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ABSTRACT A ballistocardiogram (BCG) is a versatile bio-signal that enables ambient remote monitoring of
heart failure (HF) patients in a home setting, achieved through embedded sensors in the surrounding environ-
ment. Numerous methods of analysis are available for extracting physiological information using the BCG;
however, most have been developed based on non-clinical subjects. While the difference between clinical and
non-clinical populations are expected, quantification of the difference may serve as a useful tool. In this work,
the differences in resting-state BCGs of the two cohorts in a sitting posture were quantified. An instrumented
chair was used to collect the BCG from 29 healthy adults and 26 NYHA HF class I and II patients while
seated without any stress test for five minutes. Five 20-second epochs per subject were used to calculate the
waveform fluctuation metric at rest (WFMR). The WFMR was obtained in two steps. The ensemble average
of the segmented BCG heartbeats within an epoch were calculated first. Mean square errors (MSE) between
different ensemble average pairs were then retrieved. The MSEs were averaged to produce the WFMR. The
comparison showed that the clinical cohort had higher fluctuation than the non-clinical population and had
at least 82.2% separation, suggesting that greater errors may result when existing algorithms were used.
The WFMR acts as a bridge that may enable important features, including the addition of error margins in
parameter estimation and ways to devise a calibration strategy when resting-state BCG is unstable.

INDEX TERMS Ballistocardiogram, resting-state, heart failure, ambient monitoring.

I. INTRODUCTION
In Canada, more than 660,000 people aged over 40 years
had heart failure (HF) in 2013 [1], and 50,000 new cases
of HF emerged yearly according to a 2016 report, costing

more than $2.8 billion per year [2]. In the United States,
HF cost over $11 billion and more than 1 million people
were hospitalized due to HF in 2014 [3]. The high cost of
HF is primarily attributable to the elevated rate of hospital
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readmission. Repeat visits, which happen in more than 20%
of all HF patients, cause strain on both the patients and the
healthcare system [2].

One of the strategies put in place to reduce the readmis-
sion rate is remote monitoring of the disease, namely self-
management of the symptoms at home by the individuals
with HF. The effectiveness of the method is compromised
due to the low compliance rate [4]. Ambient monitoring is
a methodology designed to achieve an autonomous and rou-
tine assessment in the background using embedded sensors,
thereby promote patient compliance (i.e., symptoms are mon-
itored in pervasive and unobtrusive manner) [5]. For example,
an individual with HF can sit on a chair or sleep on a bed,
where the embedded sensors in the objects will measure vital
signs during the interaction, notifying the stakeholders when
there is an impending adverse event.

A key bio-signal behind the mechanics of the ambient
monitoring solution is a signal known as a ballistocardiogram
(BCG). The BCG is defined as mechanical vibration gener-
ated by the heart contraction and the blood circulation; the
phenomenon is also understood as the shift in the center of
mass of the body due to the rapid movement of blood [6], [7].
The signal has shown substantial potential in improving the
utility of remote monitoring owing to its non-contact nature
and a direct reflection of the heart function [8].

One area of BCG research is using algorithmic solutions to
extract physiological parameters. In the past studies, features
of the BCG were correlated with and used to estimate the
physiological parameters. These features were often retrieved
in conjunction with other signals such as an electrocardio-
gram (ECG), photoplethysmogram (PPG), or impedance car-
diogram (ICG). A structured review of these works revealed
the research gaps that need to be addressed. Summaries of
the studies are presented below for brevity. The correlated
physiological parameters and the corresponding BCG fea-
tures include heart rate (HR) using the J-waves of the BCG,
pre-ejection rate (PEP) using RJ- and RI-intervals (i.e., the
time interval between the R-wave of the ECG and the J- or
I-wave of the BCG), cardiac output (CO) using the root mean
square (RMS) power of the BCG, stroke volume (SV) using
the combination of the I- and J-waves of the BCG with the
ICG, systolic blood pressure (SBP) using the RJ-interval,
and diastolic blood pressure (DBP) using the pulse transit
time (i.e., time interval involving the I-wave of the BCG and
PPG; PTT) [9]–[13], [21].

The above review elicited a crucial issue. BCGs in these
works were measured from healthy adults with age below 65
(i.e., non-clinical population) using a weight scale (i.e., stand-
ing form). These analyses were done using an external stim-
ulus to the physiology where the body experienced changes
over time, which were correlated to the BCG features. Exam-
ples of the applied stimuli include the Valsalva maneuver,
exercise, cold pressor test, and mental arithmetic [12]. The
consensus of these studies was that the features remained
stable at rest. The stimulated parameters returned to the base-
line once the extent of the stimulus ended, and they remained

relatively constant without any stress. This pattern, however,
was not yet validated in a clinical population such as indi-
viduals with HF. As such, this assumption should be verified,
starting with the simpler case where the BCG features remain
stable in the absence of any stimulus thereafter moving onto
conducting stress tests. If the BCG at rest were not stable,
it might introduce errors when the above methods are used.
In such a case, the degree of instability could be used as an
indication of estimation confidence (i.e., a margin of error).
Knowing the source of instability could be used to make a
calibration method to compensate for the variability. These
features become indispensable as the BCG research moves
towards a clinical population with possibly unstable BCGS.

A supplementary observation, in addition to the primary
research gap above, was the dependency of the algorithms
on specific points of one type of BCG waveform. Most of
the methods relied on the conformity of the morphology to
that of the longitudinal BCG measured when the individual
was standing straight. Fig. 1 shows the morphology of the
longitudinal BCG of a straight supine position that is also
applicable to standing straight. Using the J- or I-wave of
the BCG assumed that identifiable peaks were present in the
signal. This assumption, however, could be violated if the
morphology of the BCG took a different form. Note that a
differing morphology does not refer to the changes manifest
under a stimulus or any transient noise such as movement
artifact; instead, it refers to permanent features of the mor-
phology that can be seen at rest.

FIGURE 1. BCG morphology (duration and amplitude may vary based on
external factors) [6].

In the case of a significant difference, it may not be possible
to identify the landmarks, in which the features cannot be
extracted. On the contrary, a waveform-based feature that
does not rely on a point could be generalized to different
BCG morphologies. An example of a waveform-based fea-
ture is using the RMS power of the BCG. Regardless of
the type, these features are affected by changes in the BCG.
For instance, RMS power was primarily influenced by the
amplitude change, and the features using the J-wave were
often affected by the phase. Three factors were shown to
influence the morphology of the BCG, which include: heart
function, age, and posture, all of which are significant con-
tributors when working with a clinical population (e.g., HF
population) [14]–[19]. A detailed review of these factors is
available in the Appendix.

It should be noted that a handful of studies are available
that examined the BCGofHF patients. Notable works include
differentiation of compensated state and the decompensated
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state, estimation of the SV, and ejection fraction [14], [16],
[20]. There is currently no study that systematically examined
the BCG of the clinical population at rest in comparison to the
non-clinical cohort.

This work compared and quantified the difference between
the resting-state BCGs of the non-clinical and clinical popu-
lations. Namely, the study involved healthy younger adults,
a cohort used in the previous studies, and older adults with
HF, a target population that will be using the BCG technology.
The work examined whether the pattern observed in the non-
clinical population at rest translated to the clinical population
(i.e., stable waveform) through a novel BCG feature that
quantified the collective fluctuation of the signal at rest. The
feature then measured the degree of distinction between the
populations if they were shown to be different. The new fea-
ture was also characterized via the comparison with different
physiological parameters as a secondary analysis.

II. METHODS
In this work, a BCG feature was designed to compare and
quantify the resting-state signal stability of the non-clinical
population to that of the clinical cohort. The first part con-
sisted of the study protocol, data acquisition, feature extrac-
tion, and comparison between the two populations.

In the second part, the developed feature was characterized
by comparison with various physiological parameters.

A. COMPARISON OF BCG AT REST BETWEEN
NON-CLINICAL AND CLINICAL POPULATIONS
1) SAMPLE POPULATIONS AND EXPERIMENTAL SETUP
The study recruited older adults with the age of 65 years
or older who have either the New York Heart Association
(NYHA) class I or II HF. Healthy adults under 65 years of age
who did not have any cardiovascular disease were recruited
for the non-clinical population. HF patients were recruited
from one of four ambulatory clinics: two heart function clin-
ics and two cardiac rehabilitation programs at four academic
hospitals in Toronto, Canada. The healthy participants were
recruited through word of mouth and referrals. The study
protocol was reviewed and approved by the University Health
Network Research Ethics Board (UHN REB 12-038 and
UHN REB 13-6901). The data were collected in the Home-
Lab at Toronto Rehab Institute in Toronto, Ontario, Canada.

Sitting posture was implemented to record the BCG that is
closer to the actual deployment where alternativemorphology
state could be observed as compared to the standard morphol-
ogy measured while standing still. The sitting posture was
also selected for a practical purpose in this study. Limitation
to stand still for one in five clinical participants for four to
five minutes made much of the individual’s BCG unusable.

2) DATA ACQUISITION AND SYNCHRONIZATION
Each participant, hereafter referred to as a subject, was asked
to sit on an instrumented chair for one minute for the baseline
restoration followed by five minutes without movement; data

recorded during the stationary five-minute period was used
for the analysis. No stimulation (e.g., exercise, cold pressor
test, Valsalva maneuver) was given to the subjects for at least
five minutes before the recording. Note that other parts of
the protocol conducted but not related to this work were not
considered herein.

A 3-lead ECG was measured using the wireless
Shimmer 3 ECG module (Shimmer, Ireland) to aid the
BCG analysis. Also, beat-to-beat systolic and diastolic blood
pressure (SBP; DBP) were measured using the Portapres
(Finapres Medical Systems, the Netherlands) for the corre-
lation analysis. Cuff-based BP was also measured every one-
minute using the BpTRU (BpTRU Medical Devices, British
Columbia, Canada). Fig. 2 illustrates the data collection
setup. The wireless ECG was sampled at 1024Hz, and the
rest of the signals were sampled at 1000Hz.

FIGURE 2. Gold standard equipment and the posture used to collect the
data.

While the Portapres recorded beat-to-beat BP and showed
changes over time, its measurements of absolute BP inmmHg
were less accurate. As such, the beat-to-beat measurements
of the Portapres were corrected to match the BP measured by
the BpTRU. As the offset correction and synchronization pro-
cesses were elaborated in previous work [21], the algorithms
were briefly summarized here. The offset correction aimed
to shift the entire sequence of BP samples to best match the
BP measured by the BpTRU. About 1-minute of the beat-to-
beat BPs from the Portapres before the BpTRU measurement
were averaged. Then, the difference between the average and
BP measured by BpTRU was calculated.

As the recording lasted five minutes, five of these
differences were averaged and used as the offset correction
constant to shift the entire beat-to-beat measurements of
the Portapres. The SBP and DBP were corrected separately.
Additional 2-lead wired ECG was collected for synchroniza-
tion purposes. All signals except the wireless ECG were
digitized by the National Instruments Data Acquisition Board
(DAQ with a NI cDAQ-9174 chassis and NI 9215 analog
input module) [9]. Matching the RR-intervals between the
two ECGs synchronized them together and to the rest of
the data. In five cases where the RR intervals were invari-
ant (e.g., paced ECGs), a 3-axis accelerometer in the wire-
less ECG module was used to ascertain the synchronization
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by observing the transition from pre-recording (i.e., minor
movement) to the stationary posture during the recording
(i.e., no motion). Note that the wireless ECG was used as
the primary ECG source as it was measured by a commercial
gold-standard device.

3) HARDWARE SPECIFICATION OF THE INSTRUMENTED
CHAIR
The instrumented chair, hereafter referred to as the chair,
followed the conventional setup of the weight scale,
which is a widely accepted methodology for collecting the
BCG [9], [10]–[13]. Four load cells were attached at the end
of the chair’s legs, as shown in Fig. 3.

FIGURE 3. Instrumented chair prototype concept and the actual
prototype.

The load of the person seated on the chair was transferred
through the four load cells. The chair and the feet supported
the bodyweight, where the chair acted as the primary support.
Chang et al. showed that while the BCG collected from the
feet in a seated position was detectable, its amplitude was,
on average, ten times smaller than that of the standing posture,
indicating negligible force loss in detection due to the planted
feet [22].

The four load cells formed a Wheatstone bridge and were
conditioned using the circuit with about 100dB gain, pre-
sented in the previous work [9]. The circuit was used to
acquire the BCG in a standing form in the prior work using the
platform prototype. Thus, there was no difference between
the acquisition process of the BCG for the standing form and
sitting form used here. The processed signal was digitized by
the DAQ at 1000 Hz.

4) PRE-PROCESSING
The wireless ECG was resampled using 1000Hz to match
the other signals. A high-pass finite impulse response (FIR)
filter filtered signal offsets and drifts with a cut-off frequency
of 2Hz (i.e., Hamming window, n = 1000) [9]. Signals were
also filtered by a low-pass filter. The BCG of all subjects and
the ECG of the non-clinical population were filtered using
25Hz and 40Hz cut-off frequencies, respectively, as pro-
cessed previously [9].

The ECGs of the clinical population, however, were de-
noised using discrete stationarywavelet transform due to their

complex structure. Namely, the FIR low-pass filter or other
digital filters were not used because they removed high-
frequency components such as pacemaker pulses along with
the white noise in the signal. An example of the ECG is shown
in Fig. 4. Note that the process of de-noising the ECG of
the clinical population involved numerous steps that stray
from the primary analysis. As such, this section presents
an abridged version, and the Appendix I includes the full
explanation.

FIGURE 4. (a) (b) Lead II ECG before and after de-noising (subject C4)
(c) (d) Lead III ECG before and after de-noising (subject C112).

The ECG was decomposed into five levels using
Daubechies 5 (db5) wavelet. A unique threshold value was
used for each level to set the coefficients below the threshold
to zero where the threshold values were determined based
on the highest increase in the signal-to-noise ratio (SNR)
while restricting any significant distortion of the waveform
(i.e., less than 5% change).

5) WAVEFORM FLUCTUATION METRIC AT REST
The feature used in this work was extracted once the signals
were cleaned. The feature focused on its ability to compare
the stability of the BCG at rest between the two populations.
Namely, the feature quantified the degree of fluctuation in
the waveform. While the existing features introduced above
focused on particular aspects of the BCG (e.g., phase, ampli-
tude), the feature developed here accounted for the collective
effect of these changes; it is affected by the amplitude, phase,
number of peaks, and an overall shift in shape. The feature
provided a high-level pattern, and the following procedures
were implemented with the goal in mind. The developed
feature is hereafter called the waveform fluctuation metric at
rest (WFMR).

a: Region Selection
A specific duration of the signal had to be examined to
calculate the WFMR. A few considerations were made to
select the optimal length for the segment. Firstly, sections
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of the signal that represented the dominant type of heart
contraction were selected. The ECG was used as the gold-
standard measurement to identify the types as it provided a
sharp contrast between different contractions. Some of the
HF subjects had multiple types of heart contractions while
the healthy population had only one type, which was an
intrinsic heartbeat with sinus rhythm. These different types of
contractions included paced heartbeats, premature ventricular
contractions (PVC) in addition to the intrinsic heartbeat with
sinus rhythm. Most of the HF subjects had a mixture of these
three types; however, either an intrinsic or paced heartbeat
was more dominant compared to the PVCs that occurred
sporadically throughout the recording in some subjects. Note
that the identification of different types of heartbeats was
done in close supervision of a cardiologist to ascertain the
reliability of the manual label. Each segment, hereafter called
an epoch, was determined to be 20-second long to account for
the effect of respiration on cardiac performance by including
two or three respiratory cycles [23]. The size was also suf-
ficiently small to provide flexibility to avoid non-dominant
heartbeats in most cases. For example, if the dominant type
was an intrinsic heartbeat with occasional PVCs, the epochs
were placed so that there was no PVC within the range. If the
primary type was a paced heartbeat with infrequent intrinsic
heartbeats, the intervals were set so that only paced heartbeats
were included. When mixing the types were unavoidable,
non-dominant heartbeats were labelled and excluded from
the analysis. An example of the epoch selection is shown
in Fig. 5. Note that the clinical population has C in front
of the subject number, and the non-clinical population has
N in front of the number. Five-minute recording per subject
was long enough for five epochs given the limited supply of
homogeneous contractions in the clinical population.

FIGURE 5. Selection of epochs for analysis (subject C41).

b: Feature Calculation
Two steps were taken to calculate the WFMR. Firstly,
the ensemble average, a widely used method for the BCG
processing, was used to obtain noise-reduced BCG wave-
form, then mean square errors (MSE) between the ensemble
averages in an epoch were calculated to obtain the WFMR.

The ensemble average effectively removed the noise that
was not filtered by the FIR filter, namely, the low-frequency
noise that existed within a similar frequency spectrum range
as the BCG [24]. The R-waves of the ECG were first found
by the simplified Pan and Tompkins method [25]. Each car-
diac cycle was isolated by taking 700 samples (i.e., 700ms),
beginning from the R-wave [24]. Note that each cropped
cardiac cycle is hereafter referred to as the heartbeat. Given
the window size of the ensemble average, TEA, all heartbeats
within the window were averaged. Equation (1) gives the
mathematical description of the step.

fEA (t) =
1
NEA

NEA∑
i

fi (t) t = 1 · · · n (1)

NEA is the number of heartbeats that fit within the window
size, TEA ·fi(t) is a single cropped heartbeat with size, n, which
is 700. fEA(t) is the ensemble average.

Different size for the ensemble average was evaluated
where TEA was incremented from 2s to 15s by 1s to find the
optimal range.

A moving window was used within an epoch to calculate
multiple ensemble averages. The window shifted by 1s from
the beginning until the window reached the epoch boundary.
The moving window did not cross the boundary of epochs,
even if two epochs were attached, as shown in Fig. 5. For
example, using an 8-second window produced 12 ensemble
averages for one epoch (i.e., 20-second long). Similarly, using
a 5-second window resulted in 15 ensemble averages per
epoch. The total number of ensemble averages per epoch
was noted as NTotal . In rare cases, shifting the window by 1s
resulted in the same set of heartbeats. In this case, the iden-
tical set was removed from the analysis, decrementing NTotal
by one. The calculation was repeated for all epochs.

The WFMR was calculated by taking the MSE ((2)) on
every pair of the ensemble averages in an epoch. Higher MSE
value resulted if there were a larger difference between the
ensemble averages.

MSE =
n∑
t=1

(
fEA (t)− f ′EA (t)

)2 (2)

The resulting MSEs in the epoch were then averaged
according to (3). The equation was based on the matrix
notation of all pairs of ensemble averages (NTotal x NTotal)
within the epoch and averaged the non-diagonal elements.

WFMRTEA = log
(

1
NTotal (NTotal − 1)

) NTotal∑
j6=i

NTotal∑
i6=j

MSE ij

(3)

WFMRTEA is the natural logarithm of the mean MSE for
the epoch with the window size, TEA. Natural logarithm was
applied to spread the data points evenly as the values may
form a concentrated cluster given a consistent waveform.

VOLUME 8, 2020 2700811



I. S. Chang et al.: Quantification of Resting-State BCG Difference Between Clinical and Non-Clinical Populations

c: Optimal Window Size for Ensemble Average
WFMRTEA was used to decide on the best window size for the
ensemble average. Firstly,WFMRTEA of all epochs of the sub-
ject were averaged. Then the subject averages were averaged
across all subjects regardless of population. The total mean
WFMRTEA was plotted against TEA, and the optimal window
size was decided based on the graph. The chosen optimal
window size was used throughout the rest of the analysis;
thus, the notation, TEA, was removed for brevity.

6) COMPARISON OF NON-CLINICAL AND CLINICAL
POPULATIONS
The WFMR was used to compare the resting-state BCG of
the non-clinical and clinical populations. Five samples of the
WFMR (i.e., five epochs) were available for each subject.
These points were grouped according to the population
and compared visually, statistically, and quantitatively using
binary classification. The data of the two populations were
plotted using a box plot. The distributions of the two popula-
tions were then compared using an unpaired t-test to assess if
their means were statistically different. One-sided test with
the significance level of 0.05 was used, and unequal vari-
ances between the populations were considered. The alternate
hypothesis was that the distribution of the clinical population
had higher mean than that of the non-clinical population
(i.e., the clinical population had a higher fluctuation that that
of the non-clinical population).

The binary classification task used naïve Bayes, logistic
regression, and decision tree classifiers to separate the two
cohorts for the quantitative result. Multiple classifiers gener-
ated different decision boundaries to identify any bias. Leave-
one-subject-out (LOSO) partition was implemented, where
the algorithm used a single subject’s data as the test set and the
rest of the data as the training set. The number of maximum
splits for the decision tree was adjusted from five to 30 to find
the optimal parameter.

B. CHARACTERIZATION OF WFMR
It would be informative to understand which physiological
parameters affected the WFMR so that the behavior could
be traced back to the source. In this section, the relationship
between the WFMR and other physiological parameters was
investigated.

1) REFERENCE FEATURE SELECTION
The reference parameters were selected based on past stud-
ies and the merit of providing insights on the WFMR. The
SBP, DBP, and RR-interval (i.e., heart rate) were used based
on their relationship to the BCG shown in the previous
works [9], [12]. In addition to the RR-interval, the ECG
could provide information regarding the ventricular conduc-
tion system through the QRS interval and QTc interval. The
QRS interval is defined as the conduction time of ventricular
depolarization. The QTc interval is the time from the start
of the ventricular contraction to the end of repolarization

of the ventricle, corrected by the RR interval. It is the col-
lective time of depolarization and repolarization [26]. These
parameters were useful as the electrical conduction in HF
patients could be uncoordinated, delayed, blocked, or have
abnormal rhythm and rate that manifest as the inability of
the heart to properly circulate the blood [27], [28]. A longer
QRS interval is known to indicate a blocked or slowed con-
duction of electrical signals through the ventricles [26], [29].
A longer QTc interval indicates hindered repolarization of
the heart muscle cells that limit a coordinated ventricular
contraction [30].

2) REFERENCE FEATURE EXTRACTION
While the BP-related parameters measured by the Portapres
were ready to be used in the analysis, features from the
ECG had to be extracted through the abridged steps explained
below. Similar to the noise removal process, the full proce-
dure is in the Appendix as this material diverges from the
primary objective.

From the ECG, RR-interval was calculated by finding the
time intervals between successive R-waves of the ECG.
The ECG waveform was then segmented where its Q-, S-,
and the end of the T-waves were labelled manually for the
clinical population and using Hidden Markov Model (HMM)
for the non-clinical population [31]. These labels were used to
retrieve the QRS and QT intervals. The QT interval was fur-
ther processed into two derivatives, the QTBASE and QTQRS
intervals. The QTBASE interval was set as an unadjusted
version that was equivalent to the QT interval, and the QTQRS
interval was defined as the QT interval minus the portion of
the QRS interval exceeding 120ms [32]. The QTBASE interval
included both the depolarization and repolarization, whereas
the QTQRS interval focused more on the repolarization. Both
intervals were corrected based on the RR-interval using (4)
[32], [33], which gave the final parameters used in the analy-
sis, the QTC, BASE and QTC,QRS intervals.

QTC = QT + 0.154 (1− RR) (4)

3) REFERENCE FEATURE ENGINEERING
Similar analysis as the BCG ensemble average was applied
to the reference parameters. The optimal window for the
ensemble average was used to average the reference values
within the window. Taking the QRS interval as an example,
the intervals within the window of size, TEA, were averaged.
The process was repeated as the window moved by 1s shift.
If the TEA were eight seconds, 12 averaged QRS intervals
would result in one epoch. These 12 values were used to
calculate the epoch mean and standard deviation (SD). The
process was repeated for every epoch of each subject and
all reference parameters. Natural logarithm was also applied
subsequently.

4) REFERENCE FEATURE COMPARISON
The WFMR and the reference parameters were grouped
according to the population and plotted using box plots
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(i.e., non-clinical population versus clinical population) using
the labels N and C.

III. RESULTS
Twenty-six (26) NYHA Class I and II HF patients aged 65
and over and 29 healthy adults below 65 years of age were
recruited for the clinical and non-clinical populations, respec-
tively. The demographics of the populations are summarized
in Table 1.

TABLE 1. Demographic information of the non-clinical and clinical
cohorts.

BCG was successfully collected from all subjects,
as shown in Fig. 6, and the WFMR was subsequently
retrieved. The optimal window size was decided as 8 seconds,
as shown in Fig. 7, since the reduction in mean MSE dimin-
ished marginally once the window size exceeded 8 seconds.
Examples of the ensemble averages within an epoch for each
subject of the two populations are shown in Fig. 8, which
shows six ensemble averages over one epoch. According
to the figure, the clinical cohort had a significantly higher
dynamic than that of the non-clinical cohort. The box plot
of the WFMR showed a more generalized pattern, where
the clinical population had a much higher fluctuation in the
waveform than that of the non-clinical population, as shown
in Fig. 9. The t-test rejected the null hypothesis with the p-
value of less than 0.001, indicating that the clinical population
had a statistically higher mean WFMR than that of the non-
clinical population.

FIGURE 6. (a) ECG and BCG of a clinical subject in blue and red graphs
respectively (Subject C51) (b) ECG and BCG of a non-clinical subject
(subject N70).

Numerical analysis through binary classification resulted
between 82.2% and 84.4% accuracy. The best number of

FIGURE 7. Optimal window size for ensemble average was decided as
8 seconds.

FIGURE 8. Ensemble averages of a non-clinical and clinical subject
(subject N80 and C60) over one epoch. The change in waveform is evident
in the clinical subject whereas minute change can be observed based on
visual examination in a non-clinical subject.

maximum split values for the decision tree was seven. Note
that different numbers of maximum splits had less effect on
the accuracy where the result fluctuated only below 2-3% of
the best results. The results are summarized in Table 2.

In the second part of the analysis, the WFMR was com-
pared to the reference parameters. In the process of extracting
the parameters, a few subjects had to be removed due to
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FIGURE 9. The WFMR shows higher variation of waveforms in the clinical
population at rest.

TABLE 2. Classification results.

technical difficulties. The end of T-waves in two clinical
subjects (C41 and C53) were indeterminate based on the
available resources. Therefore, the QTC intervals of these
two subjects were excluded from the analysis. The Portapres
malfunctioned in four clinical subjects. As such, there were
only 22 clinical subjects for the analyses involving SBP
and DBP.

A comparison of the distribution of the reference parame-
ters between the non-clinical and clinical population showed
that QTC,BASE, QTC, QRS, and QRS intervals showed similar
patterns as the WFMR, as shown in Fig. 10.

IV. DISCUSSION
This work compared and quantified the distinction between
the resting-state BCG of the clinical population and the non-
clinical population using theWFMR. As shown in the results,
the clinical population had a significantly more dynamic
waveform over that of the non-clinical population at rest. The
finding can have a crucial impact on the previously devel-
oped algorithms where the non-clinical population showed
stability of the waveform at rest. Higher WFMR could imply
that one or more physiological parameters related to the BCG
(e.g., electrical conduction) were not stable at rest.

It is also possible that other unknown factors that were
not accounted for created additional fluctuation in the BCG
waveform. While the source of the variation will require
exhaustive investigation, the secondary analysis provided
some insight on the issue.

The methodology around the WFMR is not limited to the
populations presented here. It is an effective tool that can be
generalized to numerically measure the behavior of resting-
state BCG in different cohorts.

Regarding the BCG acquisition, many of the signals were
distinct from the widely used morphology of longitudinal
BCG of a straight body, which agreed with the literature. The
pattern was evident in both populations but with higher varia-
tion in the clinical population, as shown in Fig. 11. While the
authors attempted to retrieve widely used features such as the
RJ-interval, it was difficult or unattainable in some cases due
to the difference present. This pattern was likely due to the
non-standing posture, abnormal heart function of the clinical
cohort, and age. When standing posture was evaluated for
its usability in the clinical population, six out of 26 subjects
could not stand still for a proper BCG measurement. Issues
such as limited mobility, tremor, and frailty prevented the
subjects from standing upright on a platform without any
support, which rendered the collected BCG unusable.

Regarding the selection 8-second window, it should be
noted that the exact size of the window matters less than the
selection of the approximate region; other values in prox-
imity (e.g., 7-second) would have a comparable effect. The
use of similar window size has precedence in other works,
including the authors’ previous works where the window size
of 7-second for ensemble average was used. The effect of
different window sizes has been elaborated in the article [21].

In the classification task, there were four incorrectly classi-
fied subjects for the non-clinical population and six to seven
for the clinical population depending on the classifier. The
examination of the incorrectly classified subjects showed that
the misclassified subjects in both classes had the WFMR lie
in the overlapping region of the two distributions as expected.
The data associated with these subjects indicated that the
QRS interval, QTC intervals, and the SD of these variables
were all randomly spread around their respective distributions
and did not show any pattern. Misclassified clinical subjects
all had class II HF. Regarding any pattern within the clinical
population, there was no noticeable difference in the WFMR
between the class I and II subjects (Fig. 12). This observation,
however, was based on limited data and should be further
investigated, as there were only seven class I subjects. Inter-
estingly, the ejection fraction (EF) retrieved from the clinical
report form of these HF patients were quite broad.

Among the QTC,BASE, QTC,QRS, and QRS intervals that
mimicked the behavior of the WFMR in the secondary anal-
ysis, QTC,BASE showed the closest resemblance. Given that
QTC,QRS and QRS intervals focused on the repolarization
and the depolarization, respectively and that QTC,BASE was
affected by both, the elevated WFMR was partially con-
tributed by the elongated ventricular contraction due to the
delay in the cardiac conduction. As supplementary evidence,
linear regression between each of the three variables with
the WFMR showed the correlation coefficients of 0.329,
0.523, and 0.353 for the QRS, QTC,BASE, and QTC,QRS
intervals, respectively. Note that this regression analysis was
done by combining the two populations without controlling
the independent variables, namely the heart function and
age. As such, these results should be taken only as a sec-
ondary reference where the actual correlation between these
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FIGURE 10. Box plots of other reference parameters comparing the non-clinical and clinical populations. Left y-axis shows
the logarithmic scale and the right y-axis shows the converted numbers translated from the log scale. Units of translated
y-axes are the following. QRS, QTC,BASE, QTC,QRS: ms; RR: s; SBP, DBP: mmHg.

FIGURE 11. BCG ensemble averages that did not follow a typical
morphology (subjects N73 and C7). The two ensemble averages shown in
each graph are from different epochs.

parameters may differ. Interestingly, the electrical function
exerted a certain role on the BCGwhile the signal’s originwas
mechanical. The RR-interval and BP were not related to the
WFMR, suggesting that the feature was not affected by rate-
or vascular-related conditions (i.e., fluctuation at rest). This
effect, however, requires further study as these parameters
were shown to be influenced by the vascular system, and
change may manifest during a stress test [34].

One of the futureworks is that themeasurement ofmechan-
ical characteristics of the heart function (e.g., CO) in addition
to the electrical characteristics should be taken. Namely,
additional measurements such as echocardiogram or catheter
measurements that provide the mechanical properties of the
heart may reveal further information about the WFMR. With
these measurements included, the future work should iso-
late the aspects of the electrical conduction and mechanical
function to assess the degree of the influence each factor
makes on the feature. As the study becomes more focused on
the clinical aspect, relevant variables such as age and heart
function should be controlled accordingly.

The concept of WFMR may be transferred to an appli-
cation in two ways. The feature may be used to provide
uncertainty in an estimation involving the BCG and suggest

FIGURE 12. The WFMR of BCG for the non-clinical, HF I, and HF II. While
the small sample size made the comparison inconclusive, there is no
noticeable difference between class I and II.

ways to calibrate the dynamic behavior of the resting-state
BCG. The quantitative nature of the WFMR allows direct
measurement of the fluctuation of BCG morphology at rest.
As the fluctuation translates into the variability of the mea-
sured features (e.g., RJ-interval), the WFMR may be used
to generate tolerance for an estimation. For example, if PEP
is estimated using the BCG and ECG, the WFMR may be
used to produce a signal quality index that can be used
in calculating an error range or variance of the estimation.
Based on this information, one can determine the reliability
of the inferred parameter and decide to keep or discard the
output. Secondly, the WFMR could enable ways to tune the
dynamic behavior to make an algorithm based on the BCG
more consistent. This implementation will, however, require
further elucidation of theWFMR. Namely, understanding the
source of the fluctuation may allow compensating for the
influence. One way to address this issue is to categorize
the WFMR into different types. Collective behavior analysis
was sufficient to prove the potential of the WFMR.

VOLUME 8, 2020 2700811



I. S. Chang et al.: Quantification of Resting-State BCG Difference Between Clinical and Non-Clinical Populations

However, branching the WFMR into different types may
be necessary to attain a complete view of the resting-state
behavior and understand the source of the fluctuation before
undertaking any stress test. For example, changes in ampli-
tude and phase can both affect the WFMR; grouping the sig-
nals according to these categories and performing a separate
characterization for each may reveal ways to calibrate and re-
use the previously developed algorithms during stress tests
more effectively.

The presentation of the WFMR should be interpretable
by the readers. The absolute value of the WFMR for each
population separately present little value at the current stage.
Instead, the feature should be understood in relative terms;
comparison of theWFMR of one population (e.g., clinical) to
a reference population (e.g., non-clinical) would provide the
degree of variability in an intuitive manner. This was done
using separation accuracy presented in a known metric of
percentage in this work.

A few limitations were present in using the equipment.
While the authors were highly confident of the features
extracted, two HF subjects had to be removed from the QTC
analysis due to the limitation of using the 3-lead ECG. Using
a 12-lead ECG in the future will eliminate this limitation.
Lastly, the Portapres had malfunctioned in four clinical sub-
jects. One notable source of the malfunction was a failure to
detect the pulse at the extremity (i.e., a finger). This problem
may surface again in the future as a specific portion of the
HF patients have weaker circulation at the extremities, and
the device such as the Portapres may not be able to detect the
necessary pulse signal to make its measurements. It is advised
that contingency forms of measurements be prepared in case
the problem resurfaces.

Additional directions for future research include expand-
ing the current analysis to examine non-time domain char-
acteristics of the WFMR, such as frequency components,
transformation coefficients. This work included only mild to
moderate HF patients. It is expected that further differentia-
tion will occur when more severe HF (i.e., NYHA class III
and IV) patients are included. Later study should assess the
capability of the system to assist HF patients self-manage
their condition. This includes the efficacy to unobtrusively
detect adverse events related to HF in a home environment.
The effectiveness of the WFMR may be evaluated in cohorts
with different health conditions to further validate the efficacy
of the feature to generalize. Lastly, the source of morphology
fluctuation, as well as the morphology alteration, may be
identified with the help of mathematical models, where the
matching the waveforms by tuning parameters may narrow
down the source of observations made in this work [35], [36].

V. CONCLUSION
This work investigated the resting-state BCG of the non-
clinical and clinical population using the WFMR. The anal-
ysis showed that the clinical population had a statistically
higher fluctuation of the waveform at rest with a mini-
mum 82.2% separation, which may adversely affect the

performance of the existing algorithms in estimating the
physiological parameters. To achieve ambient monitoring of
older adults with HF successfully, the WFMR may be used
to compute a margin of errors via signal quality index when
a conventional algorithm is used. As well, the behavior of the
WFMR should be elucidated further to identify the source of
the fluctuation for calibration prior to conducting stress tests
on the clinical population.
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