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Symmetries and cluster synchronization
in multilayer networks
Fabio Della Rossa1,2, Louis Pecora3, Karen Blaha1, Afroza Shirin1, Isaac Klickstein1 & Francesco Sorrentino 1✉

Real-world systems in epidemiology, social sciences, power transportation, economics and

engineering are often described as multilayer networks. Here we first define and compute the

symmetries of multilayer networks, and then study the emergence of cluster synchronization

in these networks. We distinguish between independent layer symmetries, which occur in

one layer and are independent of the other layers, and dependent layer symmetries, which

involve nodes in different layers. We study stability of the cluster synchronous solution by

decoupling the problem into a number of independent blocks and assessing stability of each

block through a Master Stability Function. We see that blocks associated with dependent

layer symmetries have a different structure to the other blocks, which affects the stability of

clusters associated with these symmetries. Finally, we validate the theory in a fully analog

experiment in which seven electronic oscillators of three kinds are connected with two kinds

of coupling.
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Real-world complex systems often contain heterogeneous
components; these components may interact in multiple
ways via complex connectivity patterns, leading to complex

dynamics. For example, the power grid contains both a trans-
mission and a communication network, and we must model both
to understand phenomena such as cascade failures1,2 and black-
outs duration3,4. In this context, a recent paper3 has shown that
increased coupling between the power and the communication
layers can be beneficial in reducing the vulnerability of the system
as a whole. Neurological systems can be modeled with varying
levels of complexity depending on the particular behavior of
interest. Some approaches have a single kind of neurons which
interact via multiple interaction layers5–8; central pattern gen-
erator approaches9–11 have multiple kinds of neurons (identified
by kind, such as extensor, flexor, synapses generator, etc.) which
interact via multiple interaction layers. The mathematical form-
alism introduced for these types of problems is the multilayer
network12–14.

We are interested in symmetries and synchronization of mul-
tilayer networks of coupled oscillators; synchronization is a col-
lective behavior in which the dynamics of the network nodes
converge on the same time-evolution. The first study of syn-
chronization in multilayer networks was presented in refs. 8,15

and more recently in ref. 16. These papers studied complete
synchronization (all nodes synchronize on the same time-evolu-
tion) and consider diffusive coupling (the coupling matrices are
Laplacian). Populations may exhibit more complex forms of
synchronization, such as clustered synchronization (CS), where
clusters of nodes exhibit synchronized dynamics but different
clusters evolve on distinct time evolutions; many papers consider
CS in networks formed of nodes all of the same type and con-
nections all of the same type17–24.

The emergence of synchronized clusters in a network requires
that the set of the network nodes is partitioned into subsets of
nodes, called equitable clusters, such that all the nodes in the
same cluster receive the same total input from each one of the
clusters, leading to the same temporal evolution25–27. These
partitions often arise from the network symmetries28,29. A recent
paper studied the effects of symmetry on collective dynamics in
communities of coupled oscillators30. When equitable partitions
arise from symmetry, a rigorous, group theory-based framework
exists to analyze the stability of cluster synchronization in simple
networks20,21,24. However, cluster synchronization in multilayer
networks has not been studied other than in a recent paper, which
focused on experimental observations on a special multilayer
network composed of nodes all of the same type31.

This paper significantly advances the field of network dynamics
by presenting one unified theory that addresses the problem of
cluster synchronization in arbitrary multilayer networks, where
each layer is formed of homogeneous units, but different layers
have different units. Our main contributions are twofold: we
define and compute the symmetries of multilayer networks and
we study the emergence of cluster synchronization in these net-
works analytically and experimentally. This involves analyzing
the stability of the cluster synchronous solution, where the sta-
bility problem is decoupled into a number of lower-dimensional
blocks of equations and a validation of the theory in a fully analog
experiment with three layers, each one formed of different types
of oscillators. We analyze CS in arbitrary multilayer networks, for
which nodes are coupled through both intra-layer connections
(inside each layer) and inter-layer connections (between different
layers.) We see that CS patterns of synchronization in multilayer
networks are determined by the symmetries of each individual
layer but also the particular pattern of interconnectivity between
layers. We see that only nodes from the same layer may be per-
muted among each other. However, other symmetries may

involve simultaneous swaps of nodes in different layers. This
leads to a classification of symmetries into independent layer
symmetries (ILS) which occur in one layer and are independent
of swaps in other layers and dependent layer symmetries (DLS)
which require moving nodes in different layers. In what follows,
we first present a general set of dynamical equations for the time
evolution of multilayer networks, we then define and compute the
group of symmetries of multilayer networks with different kinds
of nodes (each corresponding to a different layer) and different
kinds of connections, for which stability of the CS solution is
analyzed, and finally we apply the theoretical framework to pre-
dict the emergence of CS in an experimental system.

Results
Formulation and dynamical equations. Multilayer networks
have different types of nodes interacting through different types
of connections12,13. Previously defined subclasses of multilayer
networks include multiplex32–34 and multidimensional35,36 net-
works. In a multiplex network, the same set of agents exists in all
layers; for example, in a social system, each node is a person, each
layer represents opinion on a topic, and links capture how social
interactions influence a person’s opinion on each topic. In a
multidimensional network, different kinds of links connect the
same set of nodes, all of the same type. For a deeper discussion of
particular multilayer networks and how to reconcile each case
with the general definition of a multilayer network, see refs. 12,13.
Sometimes the term ‘multilayer network’ has been used in the
literature to indicate generic networks formed of different types of
nodes and/or connections. For example, in ref. 31, a ‘multilayer
network’ has connections of different types but nodes all of the
same type. Here we consider the most general situation for which
both nodes and connections can be of different types, with the
case of ref. 31 remaining a special case of multilayer network.

Reference37 introduced a mathematical model for the time
evolution of a multiplex network. Following previous studies
of synchronization in different instances of multilayer net-
works8,15,16,31,37, next we provide a general set of equations that
describe the dynamics of a multilayer network. First we define the
sets of nodes and of connections (or interactions) of a multilayer
network. The nodes are arranged in sets {Xα, α= 1, …, M}, where
each individual set corresponds to a given layer of the multilayer
network. The uncoupled dynamics of all the Nα nodes in layer Xα is
the same: _xαi ¼ Fαðxαi Þ, i= 1, …, Nα, xα 2 Rnα . The multilayer
network has a total number of nodes equal to N= ∑αNα. The set of
connections correspond to either intra-layer interactions that
connect nodes in the same layer or inter-layer interactions that
connect nodes in different layers. The intra-layer interactions inside
layer α are described by an adjacency matrix Aαα, to which is
associated a nonlinear coupling function Hαα : Rnα 7!Rnα and a
coupling strength σαα. The inter-layer interactions from layer β to
layer α are described by an Nα ×Nβ adjacency matrix Aαβ, to which

is associated a nonlinear coupling function Hαβ : Rnα 7!Rnβ and a
coupling strength σαβ. We assume throughout that all the couplings

are undirected: Aαβ;λ ¼ Aβα;λT , α, β= 1, …, M.
We show an example of a multilayer network in Fig. 1a. This

network has two layers, labeled α and β, with intra-connectivity
described by the matrices Aαα and Aββ and inter-connectivity

described by the matrix Aαβ ¼ ðAβαÞT , all shown in Fig. 1b.
Figure 1c shows an independent layer symmetry. This symmetry
involves only nodes in layer α; we can swap α nodes 1 with 2 and
α nodes 3 with 4 without affecting layer β. Figure 1d shows a
dependent layer symmetry. This symmetry requires swapping
nodes in both layer α and β; when we swap α nodes 2 with 3 and
α nodes 1 with 4, we must also swap β nodes 1 and 3. Note that as
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dependent layer symmetries involve swapping nodes of different
types, they are a characteristic feature of multilayer networks with
different types of nodes.

The dynamics of node i in layer α of the multilayer network is
governed by the following set of differential equations,

_xαi ¼Fαðxαi Þ þ σαα
XNα

j¼1

Aαα
ij H

ααðxαj Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intra�layer couplings

þ
X
β≠α

σαβ
XNβ

j¼1

Aαβ
ij H

αβðxβj Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inter�layer couplings

;

ð1Þ

i= 1, …, Nα, α= 1, …, M. The underlying assumption here is
that functions that are labeled differently are different functions.
By this we mean Fα(x) ≠ Fβ(x), for β ≠ α.

Next we introduce a vectorial notation. We combine the
dynamical variables from each layer into a vector of vectors xα ¼
½xα1 ; xα2 ; ¼ ; xαNα � (here and after, the comma stands for vertical
stacking of vectors and the square brackets stand for vector
concatenation). Likewise, we can define,

FαðxαÞ ¼ ½Fαðxα1Þ; Fαðxα2Þ; ¼ ; FαðxαNαÞ�; ð2Þ

HααðxαÞ ¼ ½Hααðxα1Þ;Hααðxα2Þ; ¼ ;HααðxαNαÞ�; ð3Þ

HαβðxβÞ ¼ ½Hαβðxβ1Þ;Hαβðxβ2Þ; ¼ ;Hαβðxβ
NβÞ�: ð4Þ

This notation suppresses the summations over the nodes in each
layer. We obtain the set (one for each layer) of vector equations

_xα ¼ FαðxαÞ þ σααAααHααðxαÞ þ
X
β≠α

σαβAαβHαβðxβÞ; α ¼ 1; ¼ ;M: ð5Þ

Two nodes i and j are synchronized if xi(t)= xj(t) ∀t.
Synchronous motions define invariant manifolds of Eq. (5), i.e.,
xi ¼ xj ) _xi ¼ _xj. In order to study cluster synchronization, we
will look for symmetries in the multilayer network; these are the
node permutations that leave system (5) unchanged. The group of
symmetries of the multilayer network is the set of permutations of
the nodes that do not change Eq. (5) for α= 1, …, M. Below we
explain how to find this group of symmetries in arbitrary
multilayer networks, and we investigate the relations between
intralayer and interlayer connections in order to preserve certain
symmetries properties.

Symmetries of multilayer networks. Symmetries of complex
networks have received recent attention from the scientific
community. These symmetries influence network structural28,
spectral38, and dynamical properties39, including cluster
synchronization20,21. However, symmetries of multilayer net-
works have not been studied.

Here we define the group of symmetries of general multilayer
networks with both nodes of different types and connections of
different types. Although we will eventually use computational
methods to find the symmetry group of a particular network, it is
best to understand what types of structures are imposed on the
symmetry group of a multilayered network in general. The study
of the symmetry group provides insight into the results of the
numerical calculations and into whether what we find is general
or just a property of the particular network we are analyzing.
Next, we develop some of the mathematical properties of the final
permutation group structure of the multilayer systems. As we will
see, the interplay between the symmetries in each layer with the
symmetries in other layers is subtle and leads to interesting
structures in the final group of the whole network.
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Fig. 1 Illustration of independent layer symmetries and dependent layer symmetries. a A simple two layer network with intra-connectivity described by
the matrices Aαα and Aββ and inter-connectivity described by the matrix Aαβ ¼ ðAβαÞT (in b). c Example of an independent layer symmetry for the
multilayer network in a. d Example of a dependent layer symmetry for the multilayer network in a.
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We first show that the multilayer structure imposes a block
diagonal form on the permutations of the whole group. Since
each layer of the network contains a different kind of node,
symmetries are not allowed to move nodes from different layers.
As a result, the symmetry group G of the multilayer network is
represented by block diagonal permutation matrices, i.e., each
g 2 G is of the form

g ¼

gα 0 0 ¼
0 gβ 0 ¼
0 0 gγ ¼

..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA; ð6Þ

where gα is a permutation matrix for layer α, gβ is a permutation
matrix for layer β, and so on. In this section we show that the
symmetries of the group G of the multilayer network are formed
of the symmetries of the single-layers (i.e., gα 2 Gα, gβ 2 Gβ, ...)
that are compatible with each other, where compatibility is
determined by the inter-layer couplings. This means that if we
perform a permutation on layer α, we must perform a
permutation on each other layer (which in some cases may be
the identity permutation) by leaving the structure of the overall
network unaltered. As a result, compatibility links permutations
from the groups of symmetries of each layer, so that we preserve
the symmetry of the whole multilayer network. The major
question we want to answer here is: how does compatibility relate
permutations from different layers?

Let us consider a multilayer system with two layers α and β.
Equation (5) becomes

_xα ¼ FαðxαÞ þ σααAααHααðxαÞ þ σαβAαβHαβðxβÞ
_xβ ¼ FβðxβÞ þ σββAββHββðxβÞ þ σβαAβαHβαðxαÞ: ð7Þ

In “Methods”, we show that we can determine the symmetry
group of a multilayer network with M > 2 layers, multiple edge
types inside each layer and in between layers. Consider two
permutations g 2 Gα and h 2 Gβ. We know from Eq. (6) that a
symmetry of this multilayer network is in the form

g 0

0 h

� �
; ð8Þ

so, which g’s and h’s are compatible? For the answer, we consider
the inter-layer couplings terms,

σαβAαβHαβðxβÞ and σβαAβαHβαðxαÞ: ð9Þ
We say that symmetry-related nodes must be flow invariant. That
is, the symmetries must guarantee that synchronized nodes have
equal dynamical variables when we include inter-layer coupling.

Application of the two permutations to the equations of the
multilayer network results in

gð _xαÞ ¼ FαðgxαÞ þ σααAααHααðgxαÞ þ σαβgAαβHαβðxβÞ
hð _xβÞ ¼ FβðhxβÞ þ σββAββHββðhxβÞ þ σβαhAβαHβαðxαÞ; ð10Þ

where the g and h permutations can be taken into the
arguments of Fα, Hαα and Fβ, Hββ, respectively since the
functions operate sequentially on their vector arguments and
we have used the properties that g commutes with Aαα and h
commutes with Aββ.

To achieve flow invariance, we need g and h to act on xα and
xβ, respectively, in the arguments of the interlayer coupling terms
Hαβ and Hβα. Note that this does not require commutability
(gAαβ=Aαβg) since we want to ‘exchange’ g for h and vice-versa
(as the interlayer coupling matrices are generally not square, we
do not expect commutability). More generally, conjugacy

relations are the requirements for symmetry compatibility, i.e.,

gAαβ ¼ Aαβh and hAβα ¼ Aβαg; ð11Þ
which can be thought of as compatibility relations between
permutations of the α and β layers. This means that the g’s and
the h’s must be paired properly to satisfy Eq. (11). In general, not
all the h’s are compatible with all the g’s, as the conjugacy
relations restrict compatible permutations to subgroups of Gα and
Gβ. The final group G of the multilayer network is determined by
the structure of these particular subgroups.

The permutations that fulfill the conjugacy relations (11) are
defined by the following sets:

Hα ¼ fg 2 GαjgAαβ ¼ Aαβh and hAβα ¼ Aβαg for some h 2 Gβg
ð12Þ

and

Hβ ¼ fh 2 GβjhAβα ¼ Aβαg and gAαβ ¼ Aαβh for some g 2 Gαg:
ð13Þ

An element g 2 Hα is represented by an Nα ×Nα matrix and
an element h 2 Hβ is represented by an Nβ ×Nβ matrix. It is

important to note that in general the matrix Aαβ 2 RNα ´Nβ

will
have nontrivial left and right null spaces. As a result, we may find
more than one g that satisfies gAαβ=Aαβh for a given h and
vice versa.

In the “Methods” (formal proofs), we first prove that Hα is a
subgroup of Gα and Hβ is a subgroup of Gβ. Then we show that
for the case of undirected networks we only need either one of the
following relationships to prove that Hα and Hβ are subgroups:

gAαβ ¼ Aαβh or hAβα ¼ Aβαg: ð14Þ
We can now find the group of symmetries of the multilayer

network G from the subgroups Hα and Hβ. First, recall that the
permutations of G have block structure of Eq. (8). While we use
all permutations g 2 Hα and h 2 Hβ to construct G, we can only
pair the permutations that satisfy the conjugacy relation in Eq.
(11) (or the simpler version in Eq. (14)).

We define an equivalence relation ~ between the elements of
Hα: g � g 0 if gAαβ ¼ g 0Aαβ. Analogously, h � h0 if hAβα ¼ h0Aβα.
One can verify that ~ is an equivalence relation as it is reflexive,
symmetric, and transitive. We also see that if g � g 0 and g and h
are conjugate, then so are g 0 and h, indicating that ~ defines a
partition of each subgroup Hα and Hβ into disjoint subsets
(called equivalence classes) Kα

i and Kβ
i , i= 1, …, K, respectively.

Each subset Kα
i contains all the permutations g such that gAαβ is

equal to a given matrix Mi; correspondingly, each subset Kβ
i

contains all the permutations h such that hAβα is equal to the
matrixMT

i . We can then construct the group of symmetries of the
multilayer network G as follows:

G ¼ g 0

0 h

� �
jg 2 Kα

i and h 2 Kβ
i ; for i ¼ 1; ¼ ;K

� �
ð15Þ

Although the sets Kα
i and Kβ

i have a one-to-one correspondence,
the elements of each do not and often differ in number, as shown
in Methods for the example multilayer network in Fig. 1.

Next, we present properties of the equivalence classes Kα
i ,

which then leads to the definition of independent layer
symmetries (ILS). Let Kα

1 be the equivalence class containing
the identity. We can prove that Kα

1 is a normal subgroup of Hα.
Moreover, we can prove that all the Kα

i , i ≠ 1, are left and right
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cosets of Kα
1 . Formal proofs for each statement are included in

“Methods” (formal proofs).
The structure of the equivalence classes Kα

i gives insight into
the symmetries; this facilitates the calculations of the classes
themselves and of the T matrices for each layer (see “Methods”
for the structure of the T matrix). In particular, the subgroups Kα

1 ,

Kβ
1, ... identify a special set of symmetries we will refer to as

independent layer symmetries. The following general relationship
between the symmetry operations from Kα

1 , Kβ
1,... and the layer

structures clarifies why we refer to the elements of Kα
1 , Kβ

1,... as
independent layer symmetries. Given any g 2 Kα

1 , then for each

h 2 Kβ
1,

gAαβ ¼ Aαβh ¼ Aαβ; ð16Þ

since the equivalence class subgroups are both associated with the
identity operation. This means that the symmetry operations
from the equivalence class subgroups do not affect the interlayer
coupling and, hence, those operations (permutations) in one layer
do not affect the types of allowed dynamics in the other layer(s).
In particular, the loss of a symmetry associated with the ILS
subgroup, i.e., a symmetry-breaking bifurcation, will not alter the
possible clusters in other layers, provided no symmetries in the
other cosets (Kα

i ; i≠ 1) are also broken. We will show simple
examples of this in the “Methods” section and when presenting
the experiment. Note that the stability of the clusters is a different
issue, which will receive separate consideration.

To conclude, the ILS clusters are determined by the interplay
between the intralayer couplings in each layer and the interlayer
couplings between layers. In what follows we will refer to
symmetries that are not ILS, i.e., they involve simultaneously
swapping nodes in different layers as dependent layer
symmetries (DLS).

From knowledge of the group of symmetries of the multilayer
network, the nodes in each layer α can be partitioned into Lα

orbital clusters, Cα1 ; Cα2 ; ¼ ; CαLα . Inside each layer, symmetries
map into each other only nodes in the same orbital cluster.

In Table 1, we apply the techniques described in this section to
compute the symmetries of several multilayer networks from
datasets in the literature. For each network dataset, we include
information on the number of layers M, the number of nodes in
each layer Nα, α= 1, …, M (the number of nodes N in all layers
for multiplex networks), the number of edges E, the order of the
automorphism group jGj, and the cardinality of the largest orbital
cluster maxðjCkjÞ. The main underlying assumption is that nodes
are homogeneous inside each layer but nodes in different layers
are not, so that nodes inside each layer can be symmetric, but

nodes from different layers cannot. While we understand this is
an oversimplification, available datasets do not typically include
information on the attributes of the individual nodes, and as a
result, our symmetry analysis is solely based on the multilayer
network structure37 and not on the specific node attributes. An
extensive description of each one of the datasets is included in
Supplementary Note 1 and Supplementary Table 1. From Table 1
we see that several real multilayer networks possess very large
numbers of symmetries.

In Supplementary Note 2 we study the emergence of
symmetries in artificially generated multilayer networks, where
each layer is a scale free (SF) network and nodes from different
layers are randomly matched to one another to obtain a multiplex
network. We see that these networks typically do not display
symmetries, except for the case that the power-law degree
distribution exponents of the networks in each layer are low
across the layers. It is interesting that some of the real multilayer
networks we have analyzed display many more symmetries than
these model multilayer networks. This observation motivated us
to design a generating algorithm to construct multilayer networks
with prescribed number of symmetries, which is presented in
Supplementary Note 3.

Stability analysis. In what follows we study the stability of the
cluster-synchronous solution for a general multilayer network
described by Eq. (1). Given an orbital partition, we define the
Lα × Lα intralayer quotient matrix Qαα such that for each pair of
α-clusters (Cαu; Cαv ),

Qαα
uv ¼

X
j2Cαv

Aαα
ij ; i 2 Cαu; u; v ¼ 1; 2; ¼ Lα: ð17Þ

Analogously, we define the Lα × Lβ interlayer quotient matrix Qαβ

such that for each pair of clusters, the first cluster Cαu from layer α
and the second cluster Cβv from layer β,

Qαβ
uv ¼

X
j2Cβv

Aαβ
ij ; i 2 Cαu; u ¼ 1; 2; ¼ Lα; v ¼ 1; 2; ¼ Lβ:

ð18Þ
We can thus write the equations for the time evolution of the

quotient multilayer network,

_qαu ¼ FαðqαuÞ þ σαα
XLα
v¼1

Qαα
uvH

ααðqαvÞ þ
X
β≠α

σαβ
XLβ
v¼1

Qαβ
uvH

αβðqβvÞ;

ð19Þ
α= 1,…,M, u= 1,…, Lα. Note that Eq. (19) provides a mapping
for each layer α from the node coordinates fxαi g, i= 1, …, Nα to

Table 1 Symmetries of real multilayer networks. For each network dataset, we include information on the number of layers M,
the number of nodes in each layer Nα, α= 1, …, M (the number of nodes N in all layers for multiplex networks), the number of
edges E, the order of the automorphism group jGj, and the cardinality of the largest orbital cluster maxðjCkjÞ.

Name M Number of nodes E jGj maxðjCk jÞ
London Transporta 54 3 N ¼ 369 441 4 3
EU-AIR Transport55 37 N ¼ 450 3588 1,475,532 × 1031 4
ARXIV NETSCIENCEa 56 13 N ¼ 14489 59,026 8,349,492 × 102173 16
PIERRE AUGER Coauthorshipa 56 16 N ¼ 514 7153 19,726 × 1070 11
CKM PHYSICIANS Socialb 57 3 N ¼ 246 1551 120 2
BOS Geneticb 58,59 4 N ¼ 321 325 2 × 1090 25
CANDIDA Geneticb 58,59 7 N ¼ 367 397 2 × 10470 57
DANIORERIO Geneticb 58,59 5 N ¼ 155 188 798 × 1020 12
US power-grid60 2 Nα= 4492; Nβ= 449 6994 5 × 10152 9

a Weighted network but treated as unweighted.
b Network treated as undirected.
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the quotient coordinates fqαug, u= 1, …, Lα, where xαi ðtÞ � qαuðtÞ
if i 2 Cαu.

We now linearize (1) about (19),

δ _xαi ¼ DFαðqαuÞδxαi þ
X
β

σαβ
XNβ

j¼1

Aαβ
ij DH

αβðqβvÞδxβj ; i ¼ 1; ¼ ;Nα;

ð20Þ

where again qβv is the time evolution of the quotient network node
v that node j 2 Cβv maps to. Also note that in the above equation
the summation in β runs over both intra-layer connections and
inter-layer connections.

For each layer α, the above set of equations, can be written in
vectorial form, by stacking together all the individual perturba-
tions applied to the vectors inside each layer, e.g.,
δxα ¼ ½δxα1 ; δxα2 ; ¼ ; δxαNα �,

δ _xα ¼
XLα
u¼1

Eα
u � DFαðqαuÞ

 !
δxα

þ
X
β

σαβðAαβ � InαÞ
XLβ
u¼1

Eβ
u � DHαβðqβuÞ

� � !
δxβ;

ð21Þ

α= 1, …, M, where each indicator matrix Eα
u has dimension Nα

and is such that its diagonal entries are equal to one if node i of
layer α is in cluster Cαu and are equal to zero otherwise.

We then stack all the layers one above the other to form the
vector δx= [δxα, δxβ, …], and we rewrite (21) as

δ _x ¼

P
u
Eα
u � DFαðqαuÞ 0 � � �

0
P
u
Eβ
u � DFβðqβuÞ � � �

..

. ..
. . .

.

2
66664

3
77775

0
BBBB@

þ

P
u
AααEα

u � DĤ
ααðqαuÞ

P
u
AαβEβ

u � DĤ
αβðqβuÞ � � �

P
u
AβαEα

u � DĤ
βαðqβuÞ

P
u
AββEβ

u � DĤ
ββðqβuÞ � � �

..

. ..
. . .

.

2
666664

3
777775

1
CCCCCAδx;

ð22Þ

where DĤ
αβ ¼ σαβDHαβ.

We are looking for a transformation that applied to Eq. (22),
leaves the first terms on the right-hand side of (22) unchanged
and decouples the second terms in independent blocks,
independent of the DF and the DH terms as they vary in time.

From knowledge of the group of symmetries of the multilayer
network G, we can compute the irreducible representations (IRRs)
of G. For each layer α we can define an orthonormal
transformation Tα to the IRR coordinate system (see ref. 20).
We can then construct the following block diagonal orthonormal
matrix,

T ¼
M

α
Tα; ð23Þ

that maps the entire multilayer network to the IRR coordinate
system.

A formal proof of the above particular structure of the matrix T
can be found in “Methods” (properties of the equivalence classes
and structure of the matrix T). Intuitively, the matrix T has a
block diagonal structure, where each block corresponds to a layer,
because only nodes from the same layer can be swapped by a
symmetry.

Consider now the N-dimensional supra-adjacency matrix,

A ¼
Aαα Aαβ � � �
Aβα Aββ � � �
..
. ..

. . .
.

2
664

3
775: ð24Þ

The transformed N ×N block diagonal matrix B= TAT−1 is a
direct sum �R

r¼1Idr � B̂r , where B̂r is a (generally complex) pr × pr
matrix with pr the multiplicity of the rth IRR in the permutation
representation, R the number of IRRs present and dr the
dimension of the rth IRR, so that ∑rdrpr=N. The matrix T
contains information on which perturbations affecting different
clusters get mapped to different IRRs24. There is one representa-
tion (labeled r= 1) which we call trivial and has dimension
d1= ∑αLα. All perturbations parallel to the synchronization
manifold get mapped to this representation. Hence, the trivial
representation is associated with all the clusters C11; ¼ ;

C1L1 ; C21; ¼ ; C2L2 ; ::: However, it is possible that other IRR
representations are only associated with some of the clusters
(not all of them).

We can now define the ∑αNαnα-dimensional orthonormal
matrix ~T ¼LαT

α � Inα . Next, we will use the matrix ~T to block-

diagonalize Eq. (21). Applying the transformation η ¼ ~Tδx to
(22) we obtain,

_η ¼

P
u
Jαu � DFαðqαuÞ 0 � � �

0
P
u
Jβu � DFβðqβuÞ � � �

..

. ..
. . .

.

2
66664

3
77775

0
BBBB@

þ

P
u
BααJαu � DĤ

ααðqαuÞ
P
u
BαβJβu � DĤ

αβðqβuÞ � � �
P
u
BβαJαu � DĤ

βαðqβuÞ
P
u
BββJβu � DĤ

ββðqβuÞ � � �

..

. ..
. . .

.

2
666664

3
777775

1
CCCCCAη;

ð25Þ
where each transformed indicator matrix Jαu ¼ TαEα

uT
αT and each

block Bαβ ¼ TαAαβTβT :
The advantage of (25) over (22) lies in the block-diagonal

structure of the matrix B ¼ �R
r¼1Idr � B̂r . The block B̂1 is

associated with motion along the synchronization manifold.
The blocks B̂2; ¼ ; B̂R describe the dynamics transverse to the
synchronization manifold. As a result, we have decoupled the
dynamics along the synchronous manifold from that transverse to
it20. Moreover, each transverse block r= 2, …, R is associated
with either an individual cluster or a subset of intertwined
clusters20. Thus the problem of studying the behavior of a
perturbation away from the synchronous solution is typically
reduced into many smaller problems, which can be analyzed
independently one from the other.

Next we discuss how dependent and independent layer
symmetries affect the stability analysis. We recall that the
matrix B= TAT−1 can be written as a direct sum of blocks
�R

r¼1Idr � B̂r . As each row of the matrix T is associated to a

specific cluster40, each one of the blocks B̂r corresponds to a set
of clusters which are identified by the rows of the matrix T. The
trivial representation (r= 1) is associated with all the clusters
C11; ¼ ; C1L1 ; C21; ¼ ; C2L2 ; ::: The corresponding rows of the
matrix T are the eigenvectors associated to the eigenvalue 1
of the trivial representation; these have nonzero components all
of the same sign. Now we look at the remaining ‘transverse’
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blocks of the matrix B (r > 1). The corresponding rows of the
matrix T are such that the sums of their entries is equal zero
and are called symmetry breakings: each row, in fact, describes
how a cluster, generated by a symmetry, may break into
smaller ones. The transverse blocks can be divided into ILS
blocks if the corresponding symmetry breakings are all from
the same layer and DLS blocks if the corresponding
symmetry breakings are from different layers. We can then

write T ¼ ½TT
SYNC;T

T
ILS;T

T
DLS�

T
and the transformed vector

η ¼ ½ηTSYNC; η
T
ILS; η

T
DLS�T .

The ILS blocks are symmetry breakings generated by the ILS
subgroup. From our definition of the ILS subgroup, each Kα

1 is
a normal subgroup of Hα. Clifford theorem41 states that each
IRR of Hα, when restricted on Kα

1 , is either itself an IRR of Kα
1

or breaks up into a direct sum of IRRs of Kα
1 of the same

dimension. The rows of the change of coordinates Tα
ILS (for

layer α) to the IRR of Kα
1 , which are associated with the

symmetry breaking perturbations of the ILS, are generated by
the eigenvectors associated to the eigenvalue 1 of the
projectors on the IRRs of Kα

1 . These rows generate invariant
subspaces of minimal dimension, and must therefore be rows
of Tα.

We now consider for simplicity the case of a network with two
layers, labeled α and β. In general, the transverse IRRs associated
with the ILS subgroup in layer α will have structure,

_ηILS ¼
X
u

Jαu � DFαðqαuÞ þ
X
u

BααJαu � DĤ
ααðqαuÞ

" #
ηILS: ð26Þ

Note the perturbation ηILS is independent of the dynamics on the

β layer, i.e., of both DFβðqβuÞ and DĤ
ββðqβuÞ. This indicates that

the stability of ILS symmetries can be studied through a specific
class of the master stability function, which is the same as for
single-layer networks20. The transverse IRRs associated with the
ILS subgroup in layer β will have an analogous structure as (26).
On the other hand, the remaining transverse IRRs will have
structure,

_ηDLS ¼

P
u
Jαu � DFαðqαuÞ 0

0
P
u
Jβu � DFβðqβuÞ

2
64

3
75

0
B@

þ
P
u
BααJαu � DĤ

ααðqαuÞ
P

uB
αβJβu � DĤ

αβðqβuÞ
P
u
BβαJαu � DĤ

βαðqβuÞ
P
u
BββJβu � DĤ

ββðqβuÞ

2
664

3
775
1
CCAηDLS:

ð27Þ
Note that the perturbations ηDLS depend on the dynamics of the
systems in both layers α and β, through the mixed blocks
appearing in Eq. (27). The structure of Eq. (27) is substantially
different than that of Eq. (26), which may lead to dramatic effects
in terms of stability.

Consider now the multilayer network in Fig. 1. The matrix T is
equal to

ð28Þ

The matrix B = TATT is equal to

ð29Þ

As can be seen, the matrix B is the direct sum of one SYNC
block, two independent ILS blocks (corresponding to breakings in
the α layer which are independent of the β layer), and one DLS
block (corresponding to breakings in the α layer and in the β layer
which are dependent on each other). The transverse ILS and DLS
blocks describe linear (local) stability of clusters, when the
dynamics is linearized about the quotient network time evolution.
In what follows we will pay particular attention to the stability of
DLS blocks, which are a specific feature of multilayer networks.

To provide analytical insight, we first consider a two-layer
network described by the following discrete-time dynamics,

xαkþ1 ¼ rem ðcαxαk þ σAααxαk þ σAαβxβ
kÞ

xβ
kþ1 ¼ rem ðcβxβk þ σAββxβ

k þ σAβαxαkÞ;
ð30Þ

where the vectorial function rem(x) returns a vector whose
entries are the remainder of the integer division of the entries of
the vector x by the scalar 1 and cα and cβ are tunable layer-specific
scalar parameters.

Stability is described by the following set of equations:

δxαkþ1 ¼ cαδxαk þ σAααδxαk þ σAαβδxβ
k

δxβ
kþ1 ¼ cβδxβ

k þ σAββδxβ
k þ σAβαδxαk:

ð31Þ

We now consider a generic DLS block of the form
a b
b a

� �
(a= 0 and b ¼ ffiffiffi

2
p

in the DLS block of Eq. (29)), to which

corresponds a perturbation of the form,

ηkþ1
DLS ¼

cα þ σa σb

σb cβ þ σa

� �
ηkDLS; ð32Þ

with cα ≠ cβ and the case cα= cβ corresponding to an ILS
perturbation. The eigenvalues have the following expression:

ρ± ¼ �cþ aσ ± b2σ2 þ δ2c
� �1=2

; ð33Þ
where �c ¼ ðcβ þ cαÞ=2 is the average layer-specific parameter and
δc= (cβ− cα)/2 measures how different are the systems in the two
layers (with δc= 0 corresponding to the case of an ILS). From this
equation we see the larger (smaller) eigenvalue is an increasing
(decreasing) function of δc, and it follows that the best condition
in terms of stability is achieved for δc= 0. We thus conclude that
DLS perturbations are more difficult to stabilize than ILS
perturbations.

We present here a conjecture expanding on the above
conclusion: that DLS clusters are generally more difficult to
stabilize compared to the case in which the systems in different
layers are of the same type. We base this on the following
reasoning. Consider an ideal situation in which at first the
parameters of the systems in the different layers are identical and
then they are increasingly perturbed to take on different values in
different layers. The Gershgorin circle’s theorem states that each
eigenvalue of a matrix lies within at least one of the Gershgorin
discs centered at the entries on the main diagonal and having
radius equal to the sum of the off-diagonal entries. As perturbing
the individual system’s parameters corresponds to varying the
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centers of the Gershgorin discs (but not the radius), we can expect
the eigenvalues to become increasingly spread out as the systems
are made increasingly different from one another, resulting in
reduced stability.

The particular network in Fig. 1 has one transverse irreducible
representation (DLS) in the form of Eq. (32), with a= 0 and
b ¼ ffiffiffi

2
p

, corresponding to the simultaneous loss of synchroniza-
tion between nodes (1, 3) in the β layer and between the pairs of
nodes (1, 2) and (3, 4) in the α layer. For this multilayer network,
we consider the dynamics of Eq. (30) and study the effects of
changing the parameters cα and cβ on stability. For the maps
described by Eq. (30), as well as in the following for other kind of
systems, we measure the pairwise synchronization error, defined
as,

Eα
ij ¼ < k xαi � xαj k >; ð34Þ

between nodes i and j in layer α= 1, …, M, where the symbol
< … > indicates a temporal average, computed after the transient
has elapsed.

Figure 2a shows Eα
13 and Eβ

13 vs the parameter δc. δc= 0
corresponds to identical systems in the two layers, increasing
values of δc indicate the systems in the two layers are increasingly
different. Synchronization is simultaneously lost in both layers for
δc≿ 0.35. Figure 2b is a plot of the eigenvalues ρ+ and ρ− in Eq.
(33) as a function of δc, which shows that ρ+ (ρ−) increases
(decreases) with δc. Loss of stability occurs when either one of the
two eigenvalues is either larger than 1 or smaller than −1. It is
thus expected that stability may be lost for increasing values of δc,
i.e., as the systems in the two layers become increasingly different.
From Fig. 2b we see that ρ+ grows larger than 1 for δc≿ 0.35.

We then consider the case of Eq. (1) with M= 2 layers,

Aαα;Aββ;Aαβ ¼ ðAβαÞT corresponding to the multilayer network
in Fig. 1, nα= nβ= 2, xα= [xα, yα], xβ= [xβ, yβ],

FαðxαÞ ¼ yα

�xα � 0:2yα½ðxαÞ2 � cα�

 �

;

FβðxβÞ ¼ yβ

�xβ � 0:2yβ½ðxβÞ2 � cβ�

" #
;

ð35Þ

which both correspond to the dynamics of the Van der Pol
oscillator, with layer-dependent parameters cα and cβ. Moreover,
we set

HαβðxÞ ¼ �1 0

0 0

� �
x; ð36Þ

for all pairs α, β= 1, 2 and σαβ= 0.15 for all pairs α, β= 1, 2. We
set the layer-dependent parameters cα= (1+ δc) and cβ= (1−
δc), so that δc= 0 corresponds to identical systems in the two
layers and increasing values of δc indicate the systems in the two
layers are increasingly different. We then numerically investigate
the stability of the DLS as the parameter δc is increased. This can
be seen in Fig. 2c, which shows that synchronization between
oscillators 1 and 3 from the α layer and synchronization between
oscillators 1 and 3 from the β layer is simultaneously lost for δc≿
0.4. Figure 2d shows the numerically computed maximum
Lyapunov exponent of the DLS block (27). We also note that
throughout the whole δc interval considered, neither nodes 1 and
2, nor nodes 1 and 4 from the α layer ever synchronize (not
shown). Overall, Fig. 2 shows that increased heterogeneity
between the nodes in the two layers, can lead to loss of DLS
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Fig. 2 Synchronization of DLS clusters. a Discrete time maps. Synchronization errors Eα13 (asterisks) and Eβ13 (diamonds) vs the parameter δc. δc= 0
corresponds to identical systems between the α and in the β layers. Increasing values of δc are for increasingly different systems in the two layers.
Synchronization is lost in both layers for δc≿ 0.35. b Discrete time maps. Eigenvalues ρ+ and ρ− in Eq. (33). As can be seen, ρ+ (ρ−) increases (decreases)
with δc. Loss of stability occurs when either one of the two eigenvalues is either larger than 1 or smaller than −1. ρ+ becomes larger than 1 for δc≿ 0.35.
c Van Der Pol oscillators. Synchronization errors Eα13 (asterisks) and Eβ13 (diamonds) vs the parameter δc. δc= 0 corresponds to identical systems between
the α and in the β layers. Increasing values of δc are for increasingly different systems in the two layers. Synchronization is lost in both layers for δc≿ 0.4.
d Van Der Pol oscillators. Maximum Lyapunov exponent of the DLS block (27) vs the parameter δc.
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stability. Further numerical evidence of this is presented for the
cases of the Lorenz oscillator and of the Roessler oscillator in
Supplementary Note 4. Supplementary Note 5 investigates how
varying the intra-layer and inter-layer coupling strengths affects
CS stability.

An experimental testbed for cluster synchronization. We apply
the techniques from the previous sections on an experimental
testbed circuit. We implement three different kinds of electronic
oscillators, using widely available, affordable components that can
be assembled on breadboards. Simplicity, low-cost, ease of fab-
rication, and availability of a large volume of previous studies
make electronic circuits an ideal testbed for multilayer network
studies31. The circuit is composed of three different kinds/layers
of nodes: one linear resonator, which we call the ‘jumper’, two
FitzHugh–Nagumo (FHN) oscillators, and four Colpitts oscilla-
tors. The jumper is a linear resonator (i.e., without input, its
oscillations damp to zero) with two-dimensional governing
equations; the FHN is a relaxational nonlinear oscillator with
two-dimensional governing equations42; the Colpitts is a sinu-
soidal nonlinear oscillator with three-dimensional governing
equations43. All three kinds of nodes have similar uncoupled
frequencies. A full schematic of the experimental circuit is
included in Fig. 3. Figure 3 also states the measured parameter
values of each component.

Figure 4 shows a simplified multilayer schematic of the circuit
with the jumper as the α layer, the FHNs as the β layer, and the
Colpitts as the γ layer. We couple the different oscillators in three
ways. On the Colpitts layer, we induce inductive coupling
through mutual inductance, red in Fig. 4. Between the Colpitts

layer and the FHN layer we introduce resistive coupling; this
couples each FHN circuit with two Colpitts, blue in Fig. 4.
Between the FHN and jumper layer, we induce inductive coupling
between each FHN and an inductor in the jumper, orange in
Fig. 4.

As shown in the above schematic and equations, we can
describe the system with three layers composed as follows. Layer
α includes the jumper alone, layer β includes two FHNs and the
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Fig. 3 Schematic of the experimental setup. RC= 2.2 kΩ. We vary the magnetic coupling between Colpitts 1 and 2 and Colpitts 3 and 4, kC, from −0.4 to
0.4 by varying separation × (red). We hold the separation between the FHNs and the jumper (× in orange) constant such that the coefficient of mutual
inductance, kFJ, is maintained equal to 0.35.
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Fig. 4 Multilayer representation of the experimental circuit. Layer α
contains the jumper node. Layer β contains two FHN oscillators. Layer γ
contains four Colpitts oscillators with inductive intralayer coupling shown in
red. The interlayer resistive coupling between the β and γ layers is shown in
blue. The interlayer inductive coupling between the α and β layers is shown
in orange; this coupling introduces a virtual FHN intralayer coupling which
we discuss in the analysis of the system.
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intra-layer connections, with Gβ ¼ fðÞ; ð1; 2Þg and layer γ
includes four Colpitts and one intra-layer connection that
connects nodes 1 with 2, and nodes 3 with 4. The group of
symmetries of this layer is

Gγ ¼ fðÞ; ð1; 2Þ; ð3; 4Þ; ð1; 2Þð3; 4Þ; ð1; 3Þð2; 4Þ; ð1; 4Þð2; 3Þg:
ð37Þ

We have the inter-layer connections:

Aαβ ¼ 1 1½ � ¼ Aβα
� �T

; Aβγ ¼ 1 1 0 0

0 0 1 1


 �
¼ Aγβ
� �T

:

ð38Þ
All the permutations in the groups Gα; Gβ; Gγ are compatible,
then Hα ¼ Gα, Hβ ¼ Gβ, Hγ ¼ Gγ.

The interlayer connections define the conjugate classes

Kα ¼ ðÞ; Kβ
1 ¼ ðÞ; Kβ

2 ¼ ð1; 2Þ; Kγ
1

¼ fðÞ; ð1; 2Þ; ð3; 4Þ; ð1; 2Þð3; 4Þg; Kγ
2

¼ fð1; 3Þð2; 4Þ; ð1; 4Þð2; 3Þg:
ð39Þ

This set defines the group of symmetry of the multilayer network.
There are three possible clustered patterns: (1a) layer β and layer γ
fully synchronized, (1b) layer β fully synchronized and layer γ
clustered synchronized (either 1 with 3 and 2 with 4 or,
equivalently, 1 with 4 and 2 with 3), and (2) layer β not

synchronized and layer γ synchronized in clusters (1 with 2 and 3
with 4). The stability of each one of these clustered patterns is
analyzed in detail in the Supplementary Note 6 and is here
summarized in Fig. 5. Figure 5a shows the two MLEs transverse to
solution 1a. Solid and dotted lines refer to transverse blocks B2 and
B1b, respectively (blocks defined in the Supplementary Note 6).
Pattern 1a is stable when both the curves are negative. Figure 5b
shows MLEs transverse to stable solutions on the synchronized
manifold 1b. Blue curves refer to the transverse MLE of solution of
kind 1a, while the red curve refers to the transverse MLE of
solution of kind 1b. Figure 5c shows MLEs transverse to stable
solutions on the synchronized manifold 2. Blue curves refer to the
transverse MLE of solution of kind 1a, while the yellow curves
refer to the transverse MLE of solution of kind 2.

The equivalence class subgroup Kγ
1 shows the ILS’s for the γ

layer. The symmetry breaking of the (1, 2)(3, 4) permutation for the
[1, 2, 3, 4] cluster causes the cluster to break into two clusters,
[1, 3], [2, 4] or [1, 4], [2, 3]. Those ILS permutations are what allows
layer β to remain synchronized in case (1b) above. Note, however,
that breaking of the individual permutations like (1,2) by itself will
cause a breaking of one of the Kγ

2 permutations, so it is essential to
check that the symmetry breakings of Kγ

1 are not inducing other
symmetry breakings in the same layer, but from other cosets. If they
are not, then the other layers are unaffected by the loss of an ILS.

With all three patterns, we can draw Fig. 6, where we report the
maximum of the two blue curves in Fig. 5a (blue), the red curve in
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Fig. 5b (red) and the yellow curves in Fig. 5c (yellow). We can
thus identify the parameter regions in which the different
analyzed behaviors are present. Below we comment on Fig. 6
and explain the sequence of bifurcations that occur in the system
as the parameter kC is decreased (i.e., from right to left looking at
the figure). For large positive coupling, 1a is stable and it is the
only attractor of the system. This region is shaded in green in
Fig. 6. At kC= 0.2, we observe the split of the two nodes in layer β
(the FHNs, transverse direction toward 2 in the T matrix). The
symmetry breaking (pitchfork) bifurcation is supercritical, and
a solution of kind 2 is born. This region is shaded in yellow. At
kC= 0.14 a second stable clustered solution of type 2 is born
through a saddle-node bifurcation (via the quotient network
2 dynamics). This solution is characterized by a phase separation
of the two FHN oscillators of π, and a slightly higher oscillations
frequency. It remains stable until kC is reduced to −0.28. We
thus have a region with two solutions of kind 2: the one created at
kC= 0.2 where the two FHNs are slightly phase shifted (whose
MLE can be found looking at the yellow curve from right to left)
and the one created at kC= 0.14 where the two FHNs are anti-
phase (whose MLEs can be found looking at the yellow curve
from left to right). We call these two states pattern 2-(π/2) and
pattern 2-(π), respectively. The state created at kC= 0.14 is
shaded in lavender; the bistable region is striped lavender and
yellow. At kC= 0.07, the clustered solution 2-(π/2) loses its
stability giving rise to an unsychronous solution, shaded in white.
This solution disappears through a saddle-node bifurcation at
kC= 0. For kC∈ [−0.27, 0], the system has two possible solutions.

The first (shaded lavender) is pattern 2-(π). The second (shaded
in blue) has two possible behaviors: when the red curve is
negative, it is of kind 1b (see star for example), or when the red
curve is positive, it is a slightly non-synchronized modification of
pattern 1b (see square for example) in which the two FHNs
remains locked, while the Colpitts are not perfectly synchronized.
This last solution is present because the inductively coupled
Colpitts pairs are antiphase; as a result, the FHN (which is
coupled to both Colpitts) sees a very small net signal from the two
Colpitts. Consequently, the Colpitts can very nearly synchronize
even though they receive slightly different inputs. Finally, at kC=
−0.28 the pattern 2-(π) solution undergoes a catastrophic
symmetry breaking bifurcation, leaving 1b as the only possible
attractor of the system (or its slight modification when the red
curve is positive.) Experimental data showing qualitative agree-
ment with the numerical results in Fig. 6 are included in the
Supplementary Note 7.

Discussion
In this paper we study analytically, numerically, and experi-
mentally the general problem of cluster synchronization (CS) in
multilayer networks; these systems are composed of hetero-
geneous components that may interact in multiple ways. We first
present a general set of equations that describes the dynamics of a
multilayer network. We then define for the first time the group of
symmetries of a multilayer network and explain how to compute
it. An analysis of several datasets of real multilayer networks
shows they possess large number of symmetries.
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We investigate the stability of the CS patterns which corre-
spond to the orbits of the multilayer network. The symmetries of
each layer as well as the particular pattern of interlayer connec-
tions determine the CS patterns in multilayer networks; we
consequently describe how each layer’s symmetry group relates to
the symmetry groups of other layers through interlayer connec-
tions. The interplay between the intralayer and interlayer cou-
plings enables distinction between symmetries that affect the
types of allowed dynamics in the other layers (DLS) and those
that do not (ILS.) The latter form a normal subgroup of the full
symmetry group. In particular, a symmetry-breaking bifurcation,
associated with the ILS subgroup, breaks up a clustered pattern in
one layer of the multilayer network without altering the possible
clusters in the other layers.

With an IRR change of coordinates we decouple the stability
problem into several simpler (lower-dimensional) problems. First,
we decouple perturbations along directions parallel to the syn-
chronization manifold from those transverse to it; the latter
determine the stability of the clustered motion. Second, we
decouple the equations for the transverse perturbations into sev-
eral independent blocks; each block corresponds to the stability of
either an individual cluster or a set of intertwined clusters20. When
two or more clusters (which may belong to different layers) are
intertwined, they are either all stable or all unstable. We see that
dependent layer symmetries yield blocks of a different structure
than those arising in the study of single layer networks, which we
show has a profound effect on the stability of the clusters involving
these symmetries. In particular, we show analytically for a specific
class of networks that DLS clusters are more difficult to syn-
chronize than in the case in which the systems in different layers
are of the same type, which is also confirmed numerically in
simulations involving multilayer networks of Van der Pol, Lorenz,
and Roessler oscillators (Supplementary Note 5).

We perform experiments with a fully analog multilayer network
with seven electronic oscillators of three different kinds coupled
with two kinds of coupling. The testbed circuit has many features
that occur in natural multilayer systems, like noise and parameter
mismatches. The experiment is a good test of the theoretical fra-
mework because it allows us to understand how theoretical pre-
dictions, made with simplifying assumptions, can be a guide to
better understand real phenomena. In fact, the experimental results
largely match the theoretical predictions; we observe all the pre-
dicted cluster states in the right part of the parameter space. With
respect to the experimental realization, the model includes several
simplifications: we assume all the nodes within the same layer are
identical, we assume that all the connections of the same type are
identical, we use a simplified FHN model which neglects two
resistors, we use ideal models for the operational amplifiers and the
transistors, and we assume no noise and neglect any stray induc-
tance, capacitance, or resistance. We discuss why the experimental
and theoretical results differ in our seven node electronic system in
Supplementary Note 8. A broader, multisystem analysis of the
robustness of the method to heterogeneity, noise, and network
nonideality would enhance the utility of the method.

A variety of real-world systems are multilayer networks that
can exhibit clustering. Dynamical situations, to which our ana-
lysis may be relevant include opinion dynamics and consensus
among individuals interacting through different communication
systems, for which clustering may show up on average, see e.g.,
ref. 39, the dynamics of central pattern generators, small networks
of similar neurons, which might show symmetries and clustering
since synchronization is part of their dynamics, see e.g., ref. 10,
and electronic networks and in general man-made systems
formed of many identical subsystems or nodes, which may pro-
duce cluster synchronization. Recent work44 has studied how
network symmetries may affect synchronization modes of power

grids and even suggested that symmetries may enhance complete
synchronization in multilayer grids, characterized by the presence
of different energy sources, such as power generators, wind tur-
bines, solar, etc. Our work describes how clusters may arise in
multilayer networks with a given structure; with further study, it
may be possible to infer the structure of a multilayer network
given the observation of clusters.

A main limitation of our approach is its scalability with the
number of nodes of a multilayer network. While the size of the
network for which symmetries can be found is very large45, the size
for which the stability analysis can be performed is typically much
smaller23. We also model the systems in each layer as exactly
identical; this is not a characteristic of experimental systems (for a
discussion of the discrepancies between our experiment and our
simulations see Supplementary Note 8). A recent paper analyzed
cluster synchronization in the presence of nearly identical sys-
tems22, though the approach of ref. 22 is not easily generalizable to
the case of multilayer networks. Although our multilayer frame-
work does not allow node heterogeneity and noise, we saw broad
agreement between our predictions and experimental circuit
behavior; this circuit contained slightly heterogeneous nodes with
noise. Within this study, we cannot quantitatively state when noise
or heterogeneity will qualitatively impact our predictions, but the
experiment demonstrates that there is some tolerance. Further work
will be needed to characterize these limitations.

Finally, despite the generality of the theory proposed in this
manuscript, several extensions are possible. An important direc-
tion for the research is to allow both intra-layer and inter-layer
connections to be directed. Another direction is to study the
formation of CS patterns that are not related to symmetries in
multilayer networks, see e.g., ref. 24. The case of group consensus
which can be seen as a very special case (i.e., with linear
dynamics) of the cluster synchronization problem considered
here, has recently been studied in ref. 46.

Methods
Formal proofs. Theorem 1 Hα is a subgroup of Gα and Hβ is a subgroup of Gβ .

Proof To prove the theorem we must show that the identity element of Gα is
contained inHα, and whenever g1 and g2 are inHα , then so are h�1

1 and h1h2, so
the elements of Hα indeed form a group. We prove the theorem for Hα. The
proof for Hβ is identical.
Identity. Let eα be the identity of Gα and eβ be the identity of Gβ . We see that eα
is in Hα, since

eαA
αβ ¼ Aαβ ¼ Aαβeβ:

Inverse existence. For all g 2 Hα exist g�1 2 Hα . By definition, if g 2 Hα then
there exists h such that gAαβ= Aαβh. Consider the permutation g−1, then

gAαβ ¼ Aαβh ) g�1gAαβ ¼ g�1Aαβh ) Aαβh�1h ¼ g�1Aαβh

thus obtaining Aαβ= g−1Aαβh⇒ g−1Aαβ=Aαβh−1. Since Gβ is a group,
h 2 Gβ ) h�1 2 Gβ , thus proving that g�1 2 Hα .
Closure. We need to prove that if g1 and g2 are in Hα , then the product g1g2 is
also inHα. By definition, since g1; g2 2 Hα , there exist h1, h2 such that g1Aαβ=
Aαβh1 and g2Aαβ= Aαβh2. Then

g1g2A
αβ ¼ g1A

αβh2 ¼ Aαβh1h2:

Since Gβ is a group, h1; h2 2 Gβ ) h1h2 2 Gβ , thus proving that g1g2 2 Hα . □
A consequence of the theorem is that g 2 Hα ) g 2 Gα : thus, to find Hα , we

have simply to take all the permutations h 2 Gβ and check which of the
permutations in Gα respect the conjugacy relation (11). Similarly, we can define the
conjugate set Eq. (13), find its elements in the same way and show that it is a
subgroup of Gβ .

Since we are interested here only in undirected networks, we prove a corollary
that simplifies the computations of Hα and Hβ .

Corollary 1 For the case of undirected networks we only need one of the following
relationships to prove that Hα and Hβ are subgroups, (i) gAαβ=Aαβh or (ii)
hAβα= Aβαg.
Proof Let’s choose to use relationship (i) to define Hα and Hβ . This means
eliminating requirement (ii) in the Hα definition and replacing (ii) with (i) in
the Hβ definition. We can use the same logic we used in the previous theorem
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to show that these definitions of Hα and Hβ also produce subgroups. The
question is, are they the same as those of Eqs. (12) and (13)? We can show that
this is the case using the fact that for undirected coupling the overall coupling
matrix is symmetric. Hence, off-diagonal interlayer coupling blocks are related

as in Aβα ¼ ðAαβÞT . For permutations h−1= hT, etc. Hence, since Hα and Hβ

are groups, h−1 and g−1 also obey the defining equation (i), so

g�1Aαβ ¼ Aαβh�1 () gTAαβ ¼ AαβhT () ðAαβÞTg ¼ hðAαβÞT

() ðAαβÞTg ¼ hðAαβÞT () hAβα ¼ Aβαg
ð40Þ

□
A consequence of this corollary is that for the case of undirected networks, if

h 2 Gβ is involved in a conjugacy relation for some g, then it is in Hβ . As a result,
one does not need to search for both Hα and Hβ , but populating Hα automatically
populates Hβ .

Theorem 2 Kα
1 is a subgroup of Hα .

Proof Identity. The identity eα is in Kα
1 by definition.

Inverse. Let g 2 Kα
1 then, eαA

αβ= g−1gAαβ= Aαβ. But we also have gAαβ=Aαβ,
hence, g−1Aαβ=Aαβ so g�1 2 Kα

1 .
Closure. Let g1; g2 2 Kα

1 then, g1g2A
αβ ¼ g1A

αβ ¼ Aαβ ) g1g2 2 Kα
1 .

Hence, Kα
1 is a subgroup of Hα . □

The same reasoning holds for the β layer, etc. Next we state an additional

property of the subgroups Kα
1 , Kβ

1 , etc.
Corollary 2 Kα

1 is a normal subgroup. This means that if g1 2 Kα
1 , then 8g 2 Hα

we have g�1g1g 2 Kα
1 or, equivalently, g�1Kα

1g ¼ Kα
1 .

Proof We know 8g 2 Hα , if gAαβ= Aαβh, then g−1Aαβ= Aαβh−1. Hence,
8g1 2 Kα

1 , g
�1g1gA

αβ ¼ g�1g1A
αβh ¼ g�1Aαβh ¼ Aαβh�1h ¼ Aαβ )

g�1g1g 2 Kα
1 and Kα

1 is a normal subgroup. □
And, finally, we can prove the following corollary.
Corollary 3 All the Kα

i , i ≠ 1, are left and right cosets of Kα
1 .

Proof If g1 2 Kα
1 and g 2 Kα

i with gAαβ= Aαβh, then
gg1A

αβ ¼ gAαβ ¼ Aαβh ) gg1 2 Kα
i . Similarly we can prove g1g 2 Kα

i . Since
group products are unique, i.e., gg1= gg2⇒ g1= g2, we have gKα

1 ¼ Kα
i ¼ Kα

i g.
So, Kα

i are left and right cosets of Kα
1 . This also means all the Kα

i have the same
number of elements. □

Properties of the equivalence classes and structure of the matrix T. Using the
equivalence classes of each layer we can show the following is true: the T matrix for
the entire multilayer system is of a block diagonal form:

T ¼ Tα 0

0 Tβ

� �
ð41Þ

Can we find the matrices of each block independently? This may seem intuitively
obvious, but it is not obvious that the arithmetic will work out. Consider the two
layer system α and β as above. The group G of the full system is given by the union

of direct products such as Kα
i ´Kβ

i . If nα is the number of elements in Kα
i and nβ is

the number of elements in Kβ
i , then the number of elements in an equivalence class

direct product is nαnβ. And if K is the number of equivalence classes, then the
number of terms in the whole direct product is Knαnβ.

In the calculation of the T matrix for the entire system we form the projection
operators P(l) for each of the IRR labeled by l using the sums20

PðlÞ ¼ dðlÞ

d

X
C

μðlÞC
X
g2C

g ð42Þ

where C is a conjugacy class, μðlÞC is the character of that class for the lth IRR, d(l) is
the dimension of the lth IRR and d is the order (size) of the group. For the
multilayer system d= Knαnβ. The elements of the β level group appear in the sum
nα times and the elements of the α level group appear in the sum nβ times. This will
contribute factors to the sum for each layer. However, because d= Knαnβ is in the
denominator the extra factors in the numerator will be canceled in each layer
leaving the correct dimension divisor for each layer’s sum. Hence, we can find the T
matrix for the whole system by finding the T matrices (Tα and Tβ) for each layer
independently and putting them into the block form to construct T.

Computing the symmetry group of a simple multilayer network. Let us con-
sider the simple example of a two-layer undirected network shown in Fig. 1. We
show in detail the calculations to determine the final group G of the full network.

The group of symmetries of the two layers are (written in cyclic notation)

Gα ¼ fðÞ; ð1; 2Þð3; 4Þ; ð2; 4Þ; ð1; 4; 3; 2Þ; ð1; 2; 3; 4Þ; ð1; 3Þ; ð1; 4Þð2; 3Þ; ð1; 3Þð2; 4Þg;
ð43Þ

Gβ ¼ fðÞ; ð1; 3Þg; ð44Þ
where, for example, (1,4)(2,3) means move node 1 to node 4 (and 4 to 1) and 3 to 2
(and 2 to 3). Also, (1,4,3,2) means move 1 to 4, 4 to 3, 3 to 2, and 2 to 1.

From these we determine Hα and Hβ using the results of Theorem 1. To find
Hα , we take all the permutations h 2 Gβ and we check which of the permutations
in Gα respect the conjugacy relation (11). We obtain

Hα ¼ fðÞ; ð1; 2Þð3; 4Þ; ð1; 4Þð2; 3Þ; ð1; 3Þð2; 4Þg; ð45Þ

Hβ ¼ fðÞ; ð1; 3Þg; ð46Þ
Now we must define the ~ relation. Applying the permutations in Hα to Aαβ we
obtain

ðÞ

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775
¼ ð1; 2Þð3; 4Þ

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775
¼

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775

) ðÞ � ð1; 2Þð3; 4Þ
Kα

1 ¼ fðÞ; ð1; 2Þð3; 4Þg

ð1; 4Þð2; 3Þ

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775
¼ ð1; 3Þð2; 4Þ

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775

¼

0 0 1

0 0 1

1 0 0

1 0 0

0 0 0

2
6666664

3
7777775

) ð1; 4Þð2; 3Þ � ð1; 3Þð2; 4Þ
Kα

2 ¼ fð1; 4Þð2; 3Þ; ð1; 3Þð2; 4Þg

while applying the permutation of Hβ to Aαβ and recalling the conjugacy relation
gAαβ=Aαβh we obtain

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775
ðÞ ¼

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775

) Kβ
1 ¼ fðÞg

1 0 0

1 0 0

0 0 1

0 0 1

0 0 0

2
6666664

3
7777775
ð1; 3Þ ¼

0 0 1

0 0 1

1 0 0

1 0 0

0 0 0

2
6666664

3
7777775

) Kβ
2 ¼ fð1; 3Þg:

Combining the permutations from each pair of disjoint subsets as in Eq. (8), we
obtain the full group

G ¼ ðÞ 0

0 ðÞ
� �

;
ð1; 2Þð3; 4Þ 0

0 ðÞ
� �

;
ð1; 4Þð3; 2Þ 0

0 ð1; 3Þ
� �

;
ð1; 3Þð2; 4Þ 0

0 ð1; 3Þ
� �� �

:

ð47Þ
Since Kα

1 and Kβ
1 are the subgroups of Hα and Hβ , respectively, this means that

the separate clusters in the α layer, [1,2] and [3,4], are ILS clusters and the
following cluster bifurcations cause no bifurcations in the possible β dynamics or
synchronous clusters (again, stability is a separate issue):

½1; 2; 3; 4� ! ½1; 3� and ½2; 4�; ð48Þ
or

½1; 2; 3; 4� ! ½1; 4� and ½2; 3�; ð49Þ
which would still allow [1,3] to be synchronous in the β layer. However, the
bifurcation

½1; 2�½3; 4� ! ½1�; ½2�; ½3�; and ½4� ð50Þ
would break a symmetry in the coset Kα

2 if the nodes 1 and 3 were synchronized.
But if they are not synchronized, then the system is operating in a subgroup of the
original group and only the identity would remain for the β layer. This means in
this case 1 and 3 are each in their own (trivial) cluster already in the β layer and
that does not prevent either state [1,2][3,4] or [1], [2], [3], [4] in the α layer. These
cases can be easily seen from Fig. 1 since node 1 in the β layer only depends on the
sum of nodes 1 and 2 in the α layer. And similarly for the dependence of node 3 in
the β layer on nodes 3 and 4 in the α layer. However, while these ILS relations are

easy to see in this simple case, it would require the calculation of Kα
1 and Kβ

1 for
more complicated networks to find the ILS’s, associated clusters, and their allowed
bifurcations.

Symmetries of multiplex and multidimensional networks. Here we describe
how to compute the group of symmetries of multiplex and multidimensional
networks, which are special cases of the general multilayer network problem
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presented in the “Results” section. We show that the problems of computing the
group of symmetries of a multiplex network and of a multidimensional network are
closely related to each other. In what follows, we start by considering the problem
of computing the symmetry group of a multiplex network and mapping it to the
problem of computing the symmetry group of a multidimensional network.

Multiplex networks32–34 are a particular class of multilayer networks; in
multiplex networks, different features of the same set of agents are described in
each different layer (e.g., in a social system, each layer represents the opinion of a
person on a different topic, and links capture how the different social interactions
influence the person thinking on each topic). A multiplex network is thus formed
of several layers, with each layer containing the same number of nodes N .
Moreover, since interlayer coupling only occurs between node i in a given layer and
the same node i in a different layer, Aαβ ¼ IN , where IN is the N -dimensional
identity matrix.

A general multiplex network is governed by the following set of equations37,47:

_xαi ¼ Fαðxαi Þ þ σαα
XN
j¼1

Aαα
ij H

ααðxαj Þ þ
X
β≠α

σαβHαβðxβi Þ; ð51Þ

i ¼ 1; :::;M; α ¼ 1; :::;M, where the matrix Aαα represents the intra-layer
connectivity, the function Fα represents the intrinsic dynamics of each node inside
a layer and the functions Hαα and Hαβ represent the form of the intra- and inter-
layer coupling, respectively.

We reduce the set of Eqs. (51) to a much more compact form and use it to
compute the symmetries of a multiplex network. Introducing

xi ¼
xαi

xβi

..

.

2
664

3
775; FðxiÞ ¼

Fαðxαi Þ þ
P
λ≠α

σαλHαλðxλi Þ

Fβðxβi Þ þ
P
λ≠β

σβλHβλðxλi Þ

..

.

2
666664

3
777775;

HλðxiÞ ¼
δλαH

ααðxαi Þ
δλβH

ββðxβi Þ
..
.

2
664

3
775; σλ ¼ σλλ

Aλ ¼ Aλλ

" #
ð52Þ

where λ∈ {α, β, …}, δαλ is the Kronecker delta (e.g., δλα= 1 if λ= α, 0 otherwise)
we can rewrite Eq. (51) as

_x ¼ FðxÞ þ
XΛ
λ¼1

σλAλHλðxÞ; ð53Þ

which is the equation of a multidimensional network35,36, i.e., a network with only
one layer but different types of interactions. Each interaction type is described by a
different adjacency matrix Aλ, λ= 1, …, Λ. Blaha et al.31 recently presented a
simple experimental realization of such a network.

We have shown the equivalence between a multiplex network and a
multidimensional network. We now discuss how to compute the symmetries of the
multidimensional network (53), both analytically and computationally. The
analytic approach gives insight into the origins of the final symmetry permutation
group. The software approach allows a direct calculation of the full group, but
without the insights into its structure.

To analytically define the group of symmetries of the multidimensional
network, we introduce Gλ as the group of symmetries for each interaction type λ.
Each element of the group Gλ can be represented by a permutation matrix Π that
commutes with Aλ, ΠAλ= AλΠ. Then, the symmetry group of the whole
multidimensional network G is given by G1 \ G2 ¼ \ GΛ , which is the largest
common subgroup of the Λ symmetry groups fGλg.

Computationally, the group of symmetries of the multidimensional network G
can be found using available computational group theory tools, like GAP or
SAGE48,49. This software computes the group of symmetries of a labeled graph50,51;
a multidimensional network can easily be remapped to a labeled graph. To remap
the network, we define the labeled adjacency matrix Alab. Matrix entries Alab

ij are
defined by how pairs of nodes i and j interact. For each pair of nodes, one of three
cases occurs: (i) there is no interaction between i and j, (ii) there is one type of
weighted interaction between i and j, and (iii) there are two or more types of
weighted interactions between i and j. If there is no interaction between node i and
node j (case i), then Alab

ij ¼ 0. We represent a single edge (case ii) with a 2-tuple
(τ, w), where the integer τ is the edge type and the real number w is the edge
weight. We represent a multiple edge formed by q interactions (case iii) with a 2q-
tuple, (τ1, w1, τ2, w2, …, τq, wq), τ1 < τ2 < . . . < τq, where each pair (τi, wi) represents
an interaction type and the associated weight. We can partition the set of the
network edges into Z subsets of edges that are all represented by the same tuple.
Then the entries of the matrix Alab are such that Alab

ij ¼ 0 if there is no interaction

between nodes i and j and Alab
ij ¼ z, z= 1, …, Z if the edge between nodes i and j

belongs to the subset z. This forces the software to consider only permutations that
involve edges of the same type and of the same weight, i.e., permutation matrices Π
that commute with Alab, ΠAlab=AlabΠ. As a result, the computed permutations Π
that form Gλ also commute with all the adjacency matrices of the multidimensional

network A1, …, AΛ: G is thus the largest common subgroup of the Λ symmetry
groups.

A network with three layers. In the “Results” section we have considered mul-
tilayer networks with not more than two layers and only one type of inter-layer
coupling. Here we show how our procedure can be generalized to a multilayer
network with M= 3 layers. Later we will consider the case of any number M of
layers. For the case M= 3, the vector field is

_xα ¼ FαðxαÞ þ σααAααHααðxαÞ þ σαβAαβHαβðxβÞ þ σαγAαγHαγðxγÞ
_xβ ¼ FβðxβÞ þ σββAββHββðxβÞ þ σβαAβαHβαðxαÞ þ σβγAβγHβγðxγÞ
_xγ ¼ FγðxγÞ þ σγγAγγHγγðxγÞ þ σγαAγαHγαðxαÞ þ σγβAγβHγβðxβÞ

ð54Þ

If we apply three permutations g 2 Gα , h 2 Gβ , and k 2 Gγ on the system we obtain

g _xα ¼ FαðgxαÞ þ σααAααHααðgxαÞ þ σαβgAαβHαβðxβÞ þ σαγgAαγHαγðxγÞ
h _xβ ¼ FβðhxβÞ þ σββAββHββðhxβÞ þ σβαhAβαHβαðxαÞ þ σβγhAβγHβγðxγÞ
k _xγ ¼ FγðkxγÞ þ σγγAγγHγγðkxγÞ þ σγαkAγαHγαðxαÞ þ σγβkAγβHγβðxβÞ:

ð55Þ

For a directed graph, we have six conjugacy relationships to be satisfied:
gAαβ= Aαβh, gAαγ= Aαγk, hAβα= Aβαg, hAβγ= Aβγk, kAγα= Aγαg, and

k Aγβ= Aγβ h.
If the graph is undirected, then half are redundant (e.g., gAαβ= Aαβh is the

same relationship as hAβα= Aβαg). From these relationships we can define

Hα ¼ g 2 Gαj9h 2 Gβ and k 2 Gγ : gAαβ ¼ Aαβh and gAαγ ¼ Aαγk
� 


;

Hβ ¼ h 2 Gβj9g 2 Gα and k 2 Gγ : hAβα ¼ Aβαg and hAβγ ¼ Aβγk
� 


;

Hγ ¼ k 2 Gγj9g 2 Gα and h 2 Gβ : kAγα ¼ Aγαg and kAγβ ¼ Aγβh
� 


:

ð56Þ

Using the same reasoning as in Theorem 1, each subset in Eq. (56) is a subgroup
of its layer’s group. The equivalence relationship ~ is now defined by a set of two
equations that must be satisfied, i.e.,

g1 � g2 , g1A
αβ and g1A

αγ ¼ g2A
αγ

thus defining

Kα
ij ¼ fg 2 Hα : gAαβ ¼ Mi; gA

αγ ¼ Mjg;
Kβ

ij ¼ fh 2 Hβ : hAβα ¼ Mi; hA
βγ ¼ Mjg;

Kγ
ij ¼ fk 2 Hγ : kAγα ¼ Mi; kA

γβ ¼ Mjg:
ð57Þ

There are K1K2 disjoint sets for each subgroup H, where K1 is the number of
different Mi and K2 is the number of differentMj that can be obtained applying any
of the compatible permutations. Finally, we form the final symmetry group of the
multilayer network using the disjoint sets as in Eq. (15), namely,

G ¼
g 0 0

0 h 0

0 0 k

0
B@

1
CA g 2 Kα

ij; h 2 Kβ
ij; and k 2 Kγ

ij for i ¼ 1; ¼ ;K1; j ¼ 1; ¼ ;K2

���
8><
>:

9>=
>;:

ð58Þ
As before with two layers the ILSs for this three-layer case will be in each of the

layers’ equivalence class subgroups, Kα
ij , Kβ

ij , and Kγ
ij .

Two interlayer coupling types. For the case of two or more coupling types
between two layers, the extension is similar to the previous section. The general
equation in this case is

_xα ¼ FαðxαÞ þ σααAααHααðxαÞ þ σαβ;1Aαβ;1Hαβ;1ðxβÞ þ σαβ;2Aαβ;2Hαβ;2ðxβÞ
_xβ ¼ FβðxβÞ þ σββAββHββðxβÞ þ σβα;1Aβα;1Hβα;1ðxαÞ þ σβα;2Aβα;2Hβα;2ðxαÞ:

ð59Þ
Applying two permutations g 2 Gα and h 2 Gβ to the system, we obtain four

conjugacy relationships to be satisfied:gAαβ,1= Aαβ,1h, gAαβ,2= Aαβ,2h, hAβα,1=
Aβα,1g, hAβα,2= Aβα,2g, two of which are redundant for undirected graphs. The H
groups are still defined by two of these relationships

Hα ¼ g 2 Gαj9h 2 Gβ : gAαβ;1 ¼ Aαβ;1h and gAαβ;2 ¼ Aαβ;2h
� 


;

Hβ ¼ h 2 Gβj9g 2 Gα : hAβα;1 ¼ Aβα;1g and hAβα;2 ¼ Aβα;2g
� 


;
ð60Þ

and g1 ~ g2 only when both produce the same left-hand-side for all conjugacy
relationships. The disjoint K sets for each subgroup are generated as before (with
two indices, since there are two constraints that define the ~ relationship) and the
final symmetry group of the multilayer network using the disjoint sets is as in Eq.
(15). The ILSs are found as above.

Any number of layers and inter-layer couplings. Here we present the general
case of any number of layers and any number of inter-layer couplings. Extra-
polating from our discussion above, we can define the group of symmetries of a
multilayer network with any number of layers and types of coupling. The number
of conjugacy relationships to satisfy grows as the number of unique types of inter-
layer coupling grows; stated plainly, if we have A inter-layer adjacency matrices, we
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have A conjugacy relationships. In the case of three layers discussed earlier, there
are six such inter-layer couplings; in the case of two layers and two types of
interlayer couplings, there are four. The conjugacy relationships must then be
divided in the various layers to define the H groups, and two permutations in each
of the H groups have the equivalence relationship ~ when they both give the same
result in all the left-hand side of the H defining conjugacy relations. Consequently,
the computational effort grows with the number of inter-layer couplings as OðAÞ.

Computation of the symmetry group. We have already discussed the computa-
tion of the symmetry group for the case of multiplex networks and multi-
dimensional networks. Here we briefly review the computation of the symmetry
group for the case of general multilayer networks. In the presence of both nodes of
different types and edges of different types, a symmetry is only allowed: (i) when
the edges are interchangeable as discussed before for the case of multidimensional
networks and (ii) when the nodes that are exchanged are of the same type.
Available computational group theory software48,49 allows us to handle both
aspects, since they also manage multi-partite labeled graph50,51.

To satisfy requirement (i), we provide the software with a labeled supra-
adjacency matrix Alab for the multilayer network, which we define in a similar way
as for the previously discussed case of the multidimensional network. First, we
sequentially renumber all the nodes starting from layer α (so nodes 1, …, Nα are
the nodes in layer α, nodes Nα+ 1, …, Nα+Nβ are the nodes in layer β, and so
on). Then we write the matrix Alab that describes the connections between the
nodes of the multilayer network: Alab

ij ¼ 0 if there is no (intralayer or interlayer)

connections between i and j. If they are connected, Alab
ij is a tuple as described

earlier.
To satisfy requirement (ii), we restrict the search of symmetries to permutations

that only involve nodes of the same type (from the same layer). We thus provide
the partition P ¼ ff1; ¼ ;Nαg; fNα þ 1; ¼ ;Nα þ Nβg; ¼ g that describes how
the renumbered nodes are split between the respective layers. This forces the
software to consider only permutations that involve nodes of the same type (within
the same subset of the partition.).

Finding the group of symmetries of the multilayer network thus reduces to
finding the group of symmetries of the network described by the labeled supra-
adjacency matrix Alab, ΠAlab= AlabΠ, with a predefined partition P of the nodes
that are allowed to swap with one another.

Mathematical model of the experimental system. Applying Kirchhoff’s laws on
the circuit, we can write down the following set of differential equations that govern
the system’s dynamics (we color the coupling terms as in Fig. 4):

The Colpitts nonlinearity arises from its transistor (2N2222) with gain:

Ib ¼
0; Vbe ≤Vth

Vbe�Vth
Ron

; Vbe >Vth

(
; Ic ¼ βf Ib: ð61Þ

The FHN nonlinearity arises from the operational amplifier (AD844) which is
arranged to provide a piecewise linear cubic function42 in the form: f(VF,i)= [VF,i

− h(VF,i)]/R1,i, where

hðVFÞ ¼
�VRþ ; VF ≤

�R4;iVRþ
R2;i þR4;i

R2;i

R4;i
þ 1

� �
VF ;

�R4;iVRþ
R2;i þR4;i

< VF <
R4;iVRþ
R2;i þR4;i

VRþ ; VF ≥
R4;iVRþ
R2;i þR4;i

:

8>>>><
>>>>:

ð62Þ

Here, VRþ ¼ 6:5V is inferred from the FHN amplitude. Note that the
expression h(VF) is independent of R2,i and R4,i, if R2,i= R4,i.

To study the cluster synchronization dynamics of this multilayer system, we
vary one coupling and hold the others constant. We vary the Colpitts intralayer
coupling, kC, by finely varying the separation of the inductors of the Colpitts. We
immobilize Colpitts layer nodes C1 and C3, and move C2 and C4 with a caliper; this
precisely and simultaneously changes the C1 to C2 and C3 to C4 separation. We
impose the constant Colpitts–FHN intralayer coupling, RC, with a fixed resistor.
We hold the FHN–jumper intralayer coupling, kFJ, constant as well; we impose a
constant separation between the inductors of the FHN and the jumper with
plastic clips.

This experimental testbed differs fundamentally from the numerical examples
we consider. Although we model our circuit as noise-free, electrical circuits are
subject to several kinds of noise, including shot noise, burst noise, and thermal
noise52,53. Components such as transistors and operational amplifiers have noise
profiles, with stronger noise at higher frequencies. Additionally, we neglect stray
resistance, inductance, and capacitance which inevitably arise even in circuits
which are carefully crafted to minimize such issues. Finally, small parameter
mismatches lead the oscillators in each layer to be slightly heterogeneous;
uncoupled, the nodes have slightly different frequencies and amplitudes.

To write the system in the general form (1), we first assume identical oscillators
on each layer, i.e., LJ1= LJ2= LFJ; LF1,J1= LF2,J2= LFJ; LF,1= LF,2= LF; CF,1=
CF,2= CF; R3,1= R3,2= R3; Cce,1= Cce,2= Cce,3= Cce,4= Cce; Cbe,1= Cbe,2= Cbe,3=
Cbe,4= Cbe; LC,1= LC,2= LC,3= LC,4= LC; Ree,1= Ree,2= Ree,3= Ree,4= Ree. We can
then write

_xαi ¼ Fαðxαi Þ þ σαα
XNα

j¼1

Aαα
ij H

ααðxαj Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intra�layer coupling

þ
X
β≠α

σαβ
XNβ

j¼1

Aαβ
ij H

αβðxβj Þ:
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inter�layer coupling

ð63Þ

where xα1 ¼ IJ , x
α
2 ¼ VJ are the current and the voltage in the jumper; xβi;1 ¼ IF;i ,

xβi;2 ¼ VF;i are the current and the voltage of FHN i; xγi;1 ¼ Vce;i , x
γ
i;2 ¼ Vbe;i , x

γ
i;3 ¼

IL;i are the voltages and the current of Colpitts i.
Jumper layer

FαðxαÞ ¼ ðRJx
α
1 þ xα2 � v0J Þ= 2LFJ ðk2FJLFJ � LFÞ

� �
xα1=CJ

 !
;

Hαβðxβi Þ ¼
2ðR3x

β
i;1 � xβi;2Þ
0

 !
; σαβ ¼ kFJ

2ðLF � LFJk
2
FJ Þ

; Aαβ ¼ ½1 1�

FHN layer

FβðxβÞ ¼ ð�2LFðR3x
β
1 � xβ2Þ � kFJLFv

0
J Þ= 2LFðLF � k2FJLFJ Þ
� �

ð�f ðxβ2Þ � xβ1 � 2xβ2=RCÞ=CF

 !
;

Hββðxβj Þ ¼
R3x

β
j;1 � xβj;2
0

 !
; σββ ¼ LFJ k

2
FJ

2LFðLFJk2FJ � LFÞ
; Aββ ¼ �1 1

1 �1


 �

HβαðxαÞ ¼ RJx
α
1 þ xα2
0

� �
; σβα ¼ kFJ

2ðLF � LFJk
2
FJ Þ

¼ σαβ; Aβα ¼ 1

1


 �
¼ ðAαβÞT :

Hβγðxβ; xγÞ ¼ 0

ðxγ1 � xγ2Þ=CF

� �
; σβγ ¼ 1

RC
; Aβγ ¼ 1 1 0 0

0 0 1 1


 �
:

Note that the inductive coupling through the jumper generates a diffusive coupling
in the β layer (as can be seen in Aββ). This is a consequence of the fact that the
inductive coupling acts on the derivative of the current _IF;i , see the orange terms in
the Jumper equations. As a result, this induces a direct diffusive coupling between
the currents IF,i of the FHN circuits. This is represented in Fig. 4 by a dashed line in
the β layer.
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Colpitts layer

FγðxγÞ ¼
ðxγ3 � ICðxγ2Þ � ðxγ1 � xγ2Þ=RCÞ=Cce

ð�ððVee þ xγ2Þ=Ree � Ibðxγ2Þ � xγ3 þ ðxγ1 � xγ2Þ=RCÞÞ=Cbe

ðxγ2 � xγ1 � RLx
γ
3 þ VCCð1� kCÞÞ=ðLð1� k2CÞÞ

0
B@

1
CA;

Hγγðxγj Þ ¼
0

0

�ðxγj;2 � xγj;1 � RLx
γ
j;3Þ

0
B@

1
CA; σγγ ¼ kC

Lð1� k2CÞ
; Aγγ ¼

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775

Hγβðxβ; xγÞ ¼
xβ2=Cce

xβ2=Cbe

0

0
B@

1
CA; σβγ ¼ 1

RC
¼ σγβ; Aγβ ¼ ðAβγÞT :
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