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Abstract

Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin
resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related
chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue
biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation
of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte
differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of
G1RS-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While
phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases
the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress
is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target
promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of
adipogenesis which may contribute to age-associated adipose tissue dysfunction.
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Introduction

The prevalence of type 2 diabetes is increasing annually, which

is thought to be due to physical inactivity, obesity, population

growth, and aging [1,2]. In particular the increased prevalence of

obesity has been recognized as a major risk factor for type 2

diabetes [3]. However, according to recent estimates, the number

of patients with type 2 diabetes will more than double by 2030,

even if the prevalence of obesity remains constant [4]. Currently

more than half of the 20 million U.S. adults with type 2 diabetes

are above age 60, and the largest increase in type 2 diabetes

prevalence is expected in the elderly [1,5,6]. Considering this

evidence, it has been estimated that by 2050 there will be an

additional 18 million people with type 2 diabetes in the U.S. alone

as a result of increased longevity [7].

While the mechanisms underlying the relationship between

obesity and type 2 diabetes are beginning to emerge [8,9], the link

between aging and type 2 diabetes remains elusive. A decline in

glucose tolerance as part of human aging was first noted in 1921

[10], and diminished insulin sensitivity is now recognized as a

primary cause of the age-related impairment in glucose metabolism

[11,12]. One of the hallmarks of both physiological aging and

genetic forms of premature aging is the loss of insulin sensitive

subcutaneous adipose tissue [13,14]. This age-related decline in

subcutaneous fat depot size is thought to be due to altered

replication and differentiation of preadipocytes [15,16,17,18]. The

consequence of this adipose tissue dysfunction is the redistribution of

fat from subcutaneous depots not only to intra-abdominal visceral

depots but also to ectopic sites including muscle and liver

[19,20,21]. Since impaired adipogenesis and ectopic lipid accumu-

lation are closely related to insulin resistance [22,23], a deterioration

of adipose tissue function with aging is likely to contribute to

impaired glucose homeostasis. However, the mechanisms governing

age-related adipose tissue dysfunction and the limited regenerative

capacity of adipose tissue remain to be elucidated.

One of the key hypotheses postulated as the cause for both

organismal aging and age-related chronic diseases is the

accumulation of oxidative stress [24]. Reactive oxygen species

(ROS) accumulating over a lifetime can inflict direct cellular

damage and influence various signaling pathways and transcrip-

tional programs regulating key development processes including

proliferation, differentiation, senescence, and apoptosis [25]. In

addition to the accumulation of oxidative damage during a life

span, aging is directly associated with an impaired antioxidant

defense mechanism. For example, levels of glutathione (GSH), one

of the most important cellular antioxidant defense mechanisms,

decline during aging in humans and mice, accompanied by

various age-related pathologies [26,27,28,29]. Although increased
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ROS production has been documented in adipose tissue of

premature aging syndromes [30] and is associated with altered

glucose homeostasis [31], it remains unknown whether oxidative

stress accumulates during physiologic aging and alters adipose

tissue biology.

In the present study, we demonstrate that aging in mice results

in a loss of adipose tissue mass and the accumulation of oxidative

stress. We further establish that increased oxidative stress inhibits

the differentiation of preadipocytes by preventing their mitotic

clonal expansion and entry into S-phase of the cell cycle. The

molecular mechanism underlying this inhibition of cell cycle

progression by oxidative stress involves a transcriptional repression

of E2F target genes.

Materials and Methods

Ethics statement
All procedures were performed in accordance with approved

institutional protocols and were approved by the Institutional

Animal Care and Use Committee of the National Institute on Aging

(277-LEG-2010) and the University of Kentucky (00767M2004).

Cell culture
3T3-L1 preadipocytes (ZenBio) were maintained in DMEM

supplemented with 10% newborn calf serum. Cell differentiation

was induced using a standard protocol [32]. Briefly, two-day post

confluent cells were treated with 1 mM dexamethasone, 0.5 mM

Isobutylmethylxanthine, 10 mg/ml insulin and 10% fetal bovine

serum (FBS) for two days, followed by treatment with 10% FBS

and insulin for two additional days. Finally, the medium

supplemented with 10% FBS was renewed every other day. L-

buthionine-(S,R)-sulfoximine (BSO, Sigma) was dissolved in

diH2O and filtered before use in cell culture. Cells were treated

with BSO after reaching confluence to day 2 or day 7 of

differentiation, as indicated.

Isolation and differentiation of stromal vascular cells from
subcutaneous adipose tissue

Subcutaneous inguinal white adipose tissue was isolated from

eight week old C57BL/6 mice, pooled, and minced in HEPES-

buffered DMEM (Invitrogen) supplemented with 10 mg/ml fatty

acid poor BSA (Sigma). Samples were incubated for 60 min with

0.03 mg/ml Liberase 3 (Roche) at 37uC on an orbital shaker. The

solution was passed through a sterile 100 mm nylon mesh and

centrifuged at 500 g for 10 min. The cell pellet was resuspended in

5 ml erythrocyte lysis buffer, incubated for 5 min at room

temperature, and centrifuged at 500 g for 5 min. Cells were

resuspended in DMEM with 10% fetal bovine serum, counted, and

plated on 12-well plates at a density of 16105 cells/well. Two days

after reaching confluence, cells were differentiated using adipocyte

basal medium (ZenBio) and a standard differentiation protocol.

Detection of oxidative stress
Twenty four hours after initiation of differentiation cells were

washed twice with PBS and incubated with 10 mM 29,79-

dichlorofluorescin diacetate (H2DCFDA) for 30 min at 37uC. Cells

were washed again with PBS and collected for FACS analysis. Cells

were analyzed at excitation/emission wavelengths of 488/525 nm

using a FACSCalibur sorting system (Becton Dickinson).

GSH/GSSG-assay
GSH/GSSG-ratio was analyzed in epididymal adipose tissue

using the Bioxytech GSH/GSSG-412 kit (Oxis Research). Tissue

was homogenized by sonication with or without the thiol-

scavenging reagent 1-methyl-2-vinylpyridinium trifluoromethane-

sulfonate (M2VP). Samples were deproteinized with an equal

volume of 10% metaphosphoric acid, centrifuged, and the

supernatant was analyzed for GSH and GSSG concentrations

using a spectrophotometer at 412 nm over 3 min. Concentrations

were calculated by comparison to GSSG standards and normal-

ized to protein content. GSH/GSSG-ratio was calculated using

the following formula: (total GSH – 2GSSG)/GSSG.

Oil red O staining
On day 7 of differentiation cells were washed with PBS and

fixed for 10 min in 10% formalin. Oil-red-O (0.5% in isopropanol)

was diluted with water (3:2), filtered, and incubated with fixed cells

for 2 h at room temperature. Cells were washed, and Oil-red-O

was extracted with isopropanol for quantification using a

spectrophotometer at 510 nm.

Cell cycle analysis
Twenty four hours after initiation of differentiation cells were

fixed for 30 min in ice cold 70% ethanol. Cells were centrifuged

and resuspended in PBS supplemented with 40 mg/ml RNase.

After incubation for 30 min at 37uC cells were centrifuged again

and resuspended in PBS containing 50 mg/ml propidium iodide.

Cell cycle distribution was analyzed by FACS using a FACSCa-

libur sorting system (Becton Dickinson).

Cell proliferation assays
To measure the proliferative capacity of preadipocytes during

the mitotic clonal expansion cells were counted at day 0 and day 3

of the differentiation process using a hemocytometer. In addition,

proliferation was assessed by analyzing cell division using 5(6)-

carboxyfluorescein diacetate N-succinimidyl ester (CFSE). Two

day confluent cells were stained with 0.5 mM/l CFSE for 10 min

at 37uC and washed in PBS. One cell plate was immediately fixed

in 10% formalin and stored in 80% ethanol until FACS analysis to

determine the baseline fluorescence. The remaining cells were

subjected to the differentiation protocol and analyzed for CFSE

content after three days by FACS [33].

RNA isolation and quantitative real-time RT-PCR
RNA was isolated and reverse transcribed as described [34].

Quantitative real-time PCR analysis of target gene expression was

performed using an iCycler and SYBR Green I system (Bio-Rad)

as described [34]. Each sample was analyzed in triplicate and

normalized to mRNA expression of the house-keeping gene

TFIIB. The following primer sequences were used: MCM7

(forward: 59-TGTGGGGCAGAGACCTAC-39 and reverse: 59-

CTGGGCAATCCTTGTGTT-39), cyclin A2 (forward: 59-CGC-

AGCAGAAGCTCAAGAC-39 and reverse: 59-CTTGCTGCGG-

GTAAAGAGAC-39), aP-2 (forward: 59-GGCCAAGCCCAACA-

TGATC-39 and reverse: 59-CACGCCCAGTTTGAAGGAAA-

39) and TFIIB (forward: 59 -CTCTCCCAAGAGTCACATGTC-

C-39 and reverse: 59-CAATAACTCGGTCCCCTACAAC-39).

Western blotting
Western Blotting was performed as described previously [35]

using the following antibodies: p21 ab7960 (Abcam), p27Kip1

ab7961 (Abcam), MCM7 sc-9966 (Santa Cruz), CyclinA ab38

(Abcam), GAPDH sc-25778 (Santa Cruz), Phospho-Rb (Ser807/

811) 9308S (Cell Signaling), E2F1 sc-193 (Santa Cruz).

Oxidative Stress Inhibits Adipogenesis
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Transient transfections
3T3-L1 preadipocytes were seeded in 6-well plates and

transfected two days after reaching confluence. Transient

transfections were performed using Lipofectamine 2000 (Invitro-

gen) and 1.5 mg DNA of a luciferase reporter plasmid driven by

the full length MCM7 promoter [36]. Transfection efficiency was

normalized to renilla luciferase activities generated by cotransfec-

tion with 1.5 ng/well pRL-CMV (Promega). After 4 h the

medium was changed to standard differentiation medium.

Luciferase activity was assayed 24 h after initiation of differenti-

ation using a Dual Luciferase Reporter Assay System (Promega).

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation (ChIP) assays were performed

using the Magnify-ChIP-System (Invitrogen). Two day confluent

stromal vascular cells were stimulated with standard differentiation

medium. Cells were harvested at the indicated time points and

soluble chromatin was prepared. Chromatin was immunoprecip-

itated using an antibody (5 mg) directed against E2F-1 (sc-193X,

Santa Cruz) or control IgG (provided in the ChIP-kit). Final DNA

extractions were PCR-amplified using the following primer pairs

that cover the E2F-1 consensus site in the MCM7-promoter:

forward: 59-CGCTTTAAGAAACACTCCTCCCACAC-39 and

reverse: 59-GCCAGCCCCTAACTTTAACCAATCAATG-39.

Aging cohort
Male C57BL/6 mice were obtained from The Jackson Laboratory

at 6 weeks of age and allowed to age normally at the National

Institute on Aging in Baltimore, MD according to approved animal

protocols and NIH guidelines. The mice were housed in an

Figure 1. Aging is associated with decreased fat mass and increased oxidative stress in mice. A-C: Body weight and body composition
were analyzed in C57BL/6 mice fed a regular chow diet at the indicated age (n = 10 for each age group except n = 9 and 8 for 24 and 29 month,
respectively, due to differences in longevity). D: GSH/GSSG-ratio was measured in epididymal adipose tissue of 2 month (n = 7) and 26-month old
(n = 5) mice. All results are presented as mean 6 SEM (* p,0.05 vs. 12 month in A–C or 2 month in D).
doi:10.1371/journal.pone.0018532.g001
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PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18532



environmentally-controlled vivarium maintained between 68–72uF
with unlimited access to food (Diet 2018; Harlan Teklad) and water

under a controlled photoperiod (12 hr light; 12 hr dark).

Body composition
Measurements of fat mass in C57BL/6 mice aged 2.5–29

months were acquired as part of a cross-sectional study by

nuclear magnetic resonance using the Minispec LF90 (Bruker

Optics).

Statistics
ANOVAs using one-way or two-way ANOVA with Bonferro-

ni’s t test for post hoc analysis and paired or unpaired t test were

performed for statistical analysis as appropriate. Data were

Figure 2. BSO treatment inhibits adipogenesis. A and B: Confluent 3T3-L1 cells were treated with different doses of BSO for 2 days and induced
to differentiate. BSO treatment was continued until day 7 of differentiation. Differentiated cells were stained with Oil-red-O and absorbance was
measured at 510 nm using a spectrophotometer. C: Confluent 3T3-L1 cells were treated with 100 mM BSO for 2 days and induced to differentiate.
BSO treatment was continued until day 7 of differentiation. On day 7 mRNA was harvested and aP-2 expression was analyzed by real-time RT-PCR. D:
Confluent subcutaneous stromal vascular cells were treated with 10 mM BSO. After 2 days cells were induced to differentiate and treated with BSO
until day 7 of differentiation. On day 7 mRNA was harvested and aP-2 expression was analyzed. E: 3T3-L1 cells were treated with 100 mM BSO for 2
days and induced to differentiate. BSO treatment was continued until day 2 or day 7 of differentiation as indicated. On day 7 cells were stained with
Oil-red-O and absorbance was measured. All results are presented as mean 6 SEM (* p,0.05 vs. control).
doi:10.1371/journal.pone.0018532.g002
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reported as means 6 SEM. P values ,0.05 were considered

statistically significant.

Results

Aging in mice results in a loss of fat mass and increased
oxidative stress in adipose tissue

To determine whether aging is associated with changes in body

mass and composition, we first followed weight and fat mass in

aging C57BL/6 mice. As depicted in Figure 1A, after an initial

increase in body weight during the first year there was a

continuous decline in body mass in the second and third year of

life. Analysis of body composition revealed that this decline in

body mass was primarily due to a loss of fat mass (Figure 1B–C).

At 29 months of age, the fat mass of C57BL/6 mice was reduced

to approximately 30% of the peak fat mass at 12 months of age.

Since oxidative damage constitutes one of the most studied

hallmarks of aging and is implicitly linked with age-related disease,

we next analyzed whether aging results in increased oxidative

stress in adipose tissue. As shown in Figure 1D, the ratio of

reduced to oxidized glutathione in adipose tissue decreases

significantly in 26-month old mice, representing a shift to

increased oxidation.

Oxidative stress inhibits adipogenesis in 3T3-L1
preadipocytes and stromal vascular cells

Based on the observation that aging is associated with a decline

in fat mass and a concomitant increase in oxidative stress, we next

analyzed whether oxidative stress affects adipogenesis. The GSH-

dependent ROS scavenging network represents one of the key host

defense mechanisms against oxidative stress [27]. Oxidative stress

in conjunction with GSH depletion is associated with various

diseases and can be achieved pharmacologically to increase

endogenously produced oxidative stress using BSO, a specific

and irreversible inhibitor of glutamate cysteine ligase [37]. As

depicted in Fig. 2A and B, glutathione depletion using BSO

significantly inhibited the differentiation of post-confluent 3T3-L1

preadipocytes. Correspondingly, BSO treatment reduced mRNA

expression of the adipocyte marker aP-2 after 7 days of

differentiation in 3T3-L1 preadipocytes (Figure 2C). Similar

results were observed in murine preadipocytes derived from the

stromal vascular fraction of inguinal (Figure 2D) as well as

epididymal fat pads (data not shown) indicating that the observed

inhibition of adipocyte differentiation is also applicable to primary

preadipocytes. Due to their significantly higher differentiation

capacity in vitro, further experiments in primary preadipocytes

were performed in SVC of subcutaneous depots. Quantification of

Oil-red-O-staining further revealed a comparable inhibition of

adipocyte differentiation in 3T3-L1 preadipocytes exposed to BSO

treatment either continuously until day 7 or only until day 2 of

differentiation (Figure 2E). These results indicate that the

inhibition of adipogenesis by BSO occurs at least in part during

the initial phase of differentiation, which represents the mitotic

clonal expansion phase required for preadipocyte differentiation.

Glutathione depletion induces oxidative stress
To document specificity of the BSO compound with respect to

increased oxidative stress and glutathione depletion, we next

measured intracellular ROS levels in 3T3-L1 adipocytes using

H2DCF-DA. As expected, BSO treatment increased ROS levels

by 6-fold 24 h after the induction of differentiation (Figure 3A).

Furthermore, reconstitution of glutathione levels in BSO-treated

3T3-L1 cells by providing glutathione-ethylester was sufficient to

improve the adipogenic capacity (Figure 3B). These data confirm

specificity of BSO treatment and demonstrate that glutathione

depletion increases oxidative stress in adipocytes and inhibits

adipogenesis.

Oxidative stress inhibits the mitotic clonal expansion
The observation that oxidative stress inhibits adipocyte

differentiation during the first two days of the differentiation

process pointed to an inhibition of the mitotic clonal expansion, a

prerequisite for adipocyte differentiation. Consistent with this

notion, the mitotic expansion of 3T3-L1 preadipocytes following

induction of differentiation was significantly decreased by BSO

treatment (Figure 4A). To further corroborate that BSO inhibits

Figure 3. Glutathione depletion induces intracellular ROS formation during differentiation. A: Confluent 3T3-L1 cells were treated with
100 mM BSO. After 2 days BSO treatment was renewed and cells were induced to differentiate. 24 h after hormonal induction cells were incubated
with 10 mM H2DCFDA and analyzed by FACS. B: Confluent 3T3-L1 cells were treated with 100 mM BSO until day 2 of differentiation. 5 mM GSH-ester
was added one day prior to differentiation. On day 7 of differentiation cells were stained with Oil-red-O and analyzed using a spectrophotometer. All
results are presented as mean 6 SEM (* p,0.05 vs. control, # p,0.05 vs. BSO).
doi:10.1371/journal.pone.0018532.g003
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mitosis of preadipocytes we followed proliferation rates using

CFSE labeling, a dye that is inherited equally by daughter cells

after division, resulting in the sequential halving of fluorescence

with each generation. As depicted in Figure 4B, BSO treated cells

exhibited considerably reduced cell division rates evidenced by an

increased retention of fluorescence. FACS analysis further

revealed that oxidative stress inhibited S phase entry during the

mitotic clonal expansion and resulted in an increased number of

cells arrested in the G0/G1 phase (Figure 4C). Similarly, BSO

treatment of stromal vascular cells inhibited cell cycle progression

Figure 4. BSO treatment inhibits mitotic clonal expansion. A: Confluent 3T3-L1 cells were treated with 100 mM BSO. After 2 days cells were
induced to differentiate. BSO treatment was renewed with every change of medium. Cells were counted at induction and at day 3 of differentiation
using a hemocytometer. Cell number did not differ at induction of differentiation. B: Confluent cells were treated with 100 mM BSO for two days. Cells
were labeled with CFSE and induced to differentiate. BSO treatment was renewed with every change of medium. On day 3 of differentiation cells
were collected and analyzed using FACS. CFSE mean fluorescence declines with cell division, and geometric mean fluorescence is inversely
proportional to the proliferation rate. C: Cells were treated as described in A. 24 h after induction of differentiation cell cycle distribution was assessed
by DNA staining with propidium iodide and subsequent FACS analysis. Cell cycle distribution did not differ at induction of differentiation (baseline).
D: Confluent subcutaneous stromal vascular cells were treated with 10 mM BSO. After 2 days, BSO treatment was renewed and cells were induced to
differentiate. Cell cycle distribution was analyzed after 16 h. All results are presented as mean 6 SEM (* p,0.05 vs. control).
doi:10.1371/journal.pone.0018532.g004

Oxidative Stress Inhibits Adipogenesis
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(Figure 4D). In concert, these data indicate that oxidative stress

inhibits adipocyte differentiation by blocking the mitotic clonal

expansion and cell cycle progression.

BSO treatment results in down-regulation of E2F target
genes during mitotic clonal expansion

G1RS phase transition requires phosphorylation of the

retinoblastoma protein (Rb) resulting in the transactivation of S

phase target genes by the transcription factor E2F [38]. Rb

phosphorylation is induced by the formation of cyclin and cyclin-

dependent kinase (CDK) complexes and repressed by association

with negative regulatory subunits, the CDK inhibitors (CDKI)

[39]. As shown in Figure 5A, mitotic clonal expansion during

differentiation was associated with a decline in p27Kip1 protein

levels, and neither the degradation of p27Kip1 nor p21 protein

levels were affected by increased oxidative stress. During the initial

phase of mitotic clonal expression the phosphorylation of Rb was

induced; however, this phosphorylation step was not modulated by

BSO (Figure 5B). Furthermore, BSO did not alter the induction of

E2F1 expression during mitotic clonal expansion (Figure 5C). In

contrast, the induction of the downstream S phase E2F target

genes cyclin A and MCM7 was considerably reduced at both

protein and mRNA expression levels in preadipocytes treated with

BSO (Figure 5D–F).

Oxidative stress alters the E2F-dependent transactivation
of the MCM7 target promoter

To further determine the mechanisms underlying the altered

transcription of the bona fide E2F target genes cyclin A and MCM7

by oxidative stress, we next analyzed the promoter activity of these

two genes. Exemplified for the MCM7 promoter in Figure 6A, BSO

treatment profoundly decreased the activity of a luciferase reporter

Figure 5. BSO treatment decreases E2F target gene expression. A to D: Confluent 3T3-L1 cells were treated with 100 mM BSO. After 2 days
cells were induced to differentiate. BSO treatment was renewed with every change of medium. Whole cell lysate was collected at the indicated time
points and analyzed for protein expression of p21, p27, phosphorylated Rb, E2F1, cyclin A, MCM7, and GAPDH. E and F: 3T3-L1 cells were treated as
described in A. mRNA was harvested at induction of differentiation and at day 1 of differentiation. MCM7 and cyclin A2 expression was analyzed by
real-time RT-PCR. All results are presented as mean 6 SEM (* p,0.05 vs. control, # p,0.05 vs. baseline).
doi:10.1371/journal.pone.0018532.g005
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driven by the MCM7 promoter. Furthermore, ChIP assays

demonstrated that oxidative stress altered the induction of E2F

binding to its consensus site in the MCM7 promoter during the

early differentiation process (Figure 6B). Collectively, these data

indicate that the inhibition of cell cycle transition by oxidative stress

is at least in part the result of an altered transactivation and

transcriptional silencing of E2F target genes.

Aged adipose tissue displays reduced expression of E2F
target genes and adipocyte differentiation markers

We next analyzed E2F target gene expression in adipose tissue

of young and old mice that displayed an accumulation of oxidative

stress during aging. As depicted in Figure 7A and B, aging was

associated with a significant decline in the expression of cyclin A

and MCM7 in epididymal adipose tissue. Furthermore, this

decrease in E2F target gene expression was accompanied by a

decrease in transcript levels of the adipocyte differentiation marker

aP-2 (Figure 7C). These data demonstrate similar alterations in

gene expression between aged adipose tissue and BSO treated

3T3-L1 preadipocytes.

Discussion

Oxidative damage is postulated to be a key mechanism involved

in organismal aging [24]. While oxidative stress accumulates in

adipose tissue and has been implicated in insulin resistance [31],

the inherent mechanisms linking oxidative damage to adipose

tissue dysfunction remain unknown. In the present study, we

demonstrate that aging of mice is associated with a decline in fat

mass and the accumulation of oxidative stress. We further establish

that oxidative stress through glutathione depletion alters adipocyte

differentiation by inhibiting the mitotic clonal expansion. In

concert, these data may provide a previously unrecognized

mechanism contributing to age-related adipose tissue dysfunction.

Using longitudinal NMR analysis our studies documented an

age-related decline of fat mass in mice, a finding that is

consistent with a prior study [40]. We further demonstrate for

the first time that this age-related loss of adipose tissue mass is

associated with the accumulation of oxidative stress. Consider-

ing both observations and the well-established inhibition of

progenitor proliferation and differentiation by oxidative damage

[25], we hypothesized a causal relationship and tested whether

oxidative stress alters adipogenesis. Our approach to induce

oxidative stress employed the depletion of glutathione, a

sophisticated non-enzymatic antioxidant defense system, allow-

ing the accumulation of endogenously generated ROS [27].

Increased oxidative stress generated through glutathione

depletion inhibited adipocyte differentiation of 3T3-L1 fibro-

blasts and primary stromal vascular cell fractions. Since

adipocyte differentiation involves a chronologically regulated

and complex network of cell cycle regulators and adipogenic

transcription factors [41], we investigated the stage at which

oxidative stress affects this differentiation process. Interestingly,

cells treated with BSO for only the first two days of

differentiation exhibited an almost similar inhibition of adipo-

genesis as cells treated for the entire seven days of differenti-

ation. This first phase of differentiation is characterized by the

progression of preadipocytes through one or two cell cycle

divisions, referred to as mitotic clonal expansion [41]. Since

glutathione depletion potently inhibited preadipocyte prolifer-

ation, these observations indicate that oxidative stress inhibits

adipocyte differentiation at least in part by blocking their

mitotic clonal expansion. Considering further that aging impairs

the replicative potential of preadipocytes and their differentia-

tion capacity [15,16,17,18], we would infer that oxidative stress

constitutes a possible mechanism underlying age-related adipose

tissue dysfunction.

The mechanism by which glutathione depletion in 3T3-L1

cells inhibited mitotic expansion involved an inhibition of cell

Figure 6. Oxidative stress alters E2F-dependent transactivation
of the MCM7 promoter. A: 3T3-L1 cells were treated with 100 mM BSO.
After 2 days cells were transfected with a MCM7 promoter luciferase
reporter plasmid. Following transfection, cells were induced to differen-
tiate and BSO treatment was renewed. Luciferase activity was assayed
24 h after initiation of differentiation. Transfection efficiency was
adjusted by normalizing firefly luciferase activities to renilla luciferase
activities generated by cotransfection with pRL-CMV. B: Confluent
subcutaneous stromal vascular cells were treated with 10 mM BSO. After
2 days BSO treatment was renewed and cells induced to differentiate.
Cells were collected at indicated time points for ChIP assays. After
chromatin immunoprecipitation with an E2F antibody or control IgG,
quantitative real-time RT-PCR analysis was performed with primer pairs
covering the E2F-binding site in the MCM7 promoter. All results are
presented as mean 6 SEM (* p,0.05 vs. control, # p,0.05 vs. baseline).
doi:10.1371/journal.pone.0018532.g006
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cycle progression at the G1RS-phase transition. Progression

through the S phase is governed by the phosphorylation of Rb,

which releases the repression of E2F target genes allowing

transcription of S phase genes [38]. Oxidative stress exhibited no

effect on the upstream CDKI or on the phosphorylation of Rb by

cyclin/CDK complexes. However, the expression and transcrip-

tional activation of the downstream E2F target genes cyclin A

and MCM7 were significantly reduced in BSO-treated 3T3-L1

cells. Similarly, increased oxidative stress in adipose tissue of aged

mice was accompanied by decreased expression of cyclin A and

MCM7. These experiments indicate that oxidative stress alters

the ability of E2F to transactivate its target genes, independently

of Rb phosphorylation. This concept is supported by a recent

study demonstrating that stress signals interfere with the E2F-

dependent transactivation of genes required for S phase

progression [42]. Although the detailed transcriptional mecha-

nisms responsible for the silencing of E2F target genes remain

unknown, it is possible that epigenetic modifications induce a

transcriptionally inert chromatin environment, considering the

widespread epigenetic changes occurring in response to oxidative

damage [43]. Alternatively, E2F transcriptional activity may be

repressed through negative cross-talk with other transcription

factors. For example, oxidative stress is well established to

activate inflammatory signaling, and Akari et al. recently

demonstrated that NF-kB signaling represses E2F transcription

factors [44]. Another group of transcription factors which may

modulate E2F binding activities during adipogenesis are DP

(DRTF1 polypeptide) proteins [45]. In particular, oxidative stress

could potentially inhibit DP protein expression levels or its

posttranslational modification, which could repress the binding

activity of its heterodimeric partner E2F. Finally, Fajas et al.

revealed that E2F1 deficiency in mice inhibits adipogenesis [46],

lending further compelling support for a key role of E2F in the

control of adipogenesis in vivo.

Several prior studies have established an important role of

glutathione-dependent oxidative stress in adipose tissue function

and metabolism in vivo. Consistent with our observations, a recent

study by Loh et al. reported that genetic deficiency of glutathione

peroxidase 1 increased reactive oxygen species and decreased fat

mass expansion following high fat diet feeding [47]. Similarly,

pharmacologic glutathione depletion in rats treated with BSO

resulted in decreased body weight and altered insulin-stimulated

glucose uptake in adipose tissue [48,49]. However, since fat mass

was not analyzed in this report, further studies on the effect of

oxidative stress on energy balance and metabolism are warranted.

Nevertheless, the decreased body weight in response to BSO

combined with the associated adipose tissue insulin resistance

noted in this study point to an important role of oxidative stress in

adipose tissue biology and metabolism. This notion is further

supported by studies in humans demonstrating that reduced

glutathione infusion increases insulin sensitivity [50], providing

further confirmation that oxidative stress alters insulin sensitivity.

Considering this literature and our findings in concert, it appears

conceivable to speculate that the inhibition of adipogenesis by

oxidative stress may constitute an important contributor to the loss

of adipose tissue mass during aging. However, further studies are

warranted to confirm this hypothesis and to define the

mechanisms underlying the development of insulin resistance in

response to aging.
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Figure 7. Aged adipose tissue displays reduced expression of E2F
target genes and adipocyte differentiation markers. A to C: mRNA
was isolated from epididymal adipose tissue of 4 and 26 month old male
C57BL/6 mice. Expression of cyclin A, MCM7 and aP-2 was analyzed by real-
time RT-PCR. All results are presented as mean 6 SEM (* p,0.05 vs. control).
doi:10.1371/journal.pone.0018532.g007
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