the scale of an educational or office environment. It is natural to
expect the homogeneity of socio-behaviors, even homogeneity in age, in schools or offices.
These limitations also support the involvement of airborne transmission due to the indoor
activity in schools or offices [24]. Henceforth, this section provides the applications of the
proposed model to understand the disease spread in a university environment.

5.1. Dataset and Parameters’ Estimation

We collected the data in respect of the SARS-CoV-2 spread in a college environment,
namely the Institut Teknologi Bandung (ITB), and data range from early January until late
April 2022. The data comprise record daily cases, current active cases, and the total number
of recovered individuals out of all enrolled students, lecturers, and college staff. Although
students and staff do not stay at the college 24/7, it is reasonable to assume that they spend
most of the time in the college environment. Here, we exclude the enrolled students that
were infected in other cities due to the hybrid (online-offline) learning practice. The data
are privately available at https://covidtrak.itb.ac.id/ (accessed on 1 April 2022), which is
only accessible by ITB COVID-19 task-force members.

In terms of the parameter estimation, we only used data for the daily new cases from
early January 2022 until late April 2022, which will be later denoted as Da. Given in Table 4,
System 204 and 210 involve 11 parameters, with only three of them being estimated by
the integration of data Da, namely β∗, v, and w, while other assumptions are as follows:
the population size N equals 4000 (according to the report of the initial school reopening),
the average vaccine efficacy ρ = 0.37 for SinoVac [36], γ0 = 1/14, and γ1 = 1/6, which
represent the rate of recovery under lack of and excessive healthcare, respectively. In order
to obtain the estimations of β∗, v, and w, we used a Markov Chain Monte Carlo (MCMC)
method to estimate the whole distribution. The complete Bayesian hierarchy for the MCMC
method is provided in Appendix D. Figure 6 shows the estimated posterior distribution of
β∗, v, and w that was implemented to the data that resemble the recorded daily new cases.

Table 4. List of parameters used in evaluating the numerical simulation of System (1) and (2).

Notation Description Values

γ0(γ1)

COVID-19 recovery rate in the case of a lack
of healthcare capacity (in the case of

excessive healthcare). This parameter
governs the time-dependent recovery rate

1/14 (1/6) 1/day

D∗ Natural interaction distance 1.2 m

β∗, v, and w Intrinsic transmission rate and the contact
and airborne transmission adjuster Calibrated

ρ Current vaccine efficacy, using SinoVac [29] 0.35

λ1
The rate of social resistance in the observed

community 0.07 1/day

λ2
The rate of social response in the observed

community 0.53 m/day

https://covidtrak.itb.ac.id/
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Table 4. Cont.

Notation Description Values

λ3

Average concentration of airborne
pathogens emitted by one infected

individual per day
24 quanta/(day person·m3) [24]

λ4 Removal rate of airborne pathogens 2 1/day [21]
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Figure 6. (a–c) Posterior distribution for β∗, w and w, estimated using MCMC method with prior of
normal distributions: N (µ, σ), with µ being the estimated single point and σ being a higher value to
acquire the possibility of achieving the global minima. We generated three independent samples to
portray the posterior density to ensure its consistency. (d) The comparison between the data (daily
new cases) and the model with its 90% prediction interval.

5.2. Projected Number of Cases

Assuming no further changes in all parameters, the estimated posterior distribution of
β∗, v, and w can be used to sample their values and generate the extrapolated trajectories
for all states of the proposed model. Figure 7a and b show the projections of the disease
prevalence in the university from early 2022 until mid-2023. Both consistently predict a
significant decrease in the number of cases from May 2022, which implies a decrease in the
average interaction distance D, approaching the social natural distancing D∗. Figure 7a–c
clearly show that the figures are estimated with a relatively narrow prediction interval,
which leads to high confidence in the results under the hold assumptions. As the average
interaction distance D is around D∗, or, in other words, people in society behave as if
there is no disease, the expected number of cases shown in Figure 7a,b increases in August
2022 and peaks in around October 2022, though the prediction interval is relatively wider
compared to the previous period. These simulations show that the number of cases is
expected to increase as D approaches D∗, without even considering reinfection due to
immunity waning.
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Figure 7. The extrapolated figures with the dashed line initiate the prediction window. The figures
were evaluated using the estimated parameters obtained in the previous section, with the assumption
of no significant change in parameters for the 365-day prediction intervals: (a,b) extrapolated number
of active cases and daily new cases that levels off in around May to July 2022, but starts to increase
on August and peaks on October 2022, (c) average interaction distance of society that will approach
its natural distancing of D∗ = 1.2 m as the number of cases decreases, but increases when the
case resurgence is identified, (d) time-dependent transmission rate that gradually increasing as
D approaches D∗, (e) dynamic for viral load over time that resembles that for active cases, and
(f) time-dependent recovery rate that its values are bounded by γ0 and γ1.

Figure 7e depicts the dynamics of the pathogen concentrations in the observed area per
m3, which resembles the dynamics of the active cases over time. As stated in the previous
section, the longer the pathogens can last in the air (or other media), the further the shift
to the right relative to the dynamics of the active cases. In other words, the presence of
Iu + Iv contributes to the presence of pathogens that govern the rate of transmissibility.
Figure 7d and f show the dynamics of β = β(D, V) and γ = γ(I, K). Although they are not
directly dependent on time, they are time-dependent due to the dependency of D, V, and I
to the unit of time. During the training time (initial time until the dashed lines), the rate of
transmission β decreases due to the significant deviation of the average interaction distance
relative to D∗. It is expected that the trajectories of β will increase during the prediction
interval due to the decreasing values of D. For the rate of transmission, its value is always
bounded within the γ0 − γ1 ribbon. The rate is expected to approach the maximum value
of γ as the burden of cases approaches zero; otherwise, it approaches the minimum γ.
For Figure 7f, we set K = 100, which represents the ability of the university hospital to
accommodate only 100 patients at one time. This assumption causes a significant decrease
in γ as the expected Iu + Iv exceeds the value of K, depicting the ineffective health service
as the burden exceeds its capacity.

5.3. Prospective Action Plans

Other than providing the extrapolated trajectories for all states, we are also interested
in supplying numerical simulations related to prospective action plans for preventing
the expected surge of COVID-19 in schools. This section provides the numerical assess-
ment of three action plans: school reopening management, disinfection, and vaccine-
related improvement.
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5.3.1. School Reopening Management

Although technologies support students in attending online classes, the practice of
in-person classes is still preferable. This fact should be the main reason for the massive
reopening of most Indonesian schools, regardless of the level of education. However, this
should challenge the previous simulations due to a significant change in the number of
individuals in a school as it is reopened. Henceforth, we provide numerical simulations of
all states, more concerned with Iu + Iv, as the number of individuals in a school varies due
to the school reopening. In practice, we assume that all individuals (students, lecturers, and
staff) can be considered vulnerable to the disease. The higher the number of susceptible
individuals, the more individuals can be infected. Hence, it is natural to analyze the effect
of the increase in N on the dynamics of Iu + Iv.

Mathematically speaking, N = Su + Iu + Ru + Sv + Iv + Rv, which implies that
N′ = S′u + I′u + R′u + S′v + I′v + R′v. Substituting the derivatives of all states as stated in
System (1), we have N′ = 0, meaning that the population size remains unchanged. How-
ever, we modified the model to accommodate the change in the population size due to the
school reopening. Since we assume that all new individuals enter compartments Su and Sv
(with the proportion governed by the vaccine coverage), we add recruitment terms f and g
for Su and Sv as given by Equation (10).{

S′u = f − β(Iu + Iv)Su/N
S′v = g− β(1− ρ)(Iu + Iv)Sv/N

(10)

This gives us N′ = f + g, for f = f (t) and g = g(t). Integrating both sides gives
us N(t) =

∫ t
0 ( f (s) + g(s))ds. If we choose f (t) = (1− α)N′obj(t) and f (t) = αN′obj(t),

for a continuous and differentiable function Nobj(t), then f (t) + g(t) = N′obj(t) and we
expect that N(t) = Nobj. The simulation is conducted numerically, which includes the
discretization of the time domain, and hence the condition of the differentiability of Nobj
is no longer relevant. The subscript objwhich stands for ‘objective’, denotes the preferred
dynamics of N(t) that represent a certain school opening scheme. Hence, we can assess the
effect of a specific school reopening scheme by choosing the appropriate function Nobj that
depicts the expected dynamics of the total individuals at any time t. Then, we choose three
different Nobj(t) values that represent three interesting school reopening schemes:

1. No school reopening (benchmark) We preserve the size of the population as it was
used to generate simulations in the previous section. We set N = 4000 for all t > 0,
which leads to the constant population size for all time. This scenario is a benchmark
for the other two scenarios.

2. Gradual school reopening A gradual school reopening is a scheme that admits stu-
dents and academical staff gradually until, at some point, the total number of students
and staff is reached. In the Institut Teknologi Bandung (ITB), there are approximately
20,000 students and academical staff at any time for a non-pandemic era, which starts
with only 4000 individuals in a pandemic era (January until April 2022). Hence, we
choose a simple-bounded linearly increasing function Nobj as given by:

Nobj(t) =


4000 f or t < 58

4000 + 114(t− 59) f or t ∈ [59, 200]
20, 000 f or t > 201

t ∈ Z+, with t ∈ [0, 58], is the training data interval, which uses N = 4000. However,
t ∈ [200, end] represents the total school reopening that starts in September 1, 2022,
with N = 20, 000. The middle period of t ∈ [59, 200] represents a linearly gradual
reopening from 4000 to 20,000. In practice, it is easy to add that f = 114(1− α) and
g = 114α during the period of reopening t ∈ [59, 200], and f = g = 0 otherwise.

3. Prevalence-tuned school opening The last scenario accommodates the response of
the school officials to reduce the school capacity as the disease prevalence level
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increases. Hence, we assume that the number of N should be related to the number
of I. We chose a negative exponential to represent the relation between N and I
as follows:

Nobj(t) = (20, 000− 4000)e−kI(t) + 4000.

This formulation suggests that as I is around zero, then the school officials are about
to totally open the school, and N = 20, 000. The opposite condition with a large number of
I forces the school restriction and allows only 4000 individuals. This formulation of Nobj is
not explicitly time-dependent; instead, it depends on the varying values of I(t). In practice,
we can set f = (1− α)(20, 000− 4000)ke−kt I′(t) and g = α(20, 000− 4000)ke−kt I′(t).

Figure 8 shows the numerical assessment of the three school reopening schemes. The
simulations in red are the results that act as a benchmark for the other scenarios. This
benchmark scenario gives the constant population size that drives the resurgence of the
active cases around October as the average interaction distance increases. However, adding
more people into the school through the gradual reopening scheme leads to more infections
recorded, which reach a peak around July–August 2022. The surge is expected to happen
since we add more people as N increases from 4000 to 20,000 in early September 2022.
However, the infection-tuned scheme allows more people to enter the school relative to
the other two schemes, yet results in lower cases compared to the second scenario. This is
caused by the response of the school officials to reducing the school participants as the cases
start to increase. This is the reason why cases increase in the same period as the second
scheme but are significantly lower. By this simulation, all scenarios of reopening drive
more people to enter the school, leading to more infections. The next section shows how
the vaccine-related improvement can solve the problem of reopening without expecting
any surge in infections.
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Figure 8. Numerical results of school reopening schemes: no reopening (benchmark) in red, gradual
reopening in blue, and case-based reopening in black; (a) population sizes for the three scenarios
during the school reopening, (b,c) simulations of the disease prevalence I = Iu + Iv and the interaction
distance D for different reopening schemes.
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5.3.2. Vaccine Coverage and Effectiveness Improvement

Other than the physical distancing campaign, vaccination is one of the control mea-
sures in the spread of COVID-19, especially in a school environment. It has been shown
that any school reopening leads to more infections recorded within the society. This section
provides a simulation of the three reopening schemes whilst also varying the vaccine
efficacy. By April 2022, the current average of vaccine efficacy is around 37%, as most
Indonesians have been inoculated twice with SinoVac, which has 37% effectiveness in
response to the Omicron variant. The improvement of the vaccine efficacy can be achieved
by campaigning for a third vaccine dose with higher efficacy, such as Moderna, Pfizer,
or Oxford AstraZeneca. Figure 9 shows the numerical simulations for different values of
vaccine efficacy: ρ = 37%, 50%, 65%, and 80%.
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Figure 9. Simulations of the three school reopening schemes under different vaccine efficacies.
Improving the vaccine efficacy should reduce the expected numbers of cases. The highest vaccine
efficacy in response to the Omicron variant is about 71% [36].

The figure illustrates the effect of the improvement of the vaccine efficacy, by assuming
that 80% of school attendees have received a full-dose vaccine with such efficacy. When the
efficacy is improved from 37% to 50%, this affects the first scenario that has only 4000 and
cases that are expected to occur in October 2022 vanish. However, ρ = 50% is not enough to
reduce the other two scenarios (blue and black) significantly as the expected cases remain
high for such scenarios. For ρ = 65%, most of the expected cases are reduced significantly.
Lastly, ρ = 80% or higher is expected to reduce a whole surge of cases, at least for the
365-day prediction interval. It can be seen that as the number of cases reduces to zero, the
average interaction distance of people approaches its natural level, yet there is no trigger for
more infections due to the acquisition of vaccine-induced immunity. These results suggest
that any reopening scheme, up to a maximal school capacity of 20,000 individuals, will
not lead to any surge in COVID-19 cases as long as 80% of the population has received a
vaccine with a minimum 80% efficacy.
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6. Conclusions

In this study, we provided a modified SIR-type model that incorporates socio-viral
behavioral aspects. The first aspect (socio-behavioral) was added to the model by integrat-
ing the average interaction distance in society, while the other was added by integrating
the critical period in which airborne pathogens remain active. In a general case, a society
with a higher resistance rate λ1 but a lower response rate λ2 will record more total cases
compared to other plausible scenarios. In other words, the mentioned scenario applies to
society with people that are hardly accepting new distancing habits and that do not have
the awareness of disease prevalence. In contrast, a society with people that easily adapt
to new distancing behaviors due to disease transmission, representing a society with a
higher λ2 but a lower λ1, will result in the least total cases compared to other scenarios.
Furthermore, varying the critical period for active airborne pathogens also influence the
model behaviors. The higher the critical period, the longer the airborne pathogens actively
contribute to the increase in transmission rate.

As a case study, we implemented the proposed data on the spread of COVID-19 in a
school environment to preserve the assumption of homogeneity in the population. Using
the data on infections, we inferred the unknown parameters using the Bayesian approach.
We have shown that the rendered model is well-depicting the training data. Using the
inferred parameters, we extrapolated the model and came up with the evidence for a
resurgence of cases in around August 2022. The resurgence of the case is purely implied
by the return of society to its natural distancing behavior Dˆ* when no new COVID-19
cases are recorded. The dynamics of airborne pathogens load V seem not to influence that
significantly due to the short critical period of SARS-CoV-2 to remain active in the air.

In response to the resurgence of cases, we used the model to numerically assess some
strategic actions, applicable to the school context, to prevent the resurgence. First, we
define some reasonable school reopening schemes that influence the population size: no
reopening, gradual reopening, and infection-tuned reopening. While the first has a constant
population size N, the second is gradually increasing the population size until it reaches
the maximum capacity. Different from the other two, the infection-tuned reopening is a
scheme that increases N to its maximum capacity when no diseases are identified, but
also allows for decreasing N as the number of cases increases. Though the third scheme
seems not practical, an infection-tuned scheme is proven to be the most effective strategy
to reopen the school and minimize the risk of the rerise of COVID-19. Second, since we
have demonstrated that all school reopening schemes lead to the resurgence of COVID-19
cases, we provide a numerical simulation that justifies the importance of vaccine quality;
coverage, and efficacy. With constant vaccination coverage, increasing the vaccine efficacy
will reduce the risk of COVID-19 resurgence—a vaccine with an efficacy of more than 80%
has been proven to effectively prevent the COVID-19 resurgence, regardless of how society
behaves towards the disease spread.

Author Contributions: Conceptualization, N.N.; methodology, K.K.S. and N.N.; software, K.K.S.;
validation, N.N., U.S.P., A.B., S.H.S., D.R., E.A.G.-R., S.Y., H.D.A., D.M., I.S. and W.M.; formal analysis,
N.N., M.Y.T.T. and K.K.S.; investigation, N.N. and K.K.S.; resources, A.B., S.H.S., D.R., E.A.G.-R., S.Y.,
H.D.A., D.M., I.S. and W.M.; data curation, N.N., U.S.P., A.B., S.H.S., D.R., E.A.G.-R., S.Y., H.D.A.,
D.M., I.S. and W.M.; writing—original draft preparation, N.N. and K.K.S.; writing—review and
editing, M.Y.T.T., A.B., S.H.S., D.R., E.A.G.-R., S.Y., H.D.A., D.M., I.S. and W.M.; visualization, K.K.S.;
supervision, N.N.; project administration, N.N.; funding acquisition, E.A.G.-R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is funded by Riset Unggulan 2022 with research grant number of 1V/IT1.C02/
TA.00/2022 and ITB.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Trop. Med. Infect. Dis. 2022, 7, 289 19 of 23

Acknowledgments: Authors would like to deliver a big appreciation for the ITB team for covidtrak
that has voluntarily collecting data that was used for this research. We also should appreciate Yayasan
ITB for funding this research. This research is funded by Riset Unggulan 2022 with research grant
number of 1V/IT1.C02/TA.00/2022 and ITB.

Conflicts of Interest: The authors have no conflicts of interest to declare. All co-authors have seen
and agree with the contents of the manuscript and there is no financial interest to report. We certify
that the submission is original work and is not under review at any other publication.

Appendix A. Model Analysis and Threshold Number

For the sake of simplicity, we drop the vaccination effect and hence merge all com-
partments having indices u and v together. To generate both the disease-free and endemic
equilibria, we added the natural disease in all state compartment (SIR), with µ repre-
sents the natural death rate. By substituting β(D, V) and γ(I, K) with those given by
Equations (3) and (4), we have our system be rewritten as follows.

S′ = −β∗
(

2D∗
D∗+D

)v(V+V∗
V∗

)w SI
N

I′ = β∗
(

2D∗
D∗+D

)v(V+V∗
V∗

)w SI
N −

(
γ0 + (γ1 − γ0)

K
I+K

)
I

R′ =
(

γ0 + (γ1 − γ0)
K

I+K

)
I

D′ = −λ1(D− D∗) + λ2(I/N)
V′ = λ3 I − λ4V

All plausible equilibria of System (5) are obtained by solving this nonlinear system,
that is modified by adding the recruitment and natural death rate in order to get the
Endemic Equilibrium.

0 = A− β∗
(

2D∗

D∗ + D

)v(V + V∗

V∗

)w SI
N
− µS

0 = β∗
(

2D∗

D∗ + D

)v(V + V∗

V∗

)w SI
N
−
(

γ0 + (γ1 − γ0)
K

I + K

)
I − µI

0 =

(
γ0 + (γ1 − γ0)

K
I + K

)
I

0 = −λ1(D− D∗) + λ2(I/N)

0 = λ3 I − λ4V

The disease-free equilibrium (DFE) can be obtained by plugging Î = 0 to the system,
which leads to DFE = {S∗, 0, R∗, D∗, 0}. Using the next generation matrix method, the
formula of the basic reproductive ratio is given by

R0 =
β∗

γ + µ

with the term of
(

2D∗
D∗+D

)v(V+V∗
V∗

)w
vanishes to 1 as all states approach the DFE. This quan-

tity will determine whether the state will approach the DFE (when R0 < 1) or otherwise
approach the other equilibrium point, namely the EE.

Appendix B. Numerical Sensitivity Analysis of the Socio-Behavioral Parameters

In this study, the behaviors of society that being accommodated by the model is the rate
of social resistance and social response. Socio-resistance rate, denoted with λ1, represents
the resistance of society for distancing their interaction due to the figure prevalence when
I is not significantly zero. When the figure prevalence is close to zero, the resistance rate
depicts how fast the society to live back with their natural interaction-distance D∗. In
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contrast, the rate of society response depicts the increase in interaction distancing per
increase in point prevalence, which inhibits the disease spread when this value is set
high. In this section, we provide the figure of infected individuals (per one thousand of
population) as λ1 and λ2 is set varied.

Given in Figure A1, the setting of λ1 = 0 while λ2 = 0.5 depicts the situation that
people in society tend to response to the figure prevalence by distancing interaction but
have no intention to return on their previous interaction habit. The blue line in the bottom-
left corner represents the average interaction-distance in the mentioned scenario that levels
off in D = 4.2 without approaching the natural interaction-distance. By fixing λ2 = 0.5,
the increment of λ1 will lower the average interaction-distance and fasten the dynamics
of D to approach D∗. Poor society in certain regions tend to hasten on returning back on
their previous habits (to work, study, etc) once the decrease in the point prevalence are
declared, which in this model is considered to have relatively higher λ1. In contrast, some
regions in developed countries may have lower value of λ1. Hence, the model requires the
homogeneity of society; the smaller the society, the easier to assume, such as: students and
academic staff in closed school, workers.
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Figure A1. Number of infected individuals in society of population 1000 individuals under different
values of socio-resistance and social response rates. (a) five different values of socio-resistance by
setting λ2 = 0.5. Each scenario hasR0 =, for ascending order of λ1. (b) Five different values of social
response by setting λ1 = 0.02.

Right-hand side figures in Figure A1 depicts how social response to point prevalence
affects the dynamics of both infected individuals and interaction-distance. The scenario
setting λ1 = 0 portrays the society with no attention to current disease spread, implying
to a steady interaction-distance to its natural habit. The higher the setting of λ2, the more
responsive the people in society to the current point prevalence.
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with ℒ(𝐷 (𝑖) 𝜃 ) represent the likelihood and 𝜋 𝜃  is the prior knowledge of the esti-
mated parameters. In terms of the data fitting, it is common to define the likelihood func-
tion as given in the following formula: 

(𝐷 (𝑖) 𝜃 ) = 𝑒𝑥𝑝 −
𝑆𝑆

𝑉𝑎𝑟
 

with 𝑆𝑆 = ∑ 𝐷 (𝑖) − 𝑓 𝑖; 𝜃 . We will use the MCMC method (with a Metropolis-Has-
tings Algorithm) to get samples from the posterior distributions given in 860. Since we 
have no prior knowledge for each of the estimated parameters, we choose the prior of 
normal distribution with zero mean, but high in variance. In MATLAB, we used the built-
in function provided by Grinsted, A. available in https://www.mathworks.com/matlab-
central/fileexchange/49820-ensemble-mcmc-sampler (accessed on 17 June 2022). 

Figure A2. Numerical simulations under different values of healthcare capacities: (a) comparison
between the dynamics of active cases and the rate of recovery using the same parameters as used
in Figure A1, (b,c) sensitivity analysis of Iu + Iv and the rate of recovery γ under different value of
healthcare capacity K.

Appendix D. Bayesian Hierarchical for Parameters’ Estimation

There are three parameters that are estimated by the integration of the provided data
Dα. We assume that those three parameters are each a realization of a complete posterior
distribution. Let us assume that Dα(i), i = 1, 2, . . . , n denotes the daily cases of COVID-19 at
day i, while f

(
i; θ̂
)

represents the dynamics of the daily cases evaluated from the proposed
model given that θ̂ = [β∗, v, w]T . We expect that observation Dα(i) (experimental data
or observed data) to be equal as the model response f

(
i, θ̂
)

plus the independent and
identically distributed error εi, with mean zero and variance σ2. Hence, we can write:

Dα(i) = f
(
i; θ̂
)
+ εi

with εi N
(
0, σ2 ). The goal is to estimate the posteriod distribution of π

(
θ̂|Dα(i)

)
, which

quantify the probability of parameter θ̂ given the set of observational data.

π
(
θ̂|Dα(i)

)
=
L(Dα(i)

∣∣θ̂)π0
(
θ̂
)

NL

with L(Dα(i)
∣∣(θ̂)) represent the likelihood and π0

(
θ̂
)

is the prior knowledge of the es-
timated parameters. In terms of the data fitting, it is common to define the likelihood
function as given in the following formula:

(Dα(i)
∣∣(θ̂)) = exp

(
−

SSq

Var

)
with SSs = ∑n

i
(

Dα(i)− f
(
i; θ̂
))2

. We will use the MCMC method (with a Metropolis-
Hastings Algorithm) to get samples from the posterior distributions given in 860. Since
we have no prior knowledge for each of the estimated parameters, we choose the prior
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of normal distribution with zero mean, but high in variance. In MATLAB, we used the
built-in function provided by Grinsted, A. available in https://www.mathworks.com/
matlabcentral/fileexchange/49820-ensemble-mcmc-sampler (accessed on 17 June 2022).
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