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BACKGROUND: Clinical prediction models have been developed for hospitalization for heart failure in type 2 diabetes. However,
a systematic evaluation of these models’ performance, applicability, and clinical impact is absent.

METHODS AND RESULTS: We searched Embase, MEDLINE, Web of Science, Google Scholar, and Tufts’ clinical prediction reg-
istry through February 2021. Studies needed to report the development, validation, clinical impact, or update of a prediction
model for hospitalization for heart failure in type 2 diabetes with measures of model performance and sufficient information
for clinical use. Model assessment was done with the Prediction Model Risk of Bias Assessment Tool, and meta-analyses of
model discrimination were performed. We included 15 model development and 3 external validation studies with data from
999 167 people with type 2 diabetes. Of the 15 models, 6 had undergone external validation and only 1 had low concern for
risk of bias and applicability (Risk Equations for Complications of Type 2 Diabetes). Seven models were presented in a clini-
cally useful manner (eg, risk score, online calculator) and 2 models were classified as the most suitable for clinical use based
on study design, external validity, and point-of-care usability. These were Risk Equations for Complications of Type 2 Diabetes
(meta-analyzed c-statistic, 0.76) and the Thrombolysis in Myocardial Infarction Risk Score for Heart Failure in Diabetes (meta-
analyzed c-statistic, 0.78), which was the simplest model with only 5 variables. No studies reported clinical impact.

CONCLUSIONS: Most prediction models for hospitalization for heart failure in patients with type 2 diabetes have potential con-
cerns with risk of bias or applicability, and uncertain external validity and clinical impact. Future research is needed to address
these knowledge gaps.
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lion annual deaths worldwide." This high rate
of mortality can be partly attributed to the
metabolic alterations that precipitate diabetic car-
diomyopathy and its attendant complications.?
Correspondingly, the development of heart failure
(HF) has emerged as one of the most common and

Type 2 diabetes (T2D) contributes to >1.5 mil-

important manifestations of cardiovascular disease
in individuals with diabetes.® The concern over HF
initially stemmed from safety troubles with certain
antidiabetic treatments (eg, thiazolidinediones), and
the fact that hospitalizations for heart failure (HHF)
portend a poor prognosis.*® Thus, the use of predic-
tion models for identifying patients with diabetes at
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CLINICAL PERSPECTIVE
What Is New?

Available evidence suggests that several widely
available clinical risk tools can robustly prognos-
ticate the risk of heart failure hospitalization in
people with type 2 diabetes and identify those
who may benefit most from novel guideline-
directed medical therapies.

e The effect of most clinical prediction models on
clinical outcomes, patient care, provider behav-
iors has largely been under investigated, as a
result, health, economic, and clinical investiga-
tions of these tools are warranted.

What Are the Clinical Implications?

e Given that several clinical prediction models
have demonstrated robust prognostic accu-
racy, their implementation in clinical settings
might facilitate the identification of high-risk in-
dividuals with type 2 diabetes who may benefit
most from guideline-directed therapies such as
sodium-glucose co-transporter 2 inhibitors.

Nonstandard Abbreviations and Acronyms

ACCORD Action to Control Cardiovascular
Risk in Diabetes trial

HHF hospitalization for heart failure

PROBAST Prediction Model Risk of Bias
Assessment Tool

RECODe Risk Equations for Complications
of Type 2 Diabetes

TRS-HF,,, Thrombolysis in Myocardial
Infarction Risk Score for HF in
Diabetes

WATCH-DM (Weight [BMI], Age, Hypertension,

Creatinine, HDL-C, Diabetes
Control [fasting plasma glucose],
QRS Duration, MI, and CABG) risk
score

particularly high risk for developing HF and HHF has
become clinically important.

Clinical prediction models and risk prediction can
facilitate shared decision-making, recruitment into clin-
ical trials, and the selection of patients who may benefit
most from therapies that reduce the risk of HHF events
(eg, sodium-glucose cotransporter 2 inhibitors).8” In
addition, such models may be used to support clini-
cal trial design and cost-effectiveness studies by sim-
plifying risk stratification.? Although several studies
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have developed prediction models for HHF in people
with T2D, no models have yet been incorporated in
guideline-directed care. Therefore, our review aimed
to evaluate the performance, applicability, and clinical
impact of existing clinical prediction models for HHF in
adults with T2D to facilitate the selection of models for
clinical implementation.

METHODS

The authors declare that all supporting data are avail-
able within the article. This review was conducted
according to a pre-specified protocol that was de-
veloped with clinical experts and registered in the
Open Science Framework (osf.io/na26x).® The re-
view adhered to the Preferred Reporting ltems for
Systematic Reviews and Meta-Analyses and the
Checklist for Critical Appraisal and Data Extraction for
Systematic Reviews of Prediction Modeling Studies
guidelines.!o

Search Strategy

We searched Embase (Ovid), MEDLINE (Ovid), Web
of Science, Google Scholar (first 200 citations), and
Tufts’ Clinical Prediction Model Registry from data-
base inception to February 24, 2021. The complete
search strategy, detailed in Table S1, was developed
and peer-reviewed with 2 academic librarians follow-
ing the Peer Review of Electronic Search Strategies
guidelines.”? Briefly, a 3-concept search strategy using
medical subject headings, Emtree terms, and key-
words related to T2D, HF, and prediction modeling
were applied. Additional citations were included by
consulting content experts and reviewing the reference
and citation lists of included studies (Web of Science),
related reviews, and conference proceedings. No re-
strictions were placed on the language, date, or status
of publications.

Study Selection and Eligibility Criteria

The titles and abstracts of retrieved citations were
screened against prespecified inclusion criteria by 2
independent reviewers (A.R., E.O). References marked
as potentially eligible proceeded to secondary full-text
assessment. Disagreements were resolved by consen-
sus or when needed, by a third reviewer (A.S.). Eligible
studies needed to report the development, validation,
or update of a multivariable prediction model for HHF
with or without the competing risk of death in patients
with T2D (>90% population prevalence). Because our
review aimed to identify models apt for clinical use, eli-
gible studies also needed to report measures of model
performance (>1) and sufficient information for clini-
cal use. Eligible performance measures inlcuded but
were not limited to assessments of model accuracy,
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concordance, Brier score, sensitivity, specificity, dis-
crimination, calibration (eg, Hosmer-Lemeshow test),
or R2. Sufficient information for clinical use constituted
regression coefficients or measures of association (eg,
hazard ratios) for quantifiable and non-arbitrary vari-
ables. Studies not reporting original data (ie, reviews)
were excluded.

Data Extraction

Two reviewers (A.R., E.O.) independently extracted the
characteristics of the studies and cohorts used to de-
velop, validate, or update eligible models. Extracted
study and model characteristics included the first au-
thor, year of publication, model data source, model
derivation and validation methods, number of predic-
tors screened, variables included in the final model,
measures of model performance, outcome details
(ie, time horizon, definition), and model presentation.
Extracted cohort characteristics included patients’ ge-
ographic region, age, sex, comorbidities (ie, HF, coro-
nary artery disease), follow-up period, and number of
cumulative events. In instances where multiple models
were reported in a single study, data were extracted
from the best performing model. Discrepancies be-
tween the reviewers’ results were resolved through
consensus or a third reviewer (A.S.).

Model Evaluation

Included studies were evaluated with the Prediction
Model Risk of Bias Assessment Tool (PROBAST)."
PROBAST comprises 4 domains designed to identify
methodological limitations in model development and
validation with respect to selected participants, predic-
tors, outcomes, and analyses. PROBAST also includes
domains designed to assess the applicability of devel-
oped models with respect to the included participants,
predictors, and outcomes. As the purpose of this re-
view was to identify models apt for clinical use, many
variables (>7) and the inclusion of continuous variables
were separately considered as barriers to routine use
after discussions with clinical experts. Based on the
PROBAST domains, potential concern with the risk of
bias or applicability of primary studies were classified
as either high, low, or unclear. Risk of bias assess-
ments were done in duplicate by 2 independent re-
viewers (A.R., E.O.), and disagreements were resolved
by consensus, or a third reviewer as needed (A.S.).

Performance Measures and Model
Validation

A clinical prediction models’ performance may be eval-
uated in internal- or external validation through meas-
ures of discrimination and calibration. Discrimination
reflects a model's ability to distinguish between
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patients who do and do not experience an outcome of
interest.'* Calibration conversely reflects a model’s pre-
dictive accuracy: ie, the agreement between the pre-
dicted probability of events and the actual proportion
of events observed.' A detailed explanation of internal-
and external validation and commonly used measures
that evaluate these metrics is available in Data S1.

Data Synthesis Statistical Analysis

We constructed evidence tables with details of the
identified clinical prediction models and their derivation,
validation, or updated (eg, presentation, performance,
included variables, risk of bias, and applicability). For
the analysis of overall discrimination, meta-analyses
were performed using random-effect models in in-
stances where multiple c-statistics (>3) were available
for the same prediction model in internal- or external
validation. For primary studies where meta-analysis
was not indicated, the results were synthesized quali-
tatively using a narrative approach. Furthermore, in
response to expert review, our protocol was modified
to synthesize the modeling studies according to HHF
and new-onset HHF, respectively. Statistical analyses
were performed using R version 4.0.3 (R Foundation
for Statistical Computing, Vienna, Austria).

RESULTS

The literature search identified 6192 citations (Figure 1).
After screening, a total of 18 studies'®~3? published be-
tween 2008 and 2021 were included in the review, with
data from 999 167 unique patients with T2D. Of these
18 studies,'®%? 2 were identified by screening refer-
ence lists®® and conference abstracts,®° respectively.
A flow diagram of study selection is shown in Figure 1
and the list of excluded full-text citations is available in
Table S2.

Study and Model Characteristics

Together 15 multivariable prediction models'®2° were
assessed as 3 studies®?-3? exclusively performed ex-
ternal validation. Most modeling studies used rand-
omized controlled trials (9 of 15)15-1719-22.25.28 for model
development, 3 of which were the ACCORD (Action
to Control Cardiovascular Risk in Diabetes) trial,2%:2133
The median number of participants and events used
for model development was 8756 (interquartile range,
5184-16 013) and 258 (interquartile range, 223-420),
respectively (Table 1). The median number of included
variables was 10 (interquartile range, 7-12) with the
most common being age (12 of 15), body mass index
(8 of 15), and systolic blood pressure (8 of 15; Figure 2).
A minority of models incorporated race and ethnicity (4
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[ Identification of studies via databases and registers ]
— X
Records identified from: Records removed before
c Databases (n = 6 153) screening.
Embase (n = 3 473) Duplicate records removed
MEDLINE (n = 1 054) (n=1938)
Google Scholar (n = 200) Records marked as ineligible
% Web of Science (n = 1 426) by automation tools (n = 0)
=2 Registers (n = 37) Records rerpoved for other
Other (n = 2) reasons (n = 0)
~—
"
Records screened Records excluded
(n =4 254) (n=4092)
Reports sought for retrieval »| Reports not retrieved
e (n=162) (n=0)
£
a Y
Reports assessed for eligibility Reports excluded:
=162 Incorrect study type (n = 38)
(n )
Incorrect outcome (n = 34)
Incorrect population (n = 27)
Not original data (n = 17)
Not enough information for use (n = 12)
Duplicate (n=9)
— Missing performance measures (n = 7)
Models included in review
(n=15)
Reports of included models
(n=18)
Figure 1. PRISMA flow diagram for study selection.

PRISMA indicates Preferred Reporting ltems for Systematic Reviews and Meta-Analyses.

of 15) or sex (3 of 15); estimated glycated hemoglobin
was more common in models predicting incident HHF
@ of 6) whereas glomerular filtration rate was more
common in models predicting incident or recurrent
HHF (5 of 9). Tables 2 and 3 summarize the complete
details of the included models and their internal and
external performance.

Models With Clinical Utility and External
Validation

Of the 15 multivariable models,'®2° 7 were presented
in a useful manner (eg, risk score, online calcula-
tor),1720,2124.25.27.28 Of these, 5 had their performance
evaluated in external validation (Table 3).17:20.2125.27
These were the Thrombolysis in Myocardial Infarction
(TIMI) Risk Score for HF in Diabetes (TRS-HFp,)'""; the
BRAVO (Building, Relating, Assessing, and Validating
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Outcomes) risk engine®®; the Risk Equations for
Complications of Type 2 Diabetes (RECODe)?"; the
Weight, Age, Hypertension, Creatinine, HDL-C, Diabetes
Control, QRS Duration, MI (myocardial infarction), and
CABG (WATCH-DM) risk score?®; and QDiabetes.?” Two
models strictly predicted incident HHF,2>2” whereas the
other 3 predicted incident or recurrent HHF in patients
with and without prevalent HF (Table 1).1%20.21

TRS-HF,,, Risk Score

The TRS-HFg,, was developed in SAVOR-TIMI 53
(Saxagliptin - Assessment of Vascular Outcomes
Recorded in Patients with Diabetes Mellitus-TIMI
53) trial (Table 1)'” and externally validated in 3 trials
(N=19 081; Table 3).°03" The development cohort
had a mean age of 65.0 years and a median follow-up
time of 2.1 years; the prevalence of HF and coronary
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Figure 2. Matrix of risk predictors for heart failure hospitalization in included model development studies.
Afib indicates atrial fibrillation; BMI, body mass index; BUN, blood urea nitrogen; CABG, coronary artery bypass grafting; CAD,

coronary artery disease; CBV, cerebrovascular disease; CKD, chronic kidney disease; Cr, Creatinine; CRF, chronic renal failure; DBP,
diastolic blood pressure; FPG, free plasma glucose; GAL3, Galectin-3; GDF-15, Growth-Differentiation-Factor-15; GFR, Glomerular
Filtration Rate; HBA1c, glycated hemoglobin Alc; HDL, high-density lipoprotein; HHF, hospitalization for heart failure; HF, heart failure;
HsTNI, high-sensitivity troponin; LA/RA, left atrium / right atrium; LDL, low-density lipoprotein; MR-pro-ADM, Mid-regional pro-ADM;
NT-proBNP, N-terminal pro-B-type natriuretic peptide; PVD, peripheral vascular disease; and SBP, systolic blood pressure.

artery disease was 12.8% and 62.4%, respectively. The
TRS-HFp,, is an integer-based risk score between 0 to
7 that uses 5 clinical variables (Table 2) and predicts
the 4-year risk of incident or recurrent HHF. Proteomic
biomarkers were purposely excluded to prioritize par-
simony and ease-of-use. Good discriminative perfor-
mance was observed in internal validation (c-statistic:
0.81; Table 2)."" In addition, external validation studies
showed moderate-to-good discrimination and cali-
bration for 0.5-, 2.5-, 4- and 7-year event predictions
(Table 3).3%8" The overall c-statistic was 0.78 (95% ClI,
0.76-0.80; Figure 3). However, 1 external validation
study demonstrated the model modestly overestimated
the risk of events for individuals with diabetes and acute
coronary syndrome who are classified at severe risk.%°

WATCH-DM Risk Score
The Weight, Age, Hypertension, Creatinine, HDL-C,
Diabetes Control, QRS Duration, MI, and CABG risk
score was developed in the ACCORD trial (Table 1) and
externally validated in 1 trial (N= 10 819; Table 3).?5 The
development cohort had a mean age of 62.7 and a
median follow-up time of 4.9 years; the prevalence of
HF and coronary artery disease was 0% and 35.2%,
respectively. The model predicts the 5-year risk of
incident HHF and is available as an online calculator
as well as an integer-based risk score that can range
between 0 to 34. The model used machine learn-
ing for development, and it included 7 multinomous
clinical variables (Table 2). In external validation, the
online calculator had a c-statistic of 0.74 and Hosmer-
Lemeshow ¥? of 11.1 (P=0.20) while the risk score had

J Am Heart Assoc. 2022;11:e024833. DOI: 10.1161/JAHA.121.02

a c-statistic of 0.70 and Hosmer-Lemeshow ¥? of 10.0
(P=0.29). Markedly, the risk score showed better per-
formance for incident HF with reduced ejection fraction
versus preserved ejection fraction in external validation
(c-statistic, 0.72 versus 0.64, respectively, P<0.001).

Building, Relating, Assessing, and
Validating Outcomes Risk Engine
The Building, Relating, Assessing, and Validating
Outcomes risk engine was developed in ACCORD and
externally validated in 3 trials (N = 16 388; Table 3).°
The development cohort had a mean age of 62.8 and a
median follow-up time of 4.7 years; the prevalence of HF
and coronary artery disease was 4.8% and 35.2%, re-
spectively. Building, Relating, Assessing, and Validating
Outcomes predicts the annual risk of incident or recur-
rent HHF alongside stroke, MI, angina, revascularization,
severe pressure loss, end-stage renal disease, blind-
ness, all-cause mortality, and cardiovascular death. The
model is accessible as an online calculator that requires
18 variables, 9 of which are for HHF (Table 2). Internal
validation demonstrated good performance: for HHF
the Brier score was 0.008 and the c-statistic was 0.79
(95% Cl, 0.77 to 0.81). In external validation, the risk en-
gine demonstrated good calibration across the 28 end
points (calibration slope: 1.07; R% 0.86), however, HHF
specific calibration was not reported.?°

RECODe Risk Equations

RECODe was developed in ACCORD and validated in
3 cohorts (N = 8 061; Table 3).2"3? The development

4833
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cohort had a mean age of 62.8 and a median follow-
up time of 4.7 years; the prevalence of HF and coro-
nary artery disease was 4.8% and 35.2%, respectively.
The risk equation is available as an online calculator
that predicts incident or recurrent HHF alongside the
10-year risk of nephropathy, retinopathy, neuropathy,
myocardial infarction or stroke, and all-cause mortal-
ity. The online calculator requires 16 clinical variables,
14 of which are for HHF (Table 2). RECODe showed
moderate-to-good discrimination and calibration in
internal and external validation. In ACCORD, the c-
statistic was 0.75 and the calibration slope was 1.01
(P=0.93 [insignificant p-values indicate acceptable cal-
ibration]).?! In external validation, the c-statistic ranged
between 0.73 to 0.80 and the calibration slopes ranged
between 0.72 to 1.13 for the 10-year estimated risk of
HHF (Table 3).°2 The overall c-statistic for RECODe
was 0.76 (95% ClI, 0.73-0.79; Figure 3).

QDiabetes Risk Calculator

QDiabetes was developed using primary care data
from 437 806 people and then validated in 2 cohorts
(N = 334 933, Table 3).%” The development cohort had
a mean age of 60.0 and a follow-up time of 15 years;
the prevalence of HF and coronary artery disease was
0% and 17.4%, respectively. The risk calculator is avail-
able as a sex-specific online calculator that predicts
the 10-year risk of incident HHF. The risk calculator
uses 12 variables (Table 2). The model demonstrated
moderate performance in internal and external valida-
tion. In internal validation the c-statistic was 0.76 and
0.77 in men and women, respectively, whilst in external
validation the c-statistic was 0.77 and 0.78. Calibration,
which was assessed visually with calibration plots, was
satisfactory as there was good agreement between the
predicted and observed risks in each validation cohort.
The overall c-statistic for the QDiabetes Risk Calculator
was 0.77 (95% Cl, 0.76-0.78; Figure 3).

Models With Incomplete Evaluation

The 10 remaining clinical prediction models either never
underwent external validation (9 of 10)!5.16:19.22-24,26,28,29
or were externally validated but not presented in a clini-
cally practical form (1 of 10; Table 1)."® Therefore, these
models’ clinical utility was judged as less applicable
for the review. As an exception, 2 models were pre-
sented as integer-based risk scores that could be rel-
evant in certain settings.?*?® The first model by William
and colleagues used routine care data to predict the
1-, 3- and 5-year risk of HHF.?* The model used 9
variables (Table 2) and had moderate discrimination in
patients without prior HF (c-statistic: 0.78). The sec-
ond model by Pfister and colleagues used data from
PROactive (Prospective Pioglitazone Clinical Trial in
Macrovascular Events) to develop an 11 variable risk
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score (Table 2).28 Internal model performance with
bootstrap re-sampling was moderate (c-statistic: 0.75):
however, there were some concerns with applicability
(eg, inclusion of variables with limited availability).

Risk of Bias and Applicability

The most prevalent sources of potential bias in model de-
velopment included use of unblinded outcome adjudica-
tion (12 of 15),'92529 handling of missing data (11 of 15),
management of competing risk (8 of 15),11722-24.27-29 gng
consideration of model overfitting (8 of 15).15:16:19.22-24.26,27
Applicability concerns were model predictor accessibility
(6 of 15)6:19.2225.26.28 gnd generalizability of the derivation
cohorts (6 of 15).161824.2528.29 | vglidation, sources of bias
included unblinded outcome adjudicaton (8 of
0)!7/18,20.21,25.30-32 gnd evaluation of model performance (4
of 9).1718.2531 Al but one model (RECODe) by Basu and
colleagues?! had potential for risk of bias during develop-
ment, and all but 3 models'2°2" had potential applicability
concerns (Figures S1 through S4).

DISCUSSION

This review was designed to evaluate existing clinical
prediction models for HHF in adults with T2D to fa-
cilitate clinical model selection. Only studies reporting
performance measures and sufficient information for
model use were included to highlight tools with the
most clinical utility. Altogether 15 models were iden-
tified, of which only 5 were externally validated and
presented in a clinically practical form. Most identified
models (n=15) included >7 variables (75%) or only re-
ported regression coefficients (53%), limiting clinical
applicability. Moreover, most identified clinical predic-
tion models had potential concerns with risk of bias
(93%) or applicability (67%), highlighting the need for
improved methods in modeling studies.

Prieto-Merino and Pocock have proposed that 3
features of risk models should be favored: (1) relative
simplicity with reasonably easy-to-obtain variables; (2)
clinical relevance in the context of the disease state;
and (3) overall generalizability to other settings. Models
with these characteristics should be favored compared
with complex mathematical models.3* Based on these
criteria and our appraisal of the included models’ risk of
bias, the RECODe risk equations?' and the TRS-HF,,"”
demonstrated the most clinical potential. Both models
were easy-to-use (eg, as risk scores and online calcu-
lators) and were externally validated (ie, generalized) in
3 large cardiovascular safety trials. Although RECODe
was the only model with low potential for risk of bias,
it requires the input of 16 variables, which restricts
its potential for routine use. Nevertheless, RECODe
provides risk estimates for several diabetes-specific

‘References 15,16,18-20,22,23,25,26,28,29
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Reference Year Study type Validation cohort Sample size C Statistic 95%-Cl Weight
TRS-HFpm_
Berg etal.” 2020 Internal validation SAVOR-TIMI53 8212 —— 0.81 [0.78-0.84] 24.7%
Berg etal.’ 2020 External validation DECLARE-TIMI 58 8578 —— 0.78 [0.75-0.81] 25.9%
Elharram et al. ! 2020 External validation ACCORD 5123 —— 0.78 [0.75-0.81] 25.9%
Razaghizad et al. 2 2021 External validation EXAMINE 5380 —a— 0.75 [0.71-0.78] 23.4%
Random effects model — 0.78 [0.76 -0.80] 100.0%
Heterogeneity: /2 = 54%, t* = 0.0004, P = 0.09 N I B
0.74 0.76 0.78 0.8 0.82 0.84
RECODe C Statistic
Basu etal.” 2017 Internal validation ACCORD 9635 —— 0.75 [0.73-0.77] 26.3%
Basuetal.” 2017 External validation Look AHEAD 4760 + 0.76 [0.73-0.80] 21.6%
Basu et al.*? 2018 External validation MESA 1655 —— 0.80 [0.78-0.82] 25.9%
Basu et al.®2 2018 External validation JHS 1746 — 0.73 [0.71-0.75] 26.2%
Random effects model 0.76 [0.73-0.79] 100.0%
Heterogeneity: 12 = 87%, t° = 0.0013, P < 0.01 r—rTrTr T
. 0.74 0.76 0.78 0.8 0.82 0.84
QDiabetes C Statistic
Hippisley-Cox et al”® 2015 Internal validation Qresearch (Men) 76876 g 0.76 [0.76-0.77] 25.0%
Hippisley-Cox etal.® 2015 Internal validation Qresearch (Women) 60152 - 0.77 [0.76-0.78] 23.6%
Hippisley-Cox etal.®® 2015 External validation CPRD (Men) 111129 . 0.77 [0.76-0.77]) 26.2%
Hippisley-Cox etal.® 2015 External validation CPRD (Women) 86776 . 3 0.78 [0.78-0.79] 25.3%
Random effects model < 0.77 [0.76-0.78] 100.0%
Heterogeneity: 12 = 82%, t° < 0.0001, P < 0.01 rrTr T T
0.74 0.76 0.78 0.8 0.82 0.84
C Statistic

Figure 3. Meta-analysis of externally validated clinical prediction models’ discrimination.

ACCORD indicates Action to Control Cardiovascular Risk in Diabetes trial; CPRD, Clinical Research Practice Datalink database;
DECLARE-TIMI 58, The Dapagliflozin Effect on Cardiovascular Events-Thrombolysis in Myocardial Infarction 58 trial; EXAMINE,
Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care trial; JHS, Jackson Heart Study; Look AHEAD,
Action for Health in Diabetes trial; MESA, The Multi-Ethnic Study of Atherosclerosis trial; RECODe, Risk Equations for Complications
of Type 2 Diabetes; SAVOR-TIMI 53, Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus—
Thrombolysis in Myocardial Infarction 53 trial; and TRS-HF,,, Thrombolysis in Myocardial Infarction (TIMI) Risk Score for Heart Failure

in Diabetes.

complications, making it potentially apt for compre-
hensive metabolic, cardiovascular, and renal risk pre-
diction.?" The TRS-HF,,, in contrast, was one of the
simplest model for HHF as it was an integer-based risk
score that only required 5 common variables. Berg and
colleagues, who developed the model, demonstrated
it could identify a 20-fold risk gradient and patients who
derive greatest absolute benefit from sodium-glucose
co-transporter 2 inhibition.'”35 Despite these strengths,
the TRS-HFp,, has yet to be externally validated in a
low-risk population-based cohort. Future research
may seek to simplify the RECODe risk equations or ex-
ternally validate the TRS-HF,, in a low-risk non-clinical
trial population.

Defining HF Hospitalization

At present, it is unclear if research should focus on
developing new models for incident HHF or validating
and using models that already predict new-onset HHF
alongside recurrent events (eg, RECODe, TRS-HF,,).
On one hand, future prediction modeling studies
may need to focus on incident HHF as the therapeu-
tics options (eg, quadruple therapy, sodium-glucose
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co-transporter 2 inhibitors) for individuals with diabetes
who have prevalent HF are already well established.36-3°
The prediction of new-onset HHF, in addition, may be
particularly important as the use of sodium-glucose
co-transporter 2 inhibitors to prevent the development
HF has traditionally been overlooked compared with
the prevention of traditional major adverse cardiovas-
cular events.“® Therefore, the prediction of new-onset
HF could offer more avenues for clinician-patient dis-
cussions to facilitate the implementation of therapies
that prevent HF development. On the other hand,
predicting new-onset or recurrent HHF provides gen-
eralizable models that are applicable for a larger seg-
ment of individuals with diabetes who are at risk of HF.
Ultimately, both avenues present a good path to in-
crease the implementation of guideline-directed medi-
cal therapy. However, at present there is no consensus
on this issue.

Overcoming Barriers to Adoption

Despite the proliferation of prediction models for HHF
in individuals with T2D, few models have been suc-
cessfully incorporated into routine care. A previous
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systematic review of mortality models for patients
with HF highlighted deficiencies that have limited the
adoption of clinical prediction models. The review, by
Alba and colleagues,*' prompted a former FDA com-
missioner to critique the fact that most models have
insufficient validation and the fact that those with the
greatest levels of validation are derived from popula-
tions with limited generalizability (eg, clinical trials).*?

Our review adds to this literature as it shows that
after aimost 10 years the same problems have been left
unresolved. Furthermore, we have identified that few
models are applicable for point-of-care use because
of either the large number of variables required, or the
sole reporting of regression coefficients. As a result, in
the absence of electronic medical records that can in-
tegrate complex algorithms for decision support,*? we
encourage investigators to develop models that can
readily be implemented at the point-of-care.

Our data demonstrated that 80% of clinical pre-
dictions models for HHF in T2D included at least one
measure of renal function (eg, albuminuria, estimated
glomerular filtration rate, serum creatinine, blood urea
nitrogen), underscoring its importance in HHF predic-
tion. However, our data also demonstrated that car-
diac biomarkers (eg, natriuretic peptides, troponins)
may currently be underutilized. As a result, future mod-
eling studies may consider further leveraging cardiac
biomarkers to improve predictive performance and
thus the impetus for applying predictive models in
practice.*® However, it may be important to develop
biomarker- and non-biomarkers versions to facilitate
adoption in resource-limited settings.

Methodological and Reporting Issues
As part of the systematic review, a detailed critical ap-
praisal of the risk of bias and applicability of the included
studies was performed. This was done to identify po-
tential methodological issues in the conduct of included
studies. Our data demonstrated that most studies de-
veloping models for HHF did not or were not able to
blind outcome adjudication to candidate baseline vari-
ables as most studies used data already collected from
clinical trials. This was not a major concern in a few
studies (ie, those that accounted for model overfitting).
However, models which included prior HF as a risk pre-
dictor were at high risk of biased predictive accuracy
as knowledge of predictors can influence outcome de-
termination.'®444% We acknowledge blinding adjudica-
tion to patients’ baseline clinical information would likely
present forbidding practical challenges. Therefore, in
response, we recommend investigators planning to use
data from established clinical trials to include statistical
methods to address model overfitting.

In the included studies, information relevant to the
handling of missing data were also often excluded. Few
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studies implemented statistical imputation for dealing
with missing data and even fewer reported the char-
acteristics of patients with missing data. This can se-
verely affect model validity as patients who are lost to
follow-up can differ significantly from the target popu-
lation.*647 Similarly, few studies considered competing
risks (eg, death) in model development, which can lead
to informative censoring and risk overestimation,*&4°
As the complications of HF and diabetes can dispro-
portionality affect older patients, it is important to use
techniques (eg, Fine and Gray regression, cause spe-
cific hazard models)*®® to account for competing risk
and maximize model performance. To ensure model
quality, investigators should reference reporting stan-
dards (eg, the Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis)
and risk of bias tools (eg, PROBAST) during model
development.'s:5"

Strengths and Limitations

This review adhered to numerous best practices for sys-
tematic reviews. To ensure transparent reporting and
analysis, the protocol was publicly registered in Open
Science Framework.® A highly sensitive search strategy
was also developed to provide a comprehensive over-
view of existing models. The search included several re-
sources including bibliographic databases, conference
proceedings, content experts, and a clinical prediction
model registry. Likewise, no restrictions were placed on
the date, status, or language of publications. All aspects
of the review were also done in duplicate including the
data extraction, which followed Checklist for Critical
Appraisal and Data Extraction for Systematic Reviews
of Prediction Modeling Studies guidance,'" and the risk
of bias and applicability assessment, which was done
with PROBAST."® Consequently, to our knowledge, this
systematic review constitutes an evidence map of the
highest available evidence on clinical prediction models
for HHF in adults with T2D to date. The review may thus
facilitate evidence-based decisions at the point of care,
which may have been hampered in the past by a lack of
clarity in the literature.

Despite the strengths, there were limitations with
the review. First, most models that we included were
judged to have potential concerns with risk of bias or
applicability in their development, stemming largely
from their methods of analysis and predictor selec-
tion. However, this fact was one of the most import-
ant findings of the review as it motivated our proposed
guidance for future model development. In addition,
it is important to highlight that potential for bias does
not mean that the included models were significantly
flawed. Likewise, nor does it mean that studies with
fewer potential concerns are more valid than studies
with multiple potential flaws.
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Second, relevant studies that did not mention or
did not include index terms for T2D may have been
missed. Third, as noticed in this review, the clinical util-
ity or net benefit of the identified models was not evalu-
ated in any of the studies. Therefore, the effect of these
models on real patient outcomes remains unclear and
warrants evaluation in external validation and impact
studies. Finally, because only 1 study?' was judged
at low risk of bias in development, no association be-
tween predicted outcomes and methodological quality
could be inferred.

Future Directions

Clinical prediction models may improve health out-
comes and resource usage only to the degree that
they affect individual patients’ or health care provid-
ers’ behaviors. As mentioned, no studies evaluated
the effect of an eligible model on behavioral change
or patient events. As a result, cluster randomized
controlled trials evaluating the impact of the identified
models may be warranted. However, because clinical
trials can be expensive, other study designs may be
leveraged to conduct initial feasibility assessments.
For instance, studies assessing health care provid-
ers’ judgments before-and-after being presented a
model could be a cost-effective study design for such
means.®? Likewise, decision curve analysis, a method
for evaluating prediction models, may be used to eval-
uate potential net benefit (eg, number of unnecessary
treatments avoided) because of attributable to risk
prediction.53%* Although a detailed explanation of the
methodology is outside the scope of this review, posi-
tive findings compared with standard-of-care could
inform the implementation of risk tools into guideline-
directed T2D management.

Lastly, 2 studies by Segar and colleagues devel-
oped machine learning models according to sex, race
and ethnicity, and HF subtype.?®32 Their data showed
risk prediction models may vield significantly differ-
ent results between these groups. Therefore, future
model development and validation studies should aim
to validate model performance according to sex, race
and ethnicity, and HF subtype as the risk factors and
approaches to mitigate risk may differ.?® As sex was
under-represented in the prediction models included
in this review, it will be particularly important for future
studies to underscore the role of sex as T2D confers an
excess of risk for HF in women than in men.%®

CONCLUSIONS

Evaluating cardiovascular risk is critical for guiding the
selection of preventive therapies in patients with T2D.
While there has been a proliferation of cardiovascular
prediction models for HHF in these patients, there is a
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lack of external validation studies to ensure their per-
formance and generalizability. Moreover, most models
for HHF have potential concerns with risk of bias and
applicability. In terms of the best available models, the
TRS-HF,, was identified as particularly apt for routine
point-of-care use, while RECODe may be helpful in
instances where holistic cardiovascular risk assess-
ment is required. Nevertheless, the actual effect of
even the best models remains unclear because of an
absence of clinical impact studies. As a result, stud-
ies evaluating model-based judgments in comparison
with existing clinical practice may be warranted to
evaluate clinical prediction model utility in real-world
practice before implementation into guideline-directed
medical care.
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Data S1. Detailed Description of Internal- and External Validation, and Measures Used to
Evaluate These Metrics.

A clinical prediction models’ performance may be evaluated in internal- or external
validation. Internal validation reflects a models' reproducibility, and it includes apparent
validation, where the model is validated in the derivation cohort; split-sample validation, where
the data is randomly split into a training and validation set; bootstrapping, where multiple training
and validation datasets are created by random draw; and cross-validation, where training is done
in a random segment of the cohort and tested in the remaining part.2 External validation conversely
reflects a models’ generalizability, and it includes geographic validation, where validation is done
in another country or center; independent validation, where validation is done by other researchers;
and temporal validation, where validation is done using data from a different period.®®

Model performance is normally evaluated through discrimination and calibration.
Discrimination reflects a model’s ability to distinguish between patients who do and do not
experience an outcome of interest.!* Discrimination is frequently assessed with measures of
concordance (e.g., c-statistic, AUC) and it can range between 0.5 for a model no better than the
play of chance to 1.0 for a perfect model.>” Concordance estimates the probability that a randomly
selected patient who experienced an outcome had a higher predicted risk than a patient who did
not. Calibration reflects a model’s predictive accuracy: i.e., the agreement between the predicted
probability of events and the actual proportion of events observed.'* Calibration is frequently
assessed with statistical tests for goodness-of-fit (e.g., Hosmer-Lemeshow, p<0.05 signifies poor
calibration), or graphical plots for visual assessment (e.g., calibration plot slope <0.7 signifies poor
calibration).>®%° Less common performance measures are described elsewhere and include R?,

Brier score, sensitivity, specificity, accuracy, and net reclassification.®



Table S1. Systematic Search Algorithms.

Database: Ovid MEDLINE(R) ALL <1946 to February 24, 2021> 1,054 records

O R wNE

~

*diabetes mellitus, type 2/

(diabet™ and ("type 2" or “type ii* or non-insulin* or noninsulin*)).mp.

(T2DM or DMT2 or TIIDM or DMTII or NIDDM).mp.

exp *heart failure/

((heart or cardiac or myocardial) adj2 failure*).mp.

((prognos™* or predict* or risk* or strati*) and (model* or tool* or scor* or index or nomogram* or formula* or staging or calculat* or
equation* or strati* or chart* or function* or engine* or algorithm*)).ti,ab,kw.

*risk assessment/ or exp *risk factors/ or *multivariate analysis/ or exp regression analysis/ or exp survival analysis/ or disease-free
survival/ or kaplan-meier estimate/ or progression-free survival/ or proportional hazards models/ or logistic models/ or nomograms/ or
area under curve/ or exp models, statistical/

("disease free survival™ or "proportional hazard* model*" or (survival adj2 anal*) or "kaplan-meier estimate*" or "progression-free
survival" or develop* or (cox adj3 (model* or anal*)) or (random adj2 forest*) or regress* or (logistic* adj2 model*) or multivari* or
(likelihood adj2 function) or (area under adj2 curve) or (statistical adj3 model*) or discrimin* or calibrat* or valid* or "integer-based" or
“support vector*" or (machine adj2 learning*) or mathematic* or concordance* or c-statistic* or c-ind* or hosmer-lemeshow™ or
hazard* or wald* or "survival rate*" or "survival time*" or "survival funct*").mp.

(Lor2or3)and (4 or 5)and 6 and (7 or 8)

Database: Embase Classic+Embase <1947 to February 24, 2021> 3,473 records

Nogok,rwnE

o

exp *non insulin dependent diabetes mellitus/

(diabet™ and ("type 2" or "type ii" or non-insulin* or noninsulin*)).mp.

(T2DM or DMT2 or TIIDM or DMTII or NIDDM).mp.

exp *heart failure/

((heart or cardiac or myocardial) adj2 failure*).mp.

(prognosis/) and (model/)

((prognos™* or predict* or risk* or strati*) and (model™* or tool* or scor* or index or nomogram* or formula* or staging or calculat* or
equation™ or strati* or chart* or function* or engine* or algorithm¥)).ti,ab,kw.

exp risk assessment/ or exp risk factor/ or exp multivariate analysis/ or exp regression analysis/ or *disease free survival/ or exp
proportional hazards model/ or *statistical model/ or exp nomograms/ or *area under the curve/ or exp mathematical phenomena/
("disease free survival” or "proportional hazard* model*" or (survival adj2 anal*) or "kaplan-meier estimate*" or "progression-free
survival" or develop* or (cox adj3 (model* or anal*)) or (random adj2 forest*) or regress* or (logistic* adj2 model*) or multivari* or
(likelihood adj2 function) or (area under adj2 curve) or (statistical adj3 model*) or discrimin* or calibrat* or valid* or "integer-based" or
"support vector*" or (machine adj2 learning*) or mathematic* or concordance* or c-statistic* or c-ind* or hosmer-lemeshow™ or
hazard* or wald* or "survival rate*" or "survival time*" or "survival funct*").mp.

(Lor2or3)and (4 or5)and (6 or 7) and (8 or 9)

Database: Web of Science Core Collection <database inception to February 24, 2021> 1,426 records

=

ts= (diabet* and ("type 2" or "type ii" or noninsulin or “non-insulin”))

ts=((heart or cardiac or myocardial) near/2 failure*)

ts=((prognos™* or predict* or risk* or strati*) and (model* or tool* or scor* or index or nomogram* or formula* or staging or calculat*
or equation™ or strati* or chart* or function* or engine* or algorithm*))

ts=(""disease free survival" or “proportional hazard* model*" or (survival near/2 anal*) or “kaplan-meier estimate*" or "progression-free
survival" or develop™ or (cox near/3 (model* or anal*)) or (random near/2 forest*) or regress* or (logistic* near/2 model*) or multivari*
or (likelihood near/2 function) or (area under near/2 curve) or (statistical near/3 model*) or discrimin* or calibrat* or valid* or "integer-
based" or "support vector*" or (machine near/2 learning*) or mathematic* or concordance* or c-statistic* or c-ind* or hosmer-
lemeshow™ or hazard* or wald* or “survival rate*" or “survival time*" or “survival funct*")

#1 AND #2 AND #3 AND #4




Database: Google Scholar <database inception to February 24, 2021> first 200 records

"type 2"
"diabetes"
"heart failure"
"risk" or "prediction" or "stratification" or “model”)

Eal o o

land2and 3and 4

Database: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Registry <database inception to February 24,
2021> 37 records

Keyword contains: diabetes
Outcome contains: heart failure
Outcome contains: composite
Outcome contains: hospitalization

EalC N o

land (2or3or4)




Table S2. List of Excluded Studies Cataloged by Reason for Exclusion.
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Ang, Donald SC, et al. “A Comparison between B-Type Natriuretic Peptide, Global Registry of Acute
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Blin, P., et al. “Real World Risk of Major Outcomes for Type 2 Diabetes with Stable Coronary Artery Disease
without Prior Ml or Stroke and THEMIS-like Patients Using the SNDS French Nationwide Claims Database.”
European Heart Journal, vol. 41, Nov. , p. 1314,

Breunig, I. M., et al. “Development of Heart Failure in Medicaid Patients with Type 2 Diabetes Treated with
Pioglitazone, Rosiglitazone, or Metformin.” Journal of Managed Care & Specialty Pharmacy, vol. 20, no. 9,
Sept. , pp. 895-903.

Bucher, S., et al. “Predictive factors of hospitalization in non institutionalized elderly diabetic patients. Data
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Figure S1. Risk of Bias and Applicability of Included Clinical Prediction Model Development
Studies.
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Figure S2. Risk of Bias and Applicability of Included Clinical Prediction Model Validation
Studies.
Risk of Bias in Prediction Model Validation Studies

Participant Selection
Participant Applicability

Predictor Inclusion

Predictor Applicability

Outcome Definition

Outcome Applicability

Multivariate Analysis

Overall Risk of Bias

Overall Applicability

25% 50% 75% 100%

24
R

| Risk of Bias [ Low risk of bias [ Some concerns M High risk of bias |




Study

Figure S3. Risk of Bias and Applicability of Included Clinical Prediction Model Development Studies.
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Figure S4. Risk of Bias and Applicability of Included Clinical Prediction Model Validation Studies.
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