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Introduction
Delays in diagnosis of active tuberculosis contribute to its 
high death toll and facilitate onward transmission of 
infection.1 Current diagnostic tools include smear 
microscopy, microbiological culture, and molecular 
detection by Xpert MTB/RIF (Xpert) or Xpert MTB/RIF 
Ultra (Ultra). These all rely on obtaining sputum or other 
biological samples from the site of disease. Each approach 
has additional limitations, such as the poor sensitivity of 
microscopy, the time delay for culture, the high cost of 

molecular tests, and false-positive Ultra results arising 
from detection of non-viable Mycobacterium tuberculosis. 
WHO has specified an urgent need for a rapid, simple, 
and low-cost triage test that prioritises sensitivity to 
confidently rule out tuberculosis, or to identify patients 
who require further investigation.2 A Delphi process 
partly informed by cost-effectiveness considerations 
concluded that such a test required a minimum of 
90% sensitivity and 70% specificity.2,3 As not all patients 
with tuber   culosis produce sputum spontaneously, a 
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Summary
Background Blood transcriptional signatures are candidates for non-sputum triage or confirmatory tests of 
tuberculosis. Prospective head-to-head comparisons of their diagnostic accuracy in real-world settings are necessary 
to assess their clinical use. We aimed to compare the diagnostic accuracy of candidate transcriptional signatures 
identified by systematic review, in a setting with a high burden of tuberculosis and HIV.

Methods We did a prospective observational study nested within a diagnostic accuracy study of sputum Xpert MTB/
RIF (Xpert) and Xpert MTB/RIF Ultra (Ultra) tests for pulmonary tuberculosis. We recruited consecutive symptomatic 
adults aged 18 years or older self-presenting to a tuberculosis clinic in Cape Town, South Africa. Participants provided 
blood for RNA sequencing, and sputum samples for liquid culture and molecular testing using Xpert and Ultra. We 
assessed the diagnostic accuracy of candidate blood transcriptional signatures for active tuberculosis (including those 
intended to distinguish active tuberculosis from other diseases) identified by systematic review, compared with 
culture or Xpert MTB/RIF positivity as the standard reference. In our primary analysis, patients with tuberculosis 
were defined as those with either a positive liquid culture or Xpert result. Patients with missing blood RNA or sputum 
results were excluded. Our primary objective was to benchmark the diagnostic accuracy of candidate transcriptional 
signatures against the WHO target product profile (TPP) for a tuberculosis triage test.

Findings Between Feb 12, 2016, and July 18, 2017, we obtained paired sputum and RNA sequencing data from 
181 participants, 54 (30%) of whom had confirmed pulmonary tuberculosis. Of 27 eligible signatures identified by 
systematic review, four achieved the highest diagnostic accuracy with similar area under the receiver operating 
characteristic curves (Sweeney3: 90∙6% [95% CI 85∙6–95∙6]; Kaforou25: 86∙9% [80∙9–92∙9]; Roe3: 86∙9% 
[80∙3–93∙5]; and BATF2: 86∙8% [80∙6–93∙1]), independent of age, sex, HIV status, previous tuberculosis, or sputum 
smear result. At test thresholds that gave 70% specificity (the minimum WHO TPP specificity for a triage test), these 
four signatures achieved sensitivities between 83∙3% (95% CI 71∙3–91∙0) and 90∙7% (80∙1–96∙0). No signature met 
the optimum criteria, of 95% sensitivity and 80% specificity proposed by WHO for a triage test, or the minimum 
criteria (of 65% sensitivity and 98% specificity) for a confirmatory test, but all four correctly identified Ultra-positive, 
culture-negative patients.

Interpretation Selected blood transcriptional signatures met the minimum WHO benchmarks for a tuberculosis 
triage test but not for a confirmatory test. Further development of the signatures is warranted to investigate their 
possible effects on clinical and health economic outcomes as part of a triage strategy, or when used as add-on 
confirmatory test in conjunction with the highly sensitive Ultra test for Mycobacterium tuberculosis DNA.
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nonsputum confirmatory test that priori tises specificity is 
also advocated.2

Many host blood transcriptional signatures have been 
proposed to differentiate patients with pulmonary 
tuberculosis from healthy controls or patients with other 
infectious or respiratory diseases,4 raising hopes for 
translation into near-patient assays. However, validation of 
these signatures is currently limited to evidence from 
case-control studies.5 Such studies are prone to over-
estimate performance because of the spectrum effect 
arising from differences in disease prevalence and other 
unmeasured covariates in selected patient subgroups, and 
biased inclusion of cases at extremes of the distribution of 
phenotypes that might not be representative of the target 
population.6 Independent validation in prospective, real-
world populations is therefore crucial to assess true test 
performance, however, there are no comprehensive head-
to-head comparisons in such settings for candidate blood 
transcriptional tuberculosis signatures.

WHO has endorsed use of Ultra to provide increased 
sensitivity compared with Xpert for PCR detection of 
M tuberculosis in sputum specimens.7 However, Ultra 
returns more false-positive results (culture-negative) 
than Xpert, particularly within the semi-quantitative 

trace output category, which detects the lowest bacillary 
burden of M tuberculosis.8 The large number of false-
positives has been attributed to detection of DNA from 
non-culturable M tuberculosis as a result of past infection, 
which is more likely in high-burden settings.9 The 
decreased specificity makes diagnostic interpretation of 
positive Ultra results challenging, and potentially 
undermines the value of its greater sensitivity.7,8,10 
Therefore, in addition to being applied as standalone 
tests, blood transcriptional biomarkers of tuberculosis 
could improve the specificity of Ultra by resolving results 
in which only traces of DNA are detected or those in 
patients with previous tuberculosis. We undertook a 
prospective observational study to compare the diagnostic 
accuracy of candidate trans criptional signatures 
identified by systematic review. Our primary objective 
was to benchmark the performance of the signatures 
against the WHO target product profile (TPP) for a 
tuberculosis triage test. As secondary objectives, we 
sought to assess the performance of these signatures 
against WHO TPP criteria for a blood-based confirmatory 
tuberculosis test, and to explore their potential use as an 
add-on confirm atory test to clarify interpretation of 
positive Ultra results. 

Research in context

Evidence before this study
We did a systematic review, using comprehensive terms for 
“tuberculosis”, “transcriptional”, “signatures”, and “blood”, with 
no language or date restrictions. Many studies have been done 
with the aim of discovering whole-blood transcriptional 
signatures that discriminate individuals with tuberculosis from 
disease-free controls or from patients with other infectious or 
respiratory diseases. Several candidate signatures have thus 
been identified, raising hope of translation into near-patient 
assays. However, validation of these signatures has been limited, 
especially in settings where they are needed most and in sick 
patients undergoing routine investigation for tuberculosis. Only 
one previous study compared the diagnostic accuracy of 
candidate signatures in a head-to-head analysis, but key 
signatures were not included, and validation relied solely on 
existing case-control datasets. It has therefore been unclear 
which candidate signature works best for the diagnosis of 
tuberculosis, or if any signatures meet minimum or optimum 
benchmarks proposed by WHO in a real-world observational 
cohort. Addressing these research gaps is crucial to inform 
whether these biomarkers should be translated into scalable test 
platforms or considered for adoption by national programmes.

Added value of this study
To our knowledge, we provide the first comprehensive and 
systematic head-to-head comparison of candidate 
transcriptional signatures for identification of active 
tuberculosis in a prospective diagnostic accuracy study. 
Moreover, we used an unbiased consecutive sampling approach, 

in contrast to the case-control design of previous studies. 
Among 181 consecutive patients presenting for investigation of 
presumptive pulmonary tuberculosis in South Africa, four of 
27 candidate transcriptional signatures performed equivalently 
to each other in discriminating individuals with tuberculosis 
from those without, irrespective of HIV status and other 
baseline characteristics. These signatures met or approximated 
to the minimum WHO target product profile for a triage test (of 
90% sensitivity, 70% specificity). However, no signature met the 
optimum criteria (of 95% sensitivity, 80% specificity) for a 
tuberculosis triage test, or the minimum criteria for a 
confirmatory test (65% sensitivity, 98% specificity). The best-
performing signatures all improved the specificity of the Xpert 
MTB/RIF Ultra microbiological molecular test for Mycobacterium 
tuberculosis DNA, in which the advantages of greater sensitivity 
have been undermined by a higher rate of false-positive results.

Implications of all the available evidence
Selected blood transcriptional biomarkers show promise as triage 
tests for patients being investigated for pulmonary tuberculosis 
in high-incidence settings, exemplified by our study site. The 
signatures did not achieve the minimum criteria needed for a 
confirmatory test and should not be used by themselves for this 
purpose. Nonetheless, they might improve diagnostic accuracy 
when used in conjunction with highly sensitive molecular tests 
for M tuberculosis DNA. These data support further development 
of assays for blood transcriptional biomarkers to enable 
interventional trials of their potential clinical and health-
economic effects in the diagnostic pathway for tuberculosis.
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Methods
Study design and participants
Our study was nested within a diagnostic accuracy 
study of sputum Xpert and Ultra tests for pulmonary 
tuberculosis.10 Symptomatic adults (≥18 years) self-
presenting for investigation of pulmonary tuberculosis 
were consecutively recruited in Cape Town, South Africa, 
from a tuberculosis clinic within a government primary 
health-care centre (Scottsdene). Patients were screened 
and investigated according to South African guidelines.11 
At recruitment, demographic and clinical metadata were 
recorded, including a modified tuberculosis symptom 
score (appendix 1, p1).12 

This study was approved by the Stellenbosch University 
Faculty of Health Sciences Research Ethics Committee 
(N14/10/136). All participants provided written informed 
consent.

Specimen microbiology and definitions
Blood was collected in Tempus tubes, and patients 
provided two sputum samples. One was decontaminated 
by Mycoprep (BD, Johannesburg, South Africa) before 
double Ziehl-Neelsen smear microscopy and Myco-
bacteria Growth Indicator Tube 960 liquid culture 
(appendix 1, p1). The second sputum sample was used 
for Xpert testing. The next morning, patients provided a 
third sputum sample for Ultra testing. Sputum samples 
were either obtained via spontaneous expectoration or 
induced by nebulising with 5% sodium chloride for 
7–10 min.

In our primary analysis, patients with tuberculosis 
were defined as those with either a positive liquid culture 
or a positive Xpert result, to overcome the limitation of a 

single culture reference. Patients with missing blood 
RNA or sputum results were excluded.

Blood RNA sequencing and data processing
Extraction and sequencing of blood mRNA was done as 
previously described,13 resulting in a median of 25 million See Online for appendix 1

Figure 1: Study flowchart

54 with tuberculosis (culture-posi-
tive or Xpert-positive)

181 with paired sputum and blood 
RNA sequencing data

205  with blood RNA sample 

302 individuals presenting for investigation of 
possible pulmonary tuberculosis and 
recruited to the parent study10

24 without reference or index test data
10 sputum sample results not available

2 blood RNA sample lost
12 technical  processing failure of blood RNA

97 no blood RNA sample collected 

127 without tuberculosis (no 
positive culture or 
Xpert-positive test)

All (n=181) No tuberculosis 
(n=127)

Positive for pulmonary 
tuberculosis (n=54)

Age, years 35 (27–48) 36 (28–49) 34 (24–43)

Sex

Male 94 (52%) 66 (52%) 28 (52%)

Female 87 (48%) 61 (48%) 26 (48%)

Ethnicity

Black 28 (15%) 14 (11%) 14 (26%)

Mixed ancestry 153 (85%) 113 (89%) 40 (74%)

HIV status

Unknown* 1 (1%) 1 (1%) 0

Uninfected 136 (75%) 99 (78%) 37 (69%)

Infected 44 (24%) 27 (21%) 17 (31%)

Antiretroviral therapy†

No 24 (55%) 14 (52%) 10 (59%)

Yes 15 (34%) 12 (44%) 3 (18%)

Unknown* 5 (11%) 1 (4%) 4 (24%)

CD4 count†, cells per µL 334 (192–606) 354 (207–707) 326 (128–484)

Haemoglobin concentration, g/dL 13∙7 (12∙4–14∙8) 14∙2 (13∙2–15∙4) 12∙6 (11∙3–13∙6)

Leucocyte count, × 10⁹ cells per L 8 (6∙1–10∙2) 7∙6 (6–9∙8) 9∙1 (6∙8–11)

BMI, kg/m² 19∙9 (17∙8–22∙5) 20∙5 (18∙4–23∙2) 19∙1 (16∙8–21∙5)

Tuberculosis symptom score 2 (2–3) 2 (1–3) 3 (2–5)

Previous tuberculosis

No 115 (64%) 81 (64%) 34 (63%)

Yes 66 (36%) 46 (36%) 20 (37%)

Liquid culture

Positive 53 (29%) NA 53 (98%)

Negative 128 (71%) 128 (100%) 1 (2%)

Sputum smear

Positive 15 (8%) 1 (1%) 14 (26%)

Negative 157 (87%) 120 (94%) 37 (69%)

Not done 9 (5%) 6 (5%) 3 (6%)

Xpert

Positive 44 (24%) NA 44 (81%)

Negative 134 (74%) 124 (98%) 10 (19%)

No result 2 (2%) 2 (2%) NA

Not done 1 (1%) 1 (1%) NA

Ultra

Positive‡ 51 (28%) 10 (8%) 41 (76%)

Negative 103 (57%) 94 (74%) 9 (17%)

No result 10 (6%) 8 (6%) 2 (4%)

Not done 17 (9%) 15 (12%) 2 (4%)

Data are n (%) or median (IQR). Individuals positive for pulmonary tuberculosis were defined as those with either a 
positive liquid culture or a positive Xpert MTB/RIF result, or both. Individuals with missing data: CD4 cell counts (n=1), 
haemoglobin concentration (n=3), leucocytes (n=3), BMI (n=1), symptom score (n=3). BMI=body-mass index. NA=not 
applicable. *Category excluded for χ² statistical test. †Antiretroviral therapy and CD4 cell counts for HIV-infected 
patients only. ‡Positive Ultra results include tests where traces of Mycobacterium tuberculosis were detected.

Table 1: Baseline characteristics of study cohort
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Original 
gene 
number

Model Intended 
application

Discovery datasets

Population HIV status Setting Approach Tuberculosis 
cases

Controls Total

Anderson39.
LTBI26

42 Disease risk score Tuberculosis vs LTBI Children Positive or 
negative

South Africa, 
Malawi

Elastic net using genome-
wide data

87 43 130

Anderson39.
OD26

51 Disease risk score Tuberculosis vs OD Children Positive or 
negative

South Africa, 
Malawi

Elastic net using genome-
wide data

87 134 221

BATF227 1 NA Tuberculosis vs HC 
(acute vs 
convalescent)

Adults Negative UK SVM using genome-wide 
data

46 31 77

Duffy1016 10 SVM (linear kernel) Tuberculosis vs LTBI 
and OD

Adults Positive or 
negative

South Africa Multinomial random 
forest using genome-wide 
data

93 207 300

Gjoen828 7 LASSO regression Tuberculosis vs HC 
and OD

Children Negative India LASSO using 198 
pre-selected genes

47 36 83

Gliddon329 3 (FCGR1A + C1QB) – 
(ZNF296)

Tuberculosis vs LTBI Adults Positive or 
negative

South Africa, 
Malawi

FS-PLS using genome-
wide data

NS NS 285

Gliddon429 4 (GBP6 + PRDM1) – 
(TMCC1 + ARG1)

Tuberculosis vs OD Adults Positive or 
negative

South Africa, 
Malawi

FS-PLS using genome-
wide data

NS NS 293

Huang1130 13 SVM (linear kernel) Tuberculosis vs HC 
and OD

Adults Negative UK Common genes from 
elastic net, L1/2 and 
LASSO models, using 
genome-wide data

16 79 95

Kaforou2531 27 Disease risk score Tuberculosis vs LTBI Adults Positive or 
negative

South Africa, 
Malawi

Elastic net using genome-
wide data

NS NS 285

Kaforou3931 44 Disease risk score Tuberculosis vs OD Adults Positive or 
negative

South Africa, 
Malawi

Elastic net using genome-
wide data

NS NS 293

Kaforou4531 53 Disease risk score Tuberculosis vs LTBI 
and OD

Adults Positive or 
negative

South Africa, 
Malawi

Elastic net using genome-
wide data

NS NS NS

Maertzdorf432 4 Random forest Tuberculosis vs HC Adults Negative India Random forest using 
360 selected target genes

113 76 189

NPC233 1 NA Tuberculosis vs HC 
and LTBI

Adults NS Brazil Differential expression 
using genome-wide data

6 28 34

Penn-
Nicholson617

6 Difference of 
means

Incipient tuberculosis 
vs HC

Adolescents Negative South Africa SVM-based gene pair 
models using genome-
wide data

46 107 153

Qian1734 17 Sum of 
standardised 
expression

Tuberculosis vs HC 
and OD

Adults Negative UK Differential expression of 
Nrf2-mediated genes

16 69 85

Rajan535 5 Unsigned sums Tuberculosis vs HC 
(screening among 
PLHIV)

Adults Positive Uganda Differential expression 
using genome-wide data

NS NS 80 (1:2 
cases:controls)

Roe313 3 SVM (linear kernel) Incipient tuberculosis 
vs HC

Adults Negative UK Stability selection using 
genome-wide data

46 31 77

Roe427 4 SVM (linear kernel) Tuberculosis vs OD Adults Negative UK SVM using genome-wide 
data

23 35 58

Roe527 5 SVM (linear kernel) Tuberculosis vs HC 
and OD

Adults Negative UK SVM using genome-wide 
data

23 50 73

Singhania2036 20 Modified disease 
risk score

Tuberculosis vs HC 
and OD

Adults Negative UK, South 
Africa

Random forest using 
modular approach

NS NS NS

Suliman237 2 ANKRD22 –
OSBPL10

Incipient tuberculosis 
vs HC

Adults Negative The Gambia, 
South Africa

Pair ratios algorithm using 
genome-wide data

79 328 407

Suliman437 4 (GAS6 + SEPT4) –
(CD1C + BLK)

Incipient tuberculosis 
vs HC

Adults Negative The Gambia, 
South Africa, 
Ethiopia

Pair ratios algorithm using 
genome-wide data

45 141 186

Sweeney338 3 (GBP5 + DUSP3) / 2 
–KLF2

Tuberculosis vs LTBI 
and OD

Adults Positive or 
negative

Meta-analysis 
of South Africa, 
Malawi, UK, 
France, USA

Significance thresholding 
and forward search in 
genome-wide data

296 727 1023

(Table 2 continues on next page)
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(range 9–33 million, IQR 21–27 million) 41 bp paired-end 
reads per sample. Blood samples with an insufficient 
RNA yield were not processed for sequencing. Data 
are available on Array Express, accession number 
E-MTAB-8290. RNA sequencing and data processing 
were done independently of micro biological test results. 
RNAseq data were mapped to the reference transcriptome 
(Ensembl Human GRCh38 release 95) and processed as 
previously described,14 focusing on protein-coding genes. 
Unless otherwise specified, log2-transformed transcripts 
per million values were used for analysis. To account 
for an observed batch effect that could not be accounted 
for by any biological or known technical variables 
(appendix 1, p 13), we tested two batch correction 
techniques, using the ComBat and sva functions from 
the sva package in R, respectively (appendix 1, pp 1–2).15 
Since surrogate variable analysis preserved specified 
outcomes of interest (tuberculosis status, HIV status, 
age, sex, and ethnicity) while correcting any other, 
unwanted variation, and because samples clustered more 
tightly after batch correction with surrogate variable 
analysis (SVA; appendix 1, p 14), we used SVA-adjusted 
data for the primary analyses.

Systematic review of blood transcriptional signatures 
for tuberculosis
We previously did a systematic review14 to identify candidate 
concise whole-blood transcriptional signatures for incipient 
or active tuberculosis published before April 15, 2019, 
including only signatures that were discovered by 
comparison with asymptomatic controls. In the present 
study, we extended the inclusion criteria from the previous 
review to also capture signatures intended to distinguish 
active tuberculosis from other diseases (appendix 1, p 2). 
Additionally, following initial peer review, we included two 
further signatures that met the inclusion criteria but were 

published after the date limit of our search.16,17 All screened 
articles are listed in appendix 2, with reviewed full text 
articles matched against inclusion criteria.

Signature scores were calculated using the original 
authors’ methods (appendix 1, pp 2–4). Some signatures 
included genes whose annotations have since been with-
drawn, or non-coding RNA and putative pseudogenes 
that were not present in our protein-coding RNAseq 
dataset (appendix 3). Where changes to the original 
model were made, or where a model had to be recreated, 
we validated the reconstructed model by comparing the 
area under the receiver operating characteristics curves 
(AUROCs) in the original dataset where possible 
(appendix 1, p 7).  

Statistical analysis
Our sample size was primarily determined by the 
number of participants in the parent study10 with paired 
blood RNA and sputum samples. To assess our statistical 
power, we used published models for estimates of sample 
size calculations in diagnostic tests (appendix 1, p 12).18,19 
The prevalence of tuberculosis in patients of the parent 
study was 30% (72/239).10 At this prevalence, a total 
sample size of more than 135 participants was required 
to establish whether the blood transcriptional bio markers 
could achieve the minimum thresholds of the WHO TPP 
for a triage test (90% sensitivity and 70% specificity) with 
a 10% margin of error. Assuming the best-performing 
test achieved an AUROC of at least 0∙9 (as is generally 
the case in the original reports of each signature), a total 
sample size of more than 130 participants was required 
for 80% power to identify a 0∙1 difference in AUROCs 
between paired tests.

This study is reported in accordance with the Standards 
for Reporting of Diagnostic Accuracy Studies guidelines.20 
p values of less than 0∙05 were considered statistically 

Original 
gene 
number

Model Intended 
application

Discovery datasets

Population HIV status Setting Approach Tuberculosis 
cases

Controls Total

(Continued from previous page)

Walter4639 51 SVM (linear kernel) Tuberculosis vs LTBI Adults Negative USA SVM using genome-wide 
data

24 24 48

Walter3239 47 SVM (linear kernel) Tuberculosis vs OD Adults Negative USA SVM using genome-wide 
data

24 24 48

Walter10139 119 SVM (linear kernel) Tuberculosis vs LTBI 
and OD

Adults Negative USA SVM using genome-wide 
data

24 48 72

Zak1640 16 SVM (linear kernel) Incipient tuberculosis 
vs HC

Adolescents Negative South Africa SVM-based gene pair 
models using genome-
wide data

37 77 114

Signatures were identified by systematic literature review and included for analysis. Signature names represent the first author’s name of the corresponding publication, suffixed with the number of constituent 
genes that are present in the current RNAseq dataset. Both Anderson signatures resulted in the same number of final genes; these signatures were therefore additionally appended with the comparator control 
group. Details on how models were recreated are in appendix 1 (pp 2-4). LTBI=latent tuberculosis infection. OD=other diseases. NA=not applicable. HC=healthy controls. SVM=support vector machine. 
LASSO=least absolute shrinkage and selection operator. FS-PLS=forward selection-partial least squares. NS=not specified. Nrf2=nuclear factor, erythroid 2-like 2. PLHIV=people living with HIV.

Table 2: Description of candidate blood transcriptional signatures for tuberculosis

See Online for appendix 2

See Online for appendix 3

For Array Express see 
https://www.ebi.ac.uk

https://www.ebi.ac.uk
https://www.ebi.ac.uk
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significant. Cohort characteristics were compared with χ² 
or Mann-Whitney tests. CIs for the differences between 
proportions were calculated using the Newcombe-Wilson 
method with continuity correction.21 The pROC package 
in R was used to construct receiver operating char-
acteristic (ROC) curves to discriminate between patients 
with and without tuberculosis. CIs for ROC curves’ 
sensitivities were plotted at 1% specificity intervals, using 
the ci.se function of the pROC package. We compared 
AUROCs for each candidate signature in a pairwise 
approach with the DeLong method,22 using the signature 
with highest AUROC as reference.

To test for differential diagnostic accuracy among 
predefined population subgroups, we stratified the cohort 
according to age, sex, ethnicity, HIV infection, previous 
tuberculosis, and indices of disease severity at 
presentation (symptom score, body-mass index [BMI], 
haemoglobin concentration, and sputum smear results). 
We constructed univariable subgroup-specific ROC 
curves and compared their AUROCs using DeLong tests. 
Sensitivity, specificity, and predictive values were reported 
at the maximum Youden index reflecting the highest test 
accuracy.23 Additionally, we assessed diagnostic accuracy 
when fixing sensitivity and specificity at the minimum 
and optimum thresholds, as defined by the WHO TPP 
criteria for triage and confirmatory tests of tuberculosis,2 
using the coords function in the pROC package. WHO 
thresholds for a triage test were minimum 90% sensitivity, 
70% specificity; optimum 95% sensitivity, 80% specificity. 
WHO thresholds for a confirmatory test were minimum 
65% sensitivity, 98% specificity. CIs for proportions 
were calculated using the binomial Wilson method,24 
implemented in the binconf function of the hmisc R 
package. We used the upper limit of the CIs for each 
signature to assess whether they might achieve 
the required thresholds for sensitivity and specificity. 
McNemar’s tests were used to compare sensitivity and 
specificity between Ultra analysis alone and a diagnostic 
algorithm combining sputum Ultra analysis with 
transcriptional signatures (appendix 1, p 4).

We did three sensitivity analyses to confirm the 
robustness of our results. First, we restricted the 
tuberculosis case definition to patients with culture-
confirmation, irrespective of Xpert results. Second, we 
estimated the best possible specificity of the trans-
criptional signatures by simulating increased sensitivity 
of the standard reference that might be achieved using 
four sputum cultures (appendix 1, p 4),25 as previously 
described.10 Third, ComBat was used as an alternative 
batch correction method to the surrogate variable 
analysis used in primary analysis. All statistical analyses 
were done, and data graphically visualised, in R (version 
3.6.0) or GraphPad Prism (version 8.1.1).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, writing 
of the report, or the decision to submit for publication. 
The corresponding author had full access to all the data 
in the study and had final responsibility for the decision 
to submit for publication.

Results
Between Feb 12, 2016, and July 18, 2017, we obtained blood 
RNA samples from 205 consecutive patients.10 Paired 
sputum and RNA sequencing data were available in 
181 participants included in our analysis (figure 1). Their 
baseline characteristics are given in table 1; characteristics 
of participants who were excluded from the analysis are in 

Figure 2: Tuberculosis scores of the four transcriptional signatures with the highest diagnostic accuracy 
overall and stratified by HIV status
Red lines represent the score threshold of the maximal Youden index, identified from analysis of all patients. 
The score difference between individuals with and without tuberculosis was significant for all four signatures in 
both the total cohort and in HIV-stratified cohort subsets (Mann-Whitney test p<0∙0001).
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appendix 1 (p 8). 54 (30%) of 181 patients had pulmonary 
tuberculosis, confirmed by sputum culture or Xpert, and 
included all the individuals who received tuberculosis 
treatment at enrolment, further increasing our confidence 
in the sensitivity of our standard reference for the diagnosis 
of tuberculosis (appendix 1, p 15). 44 (24%) of 181 patients 
were HIV-infected.

Compared with individuals without tuberculosis, a 
greater proportion of patients with tuberculosis were black 
(difference of proportions 0∙24 [95% CI 0∙04–0∙44]). 
Patients with tuberculosis also had higher symptom scores 
(difference of means 1∙1, [0∙6–1∙5]), lower haemoglobin 
concentrations (–1∙7 [–2∙3 to –1∙1]), lower BMI (–1∙9 
[–3∙3 to –0∙4]), and increased leucocytes (1∙3 [0∙2–2∙4]). 
None of these clinical parameters independently discrim-
inated between patients with and without tuberculosis 
with sufficient diagnostic accuracy for a tuberculosis triage 
test as defined by WHO TPP (appendix 1, p 16).2

27 signatures from 18 of 645 articles identified by our 
systematic review and expert consultation met the 
inclusion criteria (appendix 1, p 17; appendix 2; table 2). 
14 of these 27 signatures were derived from study 
populations that included South African participants. 
Ten signatures were discovered in datasets that included 
HIV-infected participants. Five signatures were intended 
for diagnosis of incipient tuberculosis; 22 signatures 
were discovered with their intended application for 
diagnosis of active tuberculosis disease. Of these 
22 signatures, eight aimed to distinguish tuberculosis 
from asymptomatic controls (including people who were 
healthy or with latent tuberculosis infection), five targeted 
discrimination of tuberculosis from other diseases, and 
nine aimed to distinguish tuberculosis from a mixed 
population of patients with other diseases and healthy 
controls. 24 of the 27 signatures were discovered through 
a genome-wide approach. Ten signatures required 
reconstruction of random forest or support vector 
machine models. We assessed whether each of the 
models that required reconstruction or had been 
otherwise altered, achieved the AUROC reported by the 
authors in the original dataset (appendix 1, p 7). We could 
not recapitulate the original AUROC for two signatures: 
Anderson39.OD,26 which had been reduced from 
51 transcripts originally to the 39 protein-coding trans-
cripts that were available in our RNAseq dataset, and 
Duffy10,16 for which our attempt to reconstruct the 
original model did not achieve the same AUROC as 
that reported in their validation data. In this case, 
we used a binary support vector machine model,  which 
did reproduce a similar AUROC in their validation 
cohort. In addition, this assessment was not possible for 
two other signatures (Huang11 and Kaforou45) for which 
the AUROCs were not provided in the original reports.30,31

We ranked the 27 candidate transcriptional signatures 
by their AUROC for discriminating tuberculosis and no 
tuberculosis in all 181 patients. The signature with the 
highest diagnostic accuracy was Sweeney3 (AUROC 

90∙6% [95% CI 85∙6–95∙6]), which was derived from an 
analysis of multiple previously published studies of 
patients with pulmonary tuberculosis compared with 
controls comprising both healthy individuals and 
patients with non-tuberculosis diseases.41 Pairwise 
comparison of the remaining 26 signatures against 
Sweeney3 showed that three other signatures had 
equivalent AUROCs. These were Kaforou25 (86∙9% 
[80∙9–92∙9]), Roe3 (86∙9% [80∙3–93∙5]), and BATF2 
(86∙8% [80∙6–93∙1]; appendix 1, p 9) all derived from 
individual case-control studies comparing patients with 
tuberculosis with healthy controls.13,27,31 The remaining 
23 signatures had inferior AUROCs.

Test scores of the four signatures with the highest 
diagnostic accuracy, among all patients and stratified by 
HIV status, are shown in figure 2. In exploratory 
subgroup analyses, diagnostic accuracy of these four 
signatures was not affected by HIV infection (figure 3) or 
any other patient baseline characteristics, including age, 
sex, and previous tuberculosis disease (appendix 1, p 10). 
AUROCs tended to be numerically lower among black 
patients (compared with those of mixed ancestry), and 
numerically lower in patients with higher BMI and with 

Figure 3: ROC curves for the four transcriptional signatures with the highest diagnostic accuracy in HIV-
infected versus HIV-uninfected patients
Shaded areas represent the 95% CI of the ROC curve sensitivities, plotted at 1% specificity intervals (red shading 
represents HIV-infected patients and blue shading represents HIV-uninfected patients). AUROC values are reported 
with 95% CIs in brackets. p values are derived from pairwise comparison of ROC curves, using DeLong tests. AUROC 
values and CIs are also in appendix 1 (p 10). ROC=receiver operating characteristic. AUROC=area under the ROC curve.
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tuberculosis symptom scores of less than 3, which might 
indicate less severe disease. None of these differences 
was significant for all four signatures. Additionally, there 
was no systematic effect of sputum smear status or 
haemoglobin concentration, as other markers of disease 
severity, on signature performance (appendix 1, p 10). 
Similarly, signature scores did not correlate with duration 
of cough, time to culture positivity, or minimum Xpert 
cycle threshold, as surrogate measures of bacterial load 
(appendix 1, p 18).

Table 3 shows the sensitivity and specificity of the 
BATF2, Kaforou25, Roe3, and Sweeney3 signatures at 
the maximum Youden index of each in all 181 patients. 

When ROC curves of these signatures were bench-
marked against the WHO TPP criteria for a tuberculosis 
triage test, point estimates or 95% CIs of all four 
signatures reached the minimum cutoffs of 90% 
sensitivity and 70% specificity (figure 4). Similarly, when 
fixing either sensitivity at 90% or specificity at 70% to 
enforce minimum WHO TPP diagnostic criteria, all 
four signatures met or approximated to the required 
performance thresholds (table 3). However, the 
optimum target criteria of 95% sensitivity and 80% 
specificity were beyond the 95% CI of all four signatures, 
either at the maximum Youden index or when fixing 
sensitivity or specificity at the required thresholds 
(figure 4, table 3).

As a secondary objective, we assessed signature 
performance as a blood-based confirmatory tuberculosis 
test, using WHO TPP criteria as a reference (figure 4).2 
At the maximum Youden index, all four signatures with 
the highest diagnostic accuracy failed to reach the 
required 98% specificity (table 3). Similarly, when 
setting the test thresholds to enforce either 98% 
specificity or 65% sensitivity, these four signatures were 
substantially short of the minimum performance 
requirements (table 3).

In view of emerging concerns that the higher sensitivity 
of the Ultra test might be compromised by false-positive 
results,7,8,10 we also assessed the potential use of blood 
signatures as an add-on confirmatory test for Ultra-
positive patients. Of 51 patients with Ultra-positive results 
in our cohort, ten (20%) were designated as false-positive 
by comparison with our standard reference (ie, these 
individuals were culture-negative and Xpert-negative at 
enrolment). Six (60%) of the ten Ultra false-positive 
patients had trace-positive results. Previous tuberculosis 
disease was more common in patients with Ultra false-
positive results compared with patients with Ultra true-
positive results (seven [70%] of ten vs 14 [34%] of 41; χ² test 
p=0∙039; figure 5).

Nine of the ten Ultra false-positive patients scored 
consistently below the Youden index threshold of all 
four transcriptional signatures with the highest 
diagnostic accuracy, correctly classifying them as non-
tuberculosis (figure 5). This also included five of the 
six Ultra trace false-positives. However, two to eight 
(5–20%) of the 41 true-positive Ultra patients were 
incorrectly classified as non-tuberculosis at the Youden 
index threshold of each signature, consistent with the 
imperfect sensitivity of the transcriptional signatures. 
A diagnostic algorithm that used the blood trans-
criptional signature results to re-classify all Ultra-
positive patients, or only those with trace results, or 
those with previous tuberculosis, led to improved 
specificity compared with Ultra analysis alone, with 
small associated reductions in sensitivity (table 4). Of 
note, follow-up of cases that were Ultra-positive but 
culture-negative in the parent study revealed that 
three of the ten cases that we designated as Ultra 

Sensitivity Specificity PPV NPV

At maximum Youden index

BATF2 87∙0% (75∙6–93∙6) 79∙5% (71∙7–85∙6) 64∙4% (52∙9–74∙4) 93∙5% (87∙2–96∙8)

Kaforou25 74∙1% (61∙1–83∙9) 89∙8% (83∙3–93∙9) 75∙5% (62∙4–85∙1) 89∙1% (82∙5–93∙4)

Roe3 90∙7% (80∙1–96∙0) 74∙0% (65∙8–80∙9) 59∙8% (48∙9–69∙7) 94∙9% (88∙7–97∙8)

Sweeney3 87∙0% (75∙6–93∙6) 85∙0% (77∙8–90∙2) 71∙2% (59∙4–80∙7) 93∙9% (88∙0–97∙0)

At minimum sensitivity for a triage test

BATF2 90% 59∙8% (51∙1–68∙0) 48∙8% (39∙2–58∙5) 93∙4% (85∙8–97∙0)

Kaforou25 ∙∙ 62∙2% (53∙5–70∙2) 50∙3% (40∙5–60∙1) 93∙6% (86∙3–97∙2)

Roe3 ∙∙ 74∙0% (65∙8–80∙9) 59∙6% (48∙7–69∙5) 94∙6% (88∙2–97∙6)

Sweeney3 ∙∙ 75∙6% (67∙4–82∙2) 61∙1% (50∙1–71∙0) 94∙7% (88∙5–97∙6)

At minimum specificity for a triage test

BATF2 88∙9% (77∙8–94∙8) 70% 55∙7% (45∙2–65∙8) 93∙7% (86∙9–97∙1)

Kaforou25 83∙3% (71∙3–91∙0) ∙∙ 54∙2% (43∙5–64∙4) 90∙8% (83∙4–95∙1)

Roe3 90∙7% (80∙1–96∙0) ∙∙ 56∙3% (45∙8–66∙2) 94∙7% (88∙1–97∙7)

Sweeney3 90∙7% (80∙1–96∙0) ∙∙ 56∙3% (45∙8–66∙2) 94∙7% (88∙1–97∙7)

At optimum sensitivity for a triage test

BATF2 95% 25∙2% (18∙5–33∙4) 35∙1% (27∙8–43∙1) 92∙2% (78∙6–97∙5)

Kaforou25 ∙∙ 28∙3% (21∙2–36∙7) 36∙1% (28∙6–44∙2) 93∙0% (80∙6–97∙7)

Roe3 ∙∙ 13∙4% (8∙5–20∙4) 31∙8% (25∙1–39∙3) 86∙3% (65∙3–95∙5)

Sweeney3 ∙∙ 54∙3% (45∙7–62∙7) 46∙9% (37∙8–56∙2) 96∙2% (89∙0–98∙8)

At optimum specificity for a triage test

BATF2 85∙2% (73∙4–92∙3) 80% 64∙4% (52∙8–74∙5) 92∙7% (86∙3–96∙3)

Kaforou25 81∙5% (69∙2–89∙6) ∙∙ 63∙4% (51∙6–73∙8) 91∙0% (84∙3–95∙1)

Roe3 79∙6% (67∙1–88∙2) ∙∙ 62∙9% (51∙0–73∙3) 90∙2% (83∙4–94∙5)

Sweeney3 88∙9% (77∙8–94∙8) ∙∙ 65∙4% (54∙0–75∙3) 94∙4% (88∙4–97∙4)

At minimum sensitivity for a confirmatory test

BATF2 65% 85∙8% (78∙7–90∙8) 66∙1% (52∙7–77∙4) 85∙2% (78∙0–90∙3)

Kaforou25 ∙∙ 92∙1% (86∙1–95∙7) 77∙8% (63∙8–87∙5) 86∙1% (79∙3–90∙9)

Roe3 ∙∙ 92∙1% (86∙1–95∙7) 77∙8% (63∙8–87∙5) 86∙1% (79∙3–90∙9)

Sweeney3 ∙∙ 93∙7% (88∙1–96∙8) 81∙4% (67∙4–90∙3) 86∙3% (79∙6–91∙1)

At minimum specificity for a confirmatory test

BATF2 53∙7% (40∙6–66∙3) 98% 91∙9% (77∙3–97∙4) 83∙3% (76∙5–88∙4)

Kaforou25 31∙5% (20∙7–44∙7) ∙∙ 87∙0% (66∙0–95∙8) 77∙1% (70∙0–82∙9)

Roe3 33∙3% (22∙2–46∙6) ∙∙ 87∙6% (67∙4–96∙1) 77∙6% (70∙5–83∙3)

Sweeney3 44∙4% (32–57∙6) ∙∙ 90∙4% (73∙7–97∙0) 80∙6% (73∙6–86∙0)

Data are % (95% CI). WHO defines target product profile criteria for a tuberculosis triage test as minimum 
90% sensitivity and 70% specificity, optimum 95% sensitivity and 80% specificity, and for a confirmatory test as 
minimum 98% specificity and 65% sensitivity. PPV=positive predictive value. NPV=negative predictive value.

Table 3: Performance metrics of the four candidate blood transcriptional signatures with the highest 
diagnostic accuracy
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false-positives were diagnosed with tuberculosis at 
intervals of 295, 432, and 777 days.10

Restricting the tuberculosis case definition to culture-
proven patients led to re-assignment of only one culture-
negative, Xpert-positive patient as without tuberculosis. 
Data reanalysis confirmed the finding that the four 
signatures performed equivalently, independent of HIV 
status, while meeting or approximating the minimum 
criteria for a tuberculosis triage, but not confirmatory, test 
(appendix 1, pp 19–20). The possibility that some patients 
might have been diagnosed with tuberculosis after 
enrolment to our study and the absence of multiple 
sputum cultures might have led to an underestimation 
of the specificity of the transcriptional signatures. 
To overcome this limitation, we sought to estimate the best 
possible specificity that the signatures could achieve if the 
sensitivity of the standard reference was increased by 
additional sputum cultures. We reclassified signature 

false-positive cases (at the Youden index threshold) to true-
positive cases by the ratio of the sensitivity expected from 
four sputum cultures to that of a single culture.25 Even in 
this analysis, the four signatures with the highest diag-
nostic accuracy failed to achieve optimum criteria for a 
triage test, and minimum criteria for a confirmatory test 
(appendix 1, p 11). Finally, we repeated our analysis after 
batch correction with ComBat instead of surrogate variable 
analysis. Again, our main findings were unchanged, con-
firming the robustness of our results (appendix 1, pp 21–22).

Discussion
To our knowledge, this is the first comprehensive head-
to-head analysis of candidate blood transcriptional 
biomarkers of tuberculosis in a prospective validation 
cohort with a high burden of tuberculosis and HIV. 
Four signatures (comprising 1–25 genes) had equivalent 
diagnostic accuracy for differentiating patients with and 

Figure 4: ROC curves of the four transcriptional signatures with the highest diagnostic accuracy benchmarked against WHO target product profile criteria
(A) Blue shaded areas represent the 95% CIs of the ROC curve sensitivities, plotted at 1% specificity intervals. AUROC values are reported with 95% CIs in brackets. 
(B) ROC curves are replicated with restricted y axes, and benchmarked against target criteria for a tuberculosis triage test. Minimum criteria (90% sensitivity, 
70% specificity) are indicated by the dashed black boxes, optimum criteria (95% sensitivity, 80% specificity) are indicated by the blue boxes. Light blue shaded areas 
represent the 95% CIs. (C) ROC curves are replicated with restricted x axes and benchmarked against minimum criteria for a confirmatory test (dashed black box: 
65% sensitivity, 98% specificity). Light blue shaded areas represent the 95% CIs. ROC=receiver operating characteristic. AUROC=area under the ROC curve.
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without tuberculosis, irrespective of HIV status. These 
signatures met or approximated to the minimum WHO 
TPP criteria of 90% sensitivity and 70% specificity for a 
triage test to rule out tuberculosis, but failed to reach the 
optimum criteria (95% sensitivity and 80% specificity), 
and at a test threshold that offers the maximum 
diagnostic accuracy, they missed 9–26% of tuberculosis 
cases (ie, five to 14 of 54 patients with tuberculosis).

To date, no transcriptional signature has been translated 
into a point-of-care test, which would require the adaptation 
and validation of these tests as PCR-based assays. Such 
studies are underway;17,29 however, the cost is likely to 
exceed the target threshold of $2 per sample.2 Taken 
together with the suboptimal clinical performance 
observed in our study, the question is raised of whether 
host transcriptional biomarkers represent a realistic 
and achievable triage strategy for the resource-limited 
settings where they are most needed. Of note, the 
diagnostic accuracy of the best transcriptional biomarkers 
in the current analysis was similar to that of point-of-care 
C-reactive protein (CRP) alone for active case-finding 
among HIV-infected individuals.42 Since CRP testing is 
likely to be substantially cheaper, prospective assessments 
of the superiority of transcriptional biomarkers above this 
benchmark are required if they are to be pursued for this 
application. We also tested whether transcriptional 
biomarkers could be used as blood-based confirmatory 
tests for tuberculosis, for which the WHO-specified 
maximum target price is higher. However, the 
transcriptional signatures with the highest diagnostic 
accuracy in our study had insufficient specificity, making 
them non-viable for confirmatory tuberculosis diagnostics. 
A principal advantage of these signatures is the easy 
accessibility of blood sampling. However, alternative 
microbiological tests for tuberculosis using non-sputum 
samples are being developed,43,44 which might offer greater 
promise among patient subgroups where obtaining 
sputum is difficult.

In the current cohort, ten patients had false-positive 
Ultra results, including six with false-positive Ultra trace 
results. This finding permitted exploration of alternative 
clinical applications of host transcriptional signatures. 
The four signatures with the highest diagnostic accuracy 
in our study showed promise in correctly classifying Ultra 
false-positive patients, including those with trace results. 
Our preliminary results suggest that a diagnostic 
algorithm combining Ultra sputum analysis with blood 
transcriptional biomarkers improves Ultra specificity. 
Large-scale prospective validation studies are required to 
further assess this potential application, particularly 
among individuals suspected to be false-positives, such as 
those with trace results or a history of tuberculosis disease. 
Of note, Ultra false-positive results have been attributed to 
non-viable mycobacterial remnants,7,8,10 but the fact that 
three individuals with Ultra false-positive results were 
diagnosed with tuberculosis after 295–777 days’ follow-up 
raises the possibility that some false-positive results might 

Figure 5: Tuberculosis scores of the four transcriptional signatures with the highest diagnostic accuracy in 
patients with Ultra-positive results
Patients with Ultra-positive results were grouped as true-positive tuberculosis (culture-positive or Xpert-positive) 
and false-positive non-tuberculosis (culture-negative or Xpert-negative). (A) Pie charts representing the 
proportion of Ultra-positive patients with tuberculosis and individuals without tuberculosis with a history of 
previous tuberculosis disease. (B) Scores of the four transcriptional signatures with the highest diagnostic accuracy 
in patients with Ultra-positive results. Red dots indicate patients for whom only traces of Mycobacterium 
tuberculosis were detected by Ultra analysis. Dashed lines represent the score thresholds of the maximum Youden 
index, identified from analysis of all patients. The score difference between patients with and without tuberculosis 
was significant for all four signatures (Mann-Whitney test p<0∙0001).
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Previous tuberculosis

Ultra test 
alone

Addition of signature to:

All Ultra-positive 
individuals

Ultra trace-positive 
individuals

Ultra-positive 
individuals with 
previous tuberculosis

Sensitivity

BATF2 82% (69–90) 76% (63–86) 82% (69–90) 80% (67–89)

Kaforou25 ∙∙ 66% (52–78); p=0∙013 82% (69–90) 74% (60–84)

Roe3 ∙∙ 78% (65–87) 82% (69–90) 80% (67–89)

Sweeney3 ∙∙ 76% (63–86) 80% (67–89) 78% (65–87)

Specificity

BATF2 90% (83–95) 99% (95–100); p=0∙0077 95% (89–98) 96% (91–98); p=0∙041

Kaforou25 ∙∙ 100% (96–100); p=0∙0044 96% (91–98); p=0∙041 97% (92–99); p=0∙023

Roe3 ∙∙ 99% (95–100); p=0∙0077 95% (89–98) 96% (91–98); p=0∙041

Sweeney3 ∙∙ 100% (96–100); p=0∙0044 96% (91–98); p=0∙041 97% (92–99); p=0∙023

Data are % (95% CI). Only significant p values are shown. Sensitivity and specificity were calculated for 154 patients 
with Ultra results, with or without reclassification of selected Ultra-positive tests by transcriptional signatures. p value 
of comparison with Ultra alone using McNemar’s test.

Table 4: Sensitivity and specificity of a diagnostic algorithm combining the sputum Ultra test with blood 
transcriptional signature analysis
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represent detection of very early paucibacillary or latent 
infection, undetected by Xpert or culture. In a high-
burden setting, we cannot exclude the possibility that 
these cases were due to acquisition of infection after 
enrolment. Therefore, whether Ultra-positive results in 
the absence of prevalent disease predict future incident 
disease, can only be addressed by randomised trials to test 
whether tuberculosis treatment in this group will reduce 
incident disease.

Among the best-performing signatures, BATF2, 
Kaforou25, and Roe3 were originally discovered by 
comparing patients with active tuberculosis with 
asymptomatic individuals.13,27,31 Nonetheless, their 
perform    ance in this observational cohort of almost 
exclusively symptomatic patients suggests that these 
signatures can discriminate between tuberculosis and 
the casemix of other symptomatic illness in this context. 
Assessing the extent to which these findings are 
generalisable will require sim ilar observational studies 
in settings that might have a different casemix. 
Additionally, whether existing signatures have reached 
the maximum possible diagnostic accuracy using blood 
transcriptomics, or whether novel signatures, derived on 
even larger discovery datasets, might lead to further 
improvements in diagnostic accuracy, remains to be 
seen. Likewise, whether integration of clinical metadata 
with bio markers will generate models with greater 
diagnostic accuracy also needs to be tested using 
independent training and validation cohorts.

Within the limitations of the statistical power in our 
cohort, signature performance was independent of age, 
sex, HIV coinfection, or previous tuberculosis disease, 
and preserved in subgroup analyses of patients stratified 
by sputum smear status or haemoglobin concentrations 
as surrogate measures of disease severity. The point 
estimates for test performance among black patients, 
and patients with higher BMI and lower tuberculosis 
symptom scores were lower, but our study had 
insufficient power to assess the significance of these 
observations for all four signatures with the highest 
diagnostic accuracy.

An important strength of our study was the clinically 
relevant, real-life population of patients who were evaluated 
for tuberculosis in a high-burden setting, with both HIV-
infected and HIV-uninfected individuals, and patients with 
varying severity of tuberculosis disease. We induced 
sputum, ensuring that we did not include only patients 
who could expectorate, for whom there is less need for 
non-sputum tests. Importantly, the non-tuberculosis 
group was not pre-selected to be homo-genous, thus likely 
encompassing a casemix of people with latent tuberculosis 
infection and other diseases. Second, we used a robust 
standard of culture or Xpert positivity as a diagnostic 
reference for our primary analysis, and confirmed that the 
most optimistic estimates of additional cultures in the 
standard reference would not significantly improve 
signature performance. Third, we did a systematic review 

to identify 27 candidate transcriptional signatures for 
tuberculosis to undertake a comprehensive head-to-head 
analysis. Finally, our dataset was exclusively used for 
validation rather than discovery, making it a truly 
independent diagnostic accuracy study.

A limitation of our study was the observed batch effect 
in RNA sequencing data, which appeared to result from 
a mixture of technical batch factors. We addressed this 
effect with two different data adjustment approaches, 
and found in both analyses that the same four signatures 
performed equivalently, irrespective of HIV status, and 
met or approximated the minimum criteria for a 
tuberculosis triage but not a confirmatory test. A second 
limitation of our study was that our cohort was restricted 
to adults with possible pulmonary tuberculosis. Similar 
independent validation studies are needed for children 
and patients with extra pulmonary tuberculosis. Since 
inclusion criteria for our systematic review were not 
limited by age or site of disease, the 27 candidate 
signatures identified could be tested in such a study. 
Third, no alternative diagnoses were available for 
patients without tuber culosis; thus, we were not able to 
establish whether false-positive results were related to 
particular non-tuberculosis diseases. Finally, this study 
was limited to transcriptional bio markers. Prospective 
head-to-head studies comparing performance of trans-
criptional signatures with other candidate triage test 
biomarkers, such as point-of-care CRP42 and automated 
chest radiograph interpretation tools,45 or with strategies 
that integrate biomarkers with clinical metadata, are 
needed.

In conclusion, we showed that four blood transcript-
ional signatures have equivalent diagnostic accuracy for 
active tuberculosis, independent of HIV status. These 
biomarkers achieved the WHO minimum diagnostic 
accuracy para meters required for a tuberculosis triage 
test but failed to meet the criteria for a confirmatory test 
in the present setting. Notwithstanding the challenge of 
achieving the desired target price for such tests, further 
validation studies are needed to assess their application in 
different settings alongside head-to-head comparisons 
with other candidate triage bio markers, with a view to 
interventional trials to assess their clinical and health 
economic effects.
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