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Comprehensive assessment of multiple
biases in small RNA sequencing reveals
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of widely used methods
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Abstract

Background: RNA sequencing offers advantages over other quantification methods for microRNA (miRNA), yet
numerous biases make reliable quantification challenging. Previous evaluations of these biases have focused on
adapter ligation bias with limited evaluation of reverse transcription bias or amplification bias. Furthermore,
evaluations of the quantification of isomiRs (miRNA isoforms) or the influence of starting amount on performance
have been very limited. No study had yet evaluated the quantification of isomiRs of altered length or compared the
consistency of results derived from multiple moderate starting inputs. We therefore evaluated quantifications of
miRNA and isomiRs using four library preparation kits, with various starting amounts, as well as quantifications
following removal of duplicate reads using unique molecular identifiers (UMIs) to mitigate reverse transcription and
amplification biases.

Results: All methods resulted in false isomiR detection; however, the adapter-free method tested was especially
prone to false isomiR detection. We demonstrate that using UMIs improves accuracy and we provide a guide for
input amounts to improve consistency.

Conclusions: Our data show differences and limitations of current methods, thus raising concerns about the
validity of quantification of miRNA and isomiRs across studies. We advocate for the use of UMIs to improve
accuracy and reliability of miRNA quantifications.
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Background
Research of miRNA expression has been instrumental in
identifying miRNAs involved in development and dis-
eases [1], and identifying expression-signatures for use
as biomarkers [2–4]. Small RNA sequencing (sRNA-seq)
allows for detection of novel miRNAs and altered canon-
ical miRNA sequences, termed isomiRs [5–7]. These
miRNA isoforms are produced by many mechanisms,

including shifts in Drosha and Dicer cleavage sites of the
pri- and pre- miRNA sequence, as well as trimming by
exoribonucleases, additions of bases by nucleotidyl
transferases, and RNA editing by adenosine deaminase
acting on RNA (ADAR) enzymes [6]. isomiRs show
differences in stability, localization, and functionality.
Some isoforms can even regulate alternative reper-
toires of mRNAs as compared to the canonical se-
quence [6, 8–12]. Recent research indicates that they
are of clinical importance for many diseases and condi-
tions, including cancer [13], diabetes [14], and Hun-
tington’s disease [15]. Despite the enhanced capability
to detect such sequences, there has been little
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assessment of the quantification of isomiRs using
sRNA-seq; and miRNA quantifications using this
method are often inconsistent across studies [16]. This
is likely in part due to differences between methods
and/or variation in the detection by individual
methods [17] (from library preparation to preprocess-
ing to normalization, etc.). Furthermore, several
aspects of sRNA-seq can lead to the preferential quan-
tification of some miRNAs, while other miRNAs may
be poorly detected or not detected at all, thus introdu-
cing biases that lead to misrepresentations of true
miRNA expression levels [18]. Evaluations and com-
parisons of the accuracy (how close measurements are
to the truth) and consistency (how close measurements
are across replicates) associated with current methods
are critical for proper cross-study interpretation and
for guiding methodological improvement.
Evidence suggests that biases and inconsistencies in

sRNA-seq based quantifications and group comparisons
are largely based on study design and library preparation
methods [17]. The details of these issues have been
reviewed elsewhere [16, 19–25]. Some of these issues are
avoidable with proper study design. However, bias and
inconsistency related to adapter ligation, cDNA synthe-
sis, and amplification may principally be dependent on
library preparation and preprocessing methods, which
are less readily controlled.
A considerable number of studies have evaluated

adapter ligation bias in quantifications from several
commercially available kits [24, 26–28]; however, to our
knowledge, only one study has directly compared the
performance of randomized adapter methods and
adapter ligation-free methods [24]. Furthermore, limited
studies have investigated the influence of reverse tran-
scription or amplification bias in sRNA-seq [29–32] and
no study to date has evaluated the use of unique
molecular identifiers (UMIs) in order to identify and
remove duplicate reads to mitigate such biases in sRNA-
seq biological samples. While amplification bias is
associated with variations in sequence length and GC
content [33], and while the use of UMIs has proven to
be useful in mitigating amplification bias for traditional
RNA sequencing [34, 35] and has become increasingly
popular, the exact implementation of this method is still
unresolved in the RNA sequencing field at large [36]. It
remains unclear if UMIs would also be useful for small
RNA sequencing as this has not been explored to date.
The consensus in the field about PCR amplification bias
in small RNA has been divided. One view holds that
amplification bias appears to be minimal in sRNA-seq.
They argue this because small RNA sequences are very
similar in size, studies show that bias in sRNA-seq largely
appears to be due to adapter ligation bias [18, 37, 38], and
studies show no distortion of quantification results with

excessive numbers of PCR cycles compared to more
reasonable numbers of cycles [31, 32]. However, others
suggest that amplification bias in sRNA-seq could also
introduce bias as it does in traditional RNA sequencing
(10), especially given the large range of GC content among
miRNAs. While a couple of studies have used UMIs in
sRNA-seq [29, 30], only one has evaluated the reproduci-
bility of sRNA-seq quantifications obtained from utilizing
UMIs to those without [29], in which the authors con-
cluded that biological technical replicates had less vari-
ation when UMIs were used to remove duplicate reads
compared to when either all or no duplicates were re-
moved. However, no statistical tests were performed in
this assessment, and no evaluation of the influence of the
UMI deduplication on the accuracy of the quantifications
was performed. In the sRNA-seq literature there has also
been little assessment of the influence of starting amount
on the consistency of quantifications. While RNA editing
detection has been evaluated [26], other aspects of isomiR
quantification have not yet been performed.
To complete the gap left by previous studies, we com-

prehensively evaluated bias among miRNA and isomiR
quantifications from four commercially available library
preparation methods, as well as those obtained following
the removal of duplicate reads using UMIs. We also
evaluated the consistency of the results using a variety of
starting amounts. We assessed the similarity of the
quantifications from each method, the diversity of the
detection of different types of small RNAs by each
method, as well as the accuracy and the consistency of
the results obtained from each method within and across
batch. Such evaluations are critical for optimizing
sRNA-seq methods to obtain both reliably consistent
and accurate results across batches and studies, and to
therefore allow for more accurate and reproducible
miRNA and isomiR quantifications in disease states and
conditions. Based on these results, we offer suggestions
for future study designs.

Results
Study design
In this study we evaluated the influence of several poten-
tial sources of bias and inconsistency on miRNA quanti-
fications (Fig. 1a) by comparing the performance of four
commercially available kits including two that are
designed to mitigate adapter ligation bias in different
ways (Fig. 1b) and two preprocessing methods including
one to mitigate reverse transcription and adapter ligation
bias and a control for comparison (Fig. 1c), as well as
various starting amounts (100 ng to 2000 ng) for each
method to determine the reliability of results achieved
with smaller inputs (Fig. 1d). The following library prep-
aration kits were compared: 1) the Clontech SMARTer
smRNA-Seq Kit for Illumina, now owned by Takara Bio
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(Clontech), which incorporates adapter and index se-
quences during reverse transcription and amplification
and is therefore ligase-free to avoid adapter ligation bias;
2) the Bioo Scientific NEXTflex Illumina Small RNA
Sequencing Kit v3 (NEXTflex), now owned by Perkin
Elmer and called NEXTFLEX, which utilizes adapter
sequences with random nucleotide sequences adjacent
to the miRNA binding location giving each miRNA a
variety of adapter sequences to bind to avoid adapter
ligation bias; 3) the Illumina TruSeq Small RNA Library
Prep Kit (Illumina); and 4) the New England BioLabs
Next Multiplex small RNA kit (NEB). Based on our
literature search Illumina and NEB sRNA-seq kits
appear to be the first and second most widely used kits
to date, respectively. The NEB and the NEXTflex kits in-
clude polyethylene glycol in an effort to reduce adapter
ligation bias by improving overall ligation efficiency.
We also evaluated the influence of reverse transcrip-

tion and amplification bias by utilizing the random
sequences within the adapters of the NEXTflex kit (that

are added prior to the cDNA synthesis and PCR amplifi-
cation steps), as UMIs. These UMIs allow for the re-
moval of duplicate reads introduced during amplification
and possible mitigation for sequences that may have
been preferentially reverse transcribed (Fig. 1c). We will
hereinafter refer to these data as “Deduped”. To determine
if differences identified between the Deduped data and the
NEXTflex data were simply due to a reduction in the
number of reads (as the UMI-based deduplication process
reduces the data down to 5% of the original), we also in-
cluded a random 5% subset of the NEXTflex reads, herein-
after referred to as “Fivepercent,” for comparison.
We evaluated two types of samples (Fig. 1d-e) and

processed the data following the methods outlined in
Fig. 1e. See the methods for more details of our experi-
mental approach. We then evaluated several questions
shown in Fig. 1f about the similarity of the quantifica-
tions obtained from the 6 tested methods (Fig. 1b), the
accuracy of those quantifications using synthetic miR-
NAs in equimolar concentration, the ability of each

Fig. 1 Study Design. a We evaluated the influence of starting amount on the consistency of results, as well as the accuracy of results obtained
when using a variety of methods, including those intended to reduce bias from adapter ligation, reverse transcription (RT), and PCR amplification.
b We compared four commercially available kits and two preprocessing methods to address RT and PCR bias. c In the Deduped method we
collapsed duplicate reads based on a unique molecular identifier (UMI) of degenerate bases in the adapter sequences (bases within the black
boxes). We also compared the collapsed data with a 5% subset of the NEXTflex data to determine if performance differences were due to the
UMI-based collapsing of reads or simply due to having fewer reads. d We evaluated two data types: miRNA quantifications from homogenate
whole brain total RNA and miRNA quantifications from a pool of 962 equimolar synthetic RNAs with sequences corresponding to human, rat,
mouse, and virus miRNA. We had two batches of human brain data. The first included triplicates of different starting amounts based on the kit
manufacturers’ suggested ranges. The second included a single sample of the same human brain with 1000 ng of input. We used 300 ng of the
synthetic miRNAs for each tested method. e Our processing pipelines for the two types of RNA studied. f We evaluated the 6 small-RNA
sequencing methods using 4 major assessments. The brain icon indicates utilization of brain samples to assess a question, while the red tube
indicates utilization of synthetic miRNA samples
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method to detect a variety of miRNAs and isomiRs, and
the consistency of the quantifications by each method of
technical replicates within the same batch and across
two batches.

Similarity
Overall quantifications are similar, yet results for individual
miRNAs are quite divergent across methods
We first performed a general evaluation of the similarity
of the resulting miRNA quantifications from each method
(Fig. 1b) and of major contributors to overall variability
using the data derived from the same human brain sample
across technical replicates (Fig. 1f.Similarity). Hierarchical
cluster analysis indicated that the samples generally

clustered by method and starting amount (Fig. 2a). Differ-
ential analysis of the miRNA expression estimates revealed
that the methods (Fig. 1b) produce overall relatively simi-
lar results, however some individual miRNAs showed very
different quantifications with intensity ratios ranging as
extreme as − 9 to 6 (Fig. 2b).
Evaluating the top 20 abundant miRNAs from each

method (Additional file 1: Table S1), only 6 miRNAs
(30%) overlapped across all methods (however the top
20 for Fivepercent were identical to the top 20 from the
raw full NEXTflex data). Thus, emphasizing only the
most abundant miRNAs for further study may be prob-
lematic. The overlap between the most abundant miR-
NAs detected by Clontech and the other methods was
lower (45 to 55%) than the overlap between Illumina,

Fig. 2 Similarity Assessment. a Dendrogram depicting cluster analysis shows that samples largely cluster by method and starting amount. b MA
plot demonstrating the difference between the miRNA quantifications by the various library preparation methods. Individual points represent the
miRNAs quantified; the y-axis of each plot shows the log ratio, which is the difference between the log2 transformed and DESeq2 normalized
quantification estimates between the two methods, while the x-axis shows the average expression of each miRNA for the pair of methods
compared (also log2 transformed and DESeq2 normalized). See the Similarity analysis section of the methods for more information. Thus the plot
on the upper left corner shows the difference in quantification estimates between Clontech and Illumina for each miRNA quantified by both
methods. We can see that some individual miRNAs greatly differ between the two methods across the full range of expression levels, as there is
a difference of up to roughly 6 between the two methods for some miRNAs (with quantifications being much lower for the Clontech method
relative to the Illumina method for these miRNAs), while the range of expression is roughly 6 to 18. As another example, the lower right plot
shows the difference between the Deduped method and the Fivepercent method. Quantification estimates are quite similar, except for abundant
miRNAs which show lower expression in the Deduped method, as one might expect. c The percent of variance explained by method, starting
amount, batch, the number of reads mapped to miRNA, and the variance unaccounted for by these factors. Each point represents the variance
explained by each factor for an individual miRNA sequence that was quantified by all of the tested methods
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NEB, and NEXTflex (60–65%). The Deduped method
resulted in an 85% overlap with the raw NEXTflex data.
Sum of squares analysis revealed that method choice

was the largest contributor to miRNA count variability
(on average 82% variance explained for individual miR-
NAs (Fig. 2c) when evaluating the data from all methods
(excluding the Fivepercent control). This further exem-
plifies the lack of consistency in quantifications that may
occur when different methods are utilized.

Accuracy
The reduction of numerous biases improves accuracy
To assess the accuracy of each method (Fig. 1f.Accuracy),
we investigated how consistently each kit detected 962
equimolar synthetic miRNA sequences. We calculated
the difference of each miRNA count from the mean
count for all miRNAs for each method, which we called
“accuracy error”. The six methods showed significant
differences in accuracy (F = 40.00, p < 2.2e-16). The
Deduped data had significantly less accuracy error com-
pared to all other methods (up to ≈ 8% less error),
followed by comparable accuracy for Clontech, NEXT-
flex, and Fivepercent methods (which did not signifi-
cantly differ from one another in post hoc analysis), and
worse accuracy for the NEB and Illumina methods. This
suggests that the Illumina and NEB methods detect
different sequences with less validity than the other
methods. This was expected, given the known adapter
ligation bias associated with these methods. Our results
suggest that the methods utilized by the Clontech and
NEXTflex kits both diminish bias – we speculate that
this is due to a reduction in adapter ligation bias as com-
pared to the Illumina and NEB methods. This is based
on findings of previous evaluations of adapter ligation
bias [38] demonstrating that randomized adapters, such
as those used in the NEXTflex protocol, reduce adapter
ligation bias and the fact that the Clontech method is
adapter ligation free. However, mitigation of other forms
of bias may also contribute to the improved accuracy.
Using UMI sequences for deduping resulted in add-
itional error reduction (the raw NEXTflex data had
2.81% more error) (Fig. 3a and Additional file 2: Table
S2), which may be due to a reduction in reverse tran-
scription and/or amplification bias. This is consistent
with our analysis of the overall variance of the counts
for these synthetic sequences (Fig. 3b). The concordance
of the rank of the sequences with higher accuracy error
across the methods was poor (data not shown), suggest-
ing that different sequences were prone to bias for each
of the methods.
We thus analyzed the overall contribution of different

sequence characteristics to the variance of the count es-
timates of the synthetic miRNAs and found that indeed
different characteristics were associated with variability

for the different methods (Fig. 3c, Fig. 3d). The second-
ary structure free energy was highly influential for Clon-
tech (explaining ≈ 7% of the variance), and the
NEXTflex-based methods (explaining ≈ 10% of the vari-
ance for each). The identity of the last 2 bases was influ-
ential for all methods but in particular for the NEB and
Illumina methods (explaining ≈ 6% of the variance for
each), suggesting that adapter ligation of the 3′ end par-
ticularly introduces bias of miRNA quantifications, in
agreement with previous work [32]. The identity of the
first 2 bases (5′) was most influential for Clontech and
explained ≈ 8% of the variance suggesting that the
SMART template-switching of the 5′ end may introduce
more bias. The number of Cs within a sequence also
accounted for a relatively large percentage of the vari-
ance (2.5–5% for all methods except for Clontech).
Interestingly, GC content only accounted for ≈ 1% of the
variance for each method. See Additional file 3: Figure
S1 for more detailed information about these sequence
characteristics and their influence on quantification esti-
mates. See Additional file 4: Figure S2 for secondary
structures of specific miRNAs detected above and below
average for all methods, as an illustration of how sec-
ondary structure may influence quantification.

Detection of RNA classes
Libraries generated using the Clontech kit had very low
miRNA mapping rates
We next assessed the percentage of reads that mapped
to miRNA or other small RNA species for each of our
brain-derived samples using bowtie [39] (Fig. 1f. Detec-
tion Diversity). We excluded the Deduped data and its
control, as alignment was required to produce these
data. There was a significant difference in the miRNA
mapping rate of the 1000 ng starting input data across
the kits (F = 108.9, p-value = 5.73e-09). The NEXTflex
and NEB methods had the highest rates, while the Clon-
tech method had a significantly the lower mapping rate,
with only 1–2% of all reads mapping to miRNAs
(Fig. 4a-b), as previously described [24] (Additional file 5:
Table S3). There was a significant difference for all the
tested types of RNA across the methods except for small
Cajal body-specific RNAs (scaRNA) after multiple test-
ing correction. The Clontech reads largely aligned to
ribosomal RNA (rRNA) and had significantly higher
rates of small nucleolar RNAs (snoRNA) and small nu-
clear (snRNA) mapping than the other methods, while
the NEXTflex method resulted in the largest number of
P-element induced wimpy testis (PIWI)-interacting RNA
(piRNA) reads (Additional file 6: Table S4). All of the
kits had quite consistent mapping rates across the vari-
ous starting amounts (Fig. 4b). Mapping rates of the syn-
thetic RNA were much more comparable among the
methods, suggesting that the differences seen with the
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biological samples are largely due to differences in
detection of other biological RNAs (Additional file 5:
Table S3).

Detection of unique miRNAs
The deduped data and Clontech data had better detection
rates
To discern if any of the methods have an advantage in
detecting a diversity of unique miRNAs, we compared
the detection rate of miRNA sequences (Fig. 1f. Detec-
tion Diversity). Here we define a miRNA as detected if
the miRNA was present with at least 10 normalized
reads in the quantifications for each of the triplicates of
the 1000 ng batch 1 brain data. The number of detected
unique miRNAs was highest in the Deduped data, and
lowest in the Fivepercent and Illumina data (Fig. 4c),
which was consistent when including the second batch
(Additional file 7: Table S5). Despite the low mapping
rate of the Clontech samples, the miRNA diversity

detected by this kit was relatively comparable to that of
the other methods tested. Since both the Deduped and
the Fivepercent data also included only 5% of the total
raw NEXTflex reads, both of these methods also resulted
in a much lower number of reads that could map to
miRNA. The similarity of the detection rates of all the
methods despite the large difference in miRNA mapping
rates is due to the DESeq2 [40] normalization strategy
utilized, which accounts for differences in library com-
position, and the high sequencing depth. An analysis of
subsamples containing only 10 million, 5 million or 1
million reads of the Clontech data resulted in lower
detection diversity (Additional file 8: Table S6).
Using the data from all starting amounts, there was a

significant difference in the number of detected miRNAs
across methods (F = 7.69, p-value = 0.00017), however
pairwise comparisons were largely nonsignificant (except
between Clontech and Fivepercent, p = 0.0024). There
was a weak but significant positive relationship (r = 0.4,

Fig. 3 Accuracy Assessment. a Individual points represent the absolute difference of each synthetic miRNA quantification from the mean of all
quantifications of the equimolar synthetic sequences for each small RNA sequencing method. b The variance of all the quantification estimates
for the synthetic sequences. c The percent variance of synthetic sequence quantifications explained by each of these sequence characteristics: GC
content, length, free energy of the predicted secondary structure (FoldG), identity of the first (5′) and last (3′) two bases, the count of individual
bases, and the presence of repeat sequences, such as duplets of the same base or quadruplets of the same base. The heatmap legend shows the
percentage of variance from 0 to 10%. d The percent variance explained by each of the sequence characteristics but weighted by the overall
variance of each method, as shown in b. The heatmap legend shows the percentage of variance from 0 to 10%
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Fig. 4 (See legend on next page.)
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p-value = 0.027) between detection diversity and input
amount (Additional file 9: Figure S3) using all methods.
Thus, as anticipated, larger inputs resulted in a more
diverse pool of detected unique miRNAs; however, the
pool size did not differ greatly. When evaluating each kit
individually, only the Deduped method had a significant
(p-value = 0.009) and strongly positive relationship be-
tween starting amount and the number of unique de-
tected miRNAs (r = 0.92).

Detection consistency
The Clontech method was significantly worse than the
others
To determine how well each method consistently de-
tected the same miRNAs (Fig. 1f. Detection Diversity),
we calculated the proportion of miRNAs detected for
each sample that were not detected by the other two
samples within the triplicates as a measure of detec-
tion inconsistency using the 1000 ng input data
(Fig. 4d). There was a significant difference in the in-
consistency of detection overall between the methods
(F = 12.27, p-value = 0.0002), and although no individ-
ual contrasts between pairs of methods were signifi-
cant in post-hoc analysis, the Clontech data resulted
in the highest level of inconsistency, and NEB per-
formed the best, with the lowest level of inconsistency.
Analysis of the full set of data including all starting

amounts (Additional file 9: Figure S3) demonstrated a
significant difference in the inconsistency across
methods (F = 14.83, p-value = 1.65e-10) and starting
amounts (t = − 3, p-value = 0.00257, Pearson r = − 0.31).
There was significantly more inconsistency for the Clon-
tech method compared to all other methods (up to 240%)
except the Fivepercent control method (Additional file 10:
Table S7). This suggests that although the Clontech level
of detection may have been rescued by the high depth of
sequencing, the low mapping rate may still result in much
poorer consistency of detection.

Detection of isomiRs
The methods detected significantly different numbers of
isomiRs – the Clontech method detected the most
We next evaluated the isomiR detection rate of each
method (Fig. 1f. Detection Diversity). We define an iso-
miR as detected if it had greater than 100 normalized
reads in all triplicates for each method of the 1000 ng
input data. We observed the largest number of unique
isomiR sequences in the Clontech data and the lowest in
the NEXTflex data (Fig. 4e). When evaluating detection
across both batches, the Clontech data remained the
most diverse (with the greatest number of isomiRs
consistently detected in both batches), while the Illu-
mina method detected the lowest number of unique iso-
miRs (Additional file 7: Table S5). Using all the data
derived from all the starting amounts, we determined
that there was a significant difference in the number of
isomiRs detected across the methods (F = 83.5, p-value =
8.89e-15), but not across starting amounts (Additional
file 9: Figure S3). Clontech detected the largest number
(up to 250% more), followed by NEB (up to 169% more)
and Illumina (up to 147% more), while the NEXTflex
based methods similarly detected the least (Add-
itional file 11: Table S8).
When evaluating the consistency of isomiR detection

(Fig. 4f, Additional file 9: Figure S3), there was a signifi-
cant difference in the triplicate consistency of detection
(F = 5.9, p-value = 0.006), but again no individual con-
trasts between pairs of methods were significant. For the
1000 ng input data, the Illumina data had the highest
inconsistency, while the NEB data had the least.

Detection overlap
Despite different miRNA mapping rates, all the methods
capture overlapping miRNAs but very few overlapping
isomiRs
We next characterized the overlap of unique miRNA se-
quences captured by each method (Fig. 1f. Detection Di-
versity). Evaluating the miRNAs consistently detected by

(See figure on previous page.)
Fig. 4 Detection Diversity Assessment. a Mapping rate of various small RNAs utilizing the 1000 ng input human brain data. Undetermined
indicates that the read did not map to the annotations of the evaluated small RNA classes. Error bars show standard deviation. Significance is
only shown for methods that had significantly different mapping rates compared to all other methods with the same direction of change. b
Mapping rate of small RNAs for all starting input amounts for each method. The Y-axis shows the percentage of reads of each category and the
X-axis shows each tested brain sample. Statistical tests for the differences in mapping rates are shown in Additional file 6: Table S4. c The bars
show the number of unique miRNAs with greater than 10 normalized reads common to all triplicates for the 1000 ng data of the first batch.
Points indicate the number of unique miRNAs for each triplicate and the standard deviation error bars shown are for these points. d Percentage
of miRNAs that had quantifications above 10 in only 1 or 2 of the triplicates. e Bars show number of unique isomiRs with greater than 100
normalized reads common to all triplicates for the 1000 ng data of the first batch. Points indicate the number of unique isomiRs for each
triplicate and the standard deviation error bars shown are for these points. f Percentage of isomiRs that had quantifications above 100 in only 1
or 2 of the triplicates. g Overlap of unique miRNAs with greater than 10 normalized reads in all triplicates for the 1000 ng data of the first batch.
h Overlap of unique isomiRs with greater than 100 normalized reads in all triplicates for the 1000 ng data of the first batch. i Number of false
isomiRs detected for each of the 962 synthetic sequences. j Number of normalized reads (expression) of the false isomiRs. k Percent variance of
the number of isomiRs observed for each synthetic sequence explained by various sequence characteristics. The heatmap legend shows the
percentage of variance from 0 to 9%
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all 1000 ng triplicates of the first batch, we determined
that in general a large proportion of the miRNAs were
commonly detected by all of the methods (on average
74%), and only a small fraction of miRNAs was uniquely
detected by a single method (4.7% on average) (Fig. 4g).
In contrast, on average only 5% of the detected isomiRs
by each method overlapped those detected by all the
other methods (Fig. 4h).

Detection of false positive isomiRs
All methods detected false isomiRs, but especially Clontech
and NEB
To assess the possibility that the methods may result in
false isomiR detections, we evaluated the presence of
isomiRs in the synthetic miRNA data (which has no
designed isomiRs) (Fig. 1f. Detection Diversity). False
isomiRs were detected by all of the tested methods. We
compared the methods based on: 1) the number of over-
all unique detected isomiR sequences, 2) the number of
unique isomiR sequences detected for each individual
synthetic sequence, and 3) the quantifications of the in-
dividual false isomiRs. There was a significant difference
in the number of isomiRs detected for each synthetic se-
quence by the methods (F = 176.37, p-value = < 2.2e-16).
The Clontech method detected more unique isomiRs
overall than all the other tested methods (on average
401% more false isomiRs); 14,130 were observed for
Clontech, 5021 for Illumina, 9074 for NEB, 2221 for
NEXTflex, 2213 for Deduped, and 1779 for Fivepercent.
The number of unique isomiRs observed for each syn-
thetic sequence was also significantly higher. On average
the Clontech method resulted in 14 isomiRs per syn-
thetic sequence, while the NEXTflex-based methods (the
raw NEXTflex data, the Deduped, and the Fivepercent)
resulted in roughly 2 isomiRs per synthetic sequence
(Fig. 4i, Additional file 12: Table S9). The counts
observed for the individual isomiRs detected were sig-
nificantly higher for NEB than all the other methods
(with 60% higher expression than the isomiRs detected
by the NEXTflex based methods) (Fig. 4j). The NEXTflex
methods (raw, Deduped, and Fivepercent) resulted in
the fewest isomiRs detected, with the fewest isomiR
counts per synthetic sequences, and with the lowest
expression. There was no difference between the
Deduped and the raw NEXTflex data for the expression
of the isomiRs or in the number detected per synthetic
sequence (Additional file 12: Table S9).
Sequence feature analysis revealed that the identity of

the first two bases (5′) accounted for most of the
variance in the number of isomiRs detected for each
synthetic sequence for the Clontech kit (accounting for
nearly 9% of the variance) (Fig. 4k). Therefore, false posi-
tive isomiRs may be generated during the reverse tran-
scription step of the library preparation for this method.

This is consistent with other studies that suggest that
the template-switching reverse transcription method uti-
lized by Clontech of the 5′ end can lead to shortened
miRNA transcripts in a process called strand invasion [41]
and potentially longer miRNA transcripts due to concata-
mers of the template-switching oligo [42]. In contrast, the
last 2 bases (3′) accounted for the largest amount of vari-
ance of the other methods (on average 5.3%).

Consistency across batch
Illumina had the lowest consistency, while the other
methods performed similarly
To determine the consistency of results obtained across
batches for each method, we compared the mean of the
triplicates in one batch to a second batch of a single sam-
ple of the same human brain (Fig. 1f.Consistency). Using
the normalized and log transformed reads for miRNAs
that were found to be detected by each kit when filtering
for greater than 10 reads across all 4 samples for each kit,
we calculated the distance from the mean of the two
batches for each detected miRNA individually. Overall,
method choice had a weak significant association with
error across batch (F = 2.39, p-value =0.036). This associ-
ation was driven by the batch error of the Illumina method
which was significantly higher than the other methods,
with up to 74% more error than other methods (Fig. 5a,
Additional file 13: Table S10). NEB, NEXTflex, and the
Deduped data were the most consistent across batch, with
no significant difference in the performance of these
methods (p > 0.05). The top miRNAs showed some level
of concordance across the methods (data not shown).

Consistency across triplicates
Clontech and Illumina had the lowest consistency
We then evaluated the consistency of the triplicates
(Fig. 1f.Consistency) within the 1000 ng data, by calculating
the distance of each triplicate from the mean of all three
triplicates. We determined that there was a significant dif-
ference across the methods (F = 36.7, p-value = < 2.2e-16).
Consistency was significantly higher for the NEB and
Deduped methods, while Clontech, Illumina, and the ran-
dom Fivepercent had the lowest consistency (with ≈ 20–
40% more error, Fig. 5b, Additional file 14: Table S11).
Deduping of the NEXTflex data improved consistency. The
raw data had 14% more error between triplicates.
We then calculated the triplicate consistency for

each starting amount. We determined that using all
starting amount data, there was still a significant dif-
ference in triplicate consistency between the methods
(F = 79.7, p-value = < 2.2e-16), but there was no rela-
tionship with starting amount (Pearson r = − 0.11)
(Fig. 5c). All pairs of methods were significantly differ-
ent, except for the contrasts between NEB and
Deduped and between Clontech and Illumina (Fig. 5c,
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Fig. 5 Consistency Assessment. a Absolute difference of the normalized and log2 transformed quantifications (norm_quantifications) of the
second batch from the mean of the triplicates of the first batch for each quantified miRNA of the 1000 ng input data. b Absolute difference of
norm_quantifications for each quantified miRNA from a given triplicate to that of the mean of all three triplicates of the 1000 ng input data. c
Absolute difference of norm_quantifications for each quantified miRNA from a given triplicate to that of the mean of all three triplicates of the
data for all the starting inputs. d Percent variance of batch inconsistency (data in a) explained by various sequence factors. The heatmap legend
shows the percentage of variance from 0 to 75%. e Percent variance of batch inconsistency (data in a) explained by various sequence factors
weighted by the overall batch variance of each method. The heatmap legend shows the percentage of variance from 0 to 75%. f Plots of the
association of expression and batch error. g Percent variance explained by various sequence factors of the triplicate inconsistency plotted in c.
The heatmap legend shows the percentage of variance from 0 to 100%. h Percent variance explained by various sequence factors of the
triplicate inconsistency plotted in c and weighted by the overall variance of triplicate error for each method. i Plots of the association of
expression and triplicate inconsistency using all starting input data in c. The heatmap legend shows the percentage of variance from 0 to 100%
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Additional file 14: Table S11). NEB and Deduped again
had the greatest consistency (up to 23% less inconsist-
ency) and Clontech and Illumina had the least (≈17%
more inconsistency).

Factors affecting consistency
The most abundant miRNAs were the most inconsistently
detected for each method
To determine if any aspect of the miRNA sequences
was associated with more or less consistency across
batch (Fig. 1f.Consistency), we evaluated the association
of various sequence factors with the batch error esti-
mate. For each method, the expression of each individ-
ual miRNA was the largest contributor to variance of
batch error (Fig. 5d-e). All methods showed a signifi-
cant and positive relationship between expression and
inconsistency across batch (Pearson r > = 0.83 for all
methods), Fig. 5f.
Evaluating sequence characteristic associations with

triplicate consistency, again, expression was the largest
contributor to variance of error estimates (Fig. 5g-h) and
again all methods showed a significant positive associ-
ation with expression and inconsistency across triplicates
(Pearson r > 0.82 for all methods), Fig. 5i.
To determine if the same miRNAs showed high error

across the starting amounts or methods, we ranked the
triplicate consistency error estimates and compared the
ranks between the starting amounts of a given method
and between methods (data not shown). The concord-
ance of the ranks between starting amounts and
methods was highest among the sequences with the
highest error with roughly 40% concordance.

Consistency and its relationship to starting amount
There was no improvement in consistency beyond 500 ng of
total RNA for most methods
Using data normalized and filtered for greater than 10
normalized reads for each method individually, we
further evaluated the influence of starting amount on
consistency across triplicates (Fig. 1f.Consistency).
Overall, starting amount was significantly associated
(p < 0.05) with triplicate consistency error for each
method except for Illumina, which is likely due to the
fact that fewer starting amounts were assessed for this
method, Fig. 5c, Additional file 15: Table S12. The re-
sults suggest that a larger starting amount will generally
improve consistency, see Additional file 15: Table S12
for specific guidance for each kit. For most methods
the highest consistency with the lowest starting amount
was achieved with 500 ng, however, 1000 ng improved
the consistency of the Deduped data. The consistency
was relatively similar for all the Clontech kit samples
regardless of starting amount.

Discussion
We report an extensive evaluation of commonly used
sRNA-seq kits for their performance in identifying and
quantifying miRNAs and isomiRs, as well as the results
obtained with the use of a UMI and a UMI control. Our
detailed analyses identify critical factors that influence
their performance. Prior performance evaluations of
current sRNA-seq methods have been very limited and
adapter ligation bias has largely been the focus of earlier
reports [26, 31, 38, 43]. Several studies have compared
the NEXTflex kit with the Illumina and NEB kits [24,
26–28, 44], and most suggest that the NEXTflex kit of-
fers advantages due to reduced adapter ligation bias by
including randomized adapters. We compared the
NEXTflex kit with the Clontech kit which was also de-
signed to mitigate adapter ligation bias, but by using an
adapter ligation-free method. Only one prior study has
compared the performance of these two kits using a pre-
vious and now discontinued version of the NEXTflex kit
[24], which demonstrated that the Clontech kit resulted
in less bias, however, only 6 synthetic miRNAs were uti-
lized in their accuracy assessment. A recent study that
coincided with ours also found that these two kits per-
form similarly for accuracy [45]. A similar UMI method
is utilized by a recent library preparation kit by Qiagen.
However, this kit was released after the data collection
of our analysis. In addition, this kit, similarly to the NEB
and Illumina kits, does not include methods to reduce
adapter ligation bias, and the UMI is added after reverse
transcription, which therefore does not allow for any re-
duction in bias associated with this step. The results of a
recent study, which performed a similar analysis as ours,
further suggest that the Qiagen kit has more bias and is
less accurate than the Clontech and NEXTflex Kits [45].
To better assess the contributions of bias in the quan-

tifications resulting from various library preparation
designs, we have evaluated the quantifications from each
method using a variety of metrics including: 1) Similarity
– how similar are the quantifications across methods
(Fig. 1f.Similarity); 2) Accuracy – how well does each
method equally quantify different equimolar miRNAs
(Fig. 1f.Accuracy); 3) Detection diversity – what capacity
does each method have to capture a diverse range of
unique small RNAs (Fig. 1f.Detection Diversity); and 4)
Consistency – how similar are results across batches,
triplicates, and different starting inputs (Fig. 1f.Consis-
tency). Our analysis of individual sequences using the
metric tests provide information about potential bias
due to adapter ligation, reverse transcription, and ampli-
fication. Table 1 summarizes our results. Overall, there
are clear and important differences between the methods
tested and all show performance limitations in real
world sRNA-seq. Based on our results, we propose a
number of suggestions for future studies.
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Similarity
First, cross-study comparisons using different methods
should be viewed with skepticism, because although the
kits resulted in fairly similar results overall, quantifica-
tions of individual miRNAs, including the most abun-
dant miRNAs, varied widely across methods (Additional
file 1: Table S1, Fig. 2b). More research is required to
determine how to best utilize data derived from different
sRNA-seq methods for mega- and meta-analyses. We
also advise against further study of only the top
expressed miRNAs from a single sRNA-seq study,
particularly when a more biased method is utilized, as
the top observed miRNAs may not be truly among the
most abundant or influential, but instead those that are
preferentially observed by the method. This issue has
previously been discussed at length16. It is important to
note that it remains unclear how relatively abundant a
miRNA needs to be to exert biological importance in
different contexts.

Accuracy
We suggest the use of a degenerate base method, such
as NEXTflex or a ligation-free method, to improve
accuracy. These methods appeared to equally improve
accuracy, likely due to a reduction of adapter ligation
bias (Fig. 3a-b). We suggest that future small RNA stud-
ies utilize a UMI strategy, as our NEXTflex data prepro-
cessed to account for UMI duplicates was even more
accurate, reducing the overall variance of the log2 trans-
formed and normalized quantifications by 68%, or on
average the difference from the mean for each miRNA
by nearly 3% (Fig. 3a-b, Additional file 2: Table S2). We
speculate that our deduplication method led to such im-
provements due to reduced reverse transcription and/or
amplification bias. Our sequence-specific analysis further
indicated that secondary structure of miRNAs was one
of the largest contributors to error of the Clontech and
NEXTflex kits for the accuracy assessment, which ap-
peared to be mitigated in the UMI deduped data for the
NEXTflex kit (Fig. 3c-d). This suggests that the second-
ary structure of miRNA sequences may be particularly
influential for reverse transcription and/or amplification
bias, in agreement with previous work that indicates that
secondary structure can indeed influence reverse tran-
scription [46]. More work is required to determine the
extent that amplification or reverse transcription are
particularly contributing to bias, and to what extent each
are mitigated by the use of UMIs. Furthermore, it is un-
clear if the use of deduplication would improve other
methods beyond the performance level of the current
NEXTflex kit. However, the UMIs are inherently already
included in the NEXTflex adapters, making this one of
the best current options to mitigate bias in sRNA-seq.

Detection diversity
All of the methods tested were capable of detecting a di-
verse range of miRNA sequences and there was a high
degree of overlap in the identity of the miRNAs detected
by each method (Fig. 4c-e). Therefore, any of the tested
methods may be appropriate for assessments about gen-
eral miRNA diversity. However, the identity of miRNAs
detected by Illumina varied greatly across batch, Add-
itional file 7: Table S5). We observed greater resolution
for detection of a larger variety of miRNAs with greater
sequencing depth. We did not evaluate depths above 20
million reads, so it remains unknown if even greater
resolution can be achieved beyond this depth, however
subsets of our 20 million depth data resulted in a reduc-
tion of diversity. We also observed that a more diverse
pool was detected with larger input amounts; therefore,
for the best diversity of detection, we recommend using
the largest input possible.
The Clontech kit resulted in the largest percentage of

reads mapping to snoRNAs and snRNAs, while the
NEXTflex kit resulted in the largest percentage of
piRNA mapping reads (nearly 4.2 times higher than
Clontech) (Fig. 4a-b, Additional file 6: Table S4). There-
fore, if these particular small RNAs are of interest, we
would suggest the use of these two kits respectively. We
did not evaluate the diversity of these other classes of
small RNAs; however, given the results of our miRNA
analysis, we predict that deeper sequencing will result in
greater resolution of diversity.
We especially suggest using randomized adapter

methods, such as NEXTflex, for studies involving isomiR
analysis. We suggest that all isomiR studies utilize an
additional method for validation such as hairpin probe
based RT-qPCR methods like dumbbell PCR [47] or the
two-tailed qPCR method [48] or northern blot methods
[49], as all the utilized RNA sequencing methods re-
sulted in the observation of false isomiRs, this is particu-
larly important for the methods that resulted in larger
numbers of false isomiRs. We acknowledge that some
observed isomiRs in the synthetic data may be due to
errors in the synthesis of the synthetic miRNA pool,
however the differences between the methods suggests
that some methods may detect more false isomiR
sequences due to improper adapters or other features of
the library preparation. In particular, the Clontech
method resulted in the highest level (on average 401%
more than the other methods), thus we do not suggest
that others utilize this method for studies that aim to
evaluate isomiR expression (Fig. 4h-j). Furthermore,
because this method utilizes polyadenylation of the 3′
end, it is impossible to truly distinguish isomiRs that ter-
minate with 3′ adenine bases. We speculate that some
of the false isomiRs detected in the other methods may
also result from PCR stutter, in which sequences with
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repeats or low entropy may experience deletions or ex-
pansions during PCR amplification [36]. In all, the
Deduped method resulted in the highest number of de-
tected miRNAs with the lowest false isomiR detection
(Fig. 4h-j). Therefore, of the tested methods, we suggest
that the Deduped method may be the best for detecting
the most diverse and reliable set of miRNAs. Further
work is necessary to determine the potential sources that
result in the detection of these false isomiRs and how
this may influence the quantification of isomiRs in bio-
logical samples.

Consistency
The Deduped method was also the most consistent for
individual miRNA quantifications across triplicates
within the same batch (Fig. 5b) Therefore, we suggest
the use of this method for optimal consistency. In gen-
eral, we particularly caution against the use of Illumina
when multiple batches of sequencing will be involved in
a study, as this method resulted in significantly more in-
consistent results across batches relative to all the other
tested methods (Fig. 5a, Additional file 7: Table S5).
An earlier analysis determined that detection consistency

was poorer with much smaller starting amounts (10 ng)
[27]. Agreeing with this, our results indicate that larger
starting amounts for some methods may mitigate inconsist-
ent quantifications of miRNAs and isomiRs.
Overall, we observed the most consistent results across

triplicates when utilizing 500 ng or greater of starting
input. In most cases, 500 ng was sufficient, and no im-
provement was achieved with higher input amounts.
However, the Deduped method performed best with at
least 1000 ng and the Clontech method resulted in simi-
lar levels of consistency despite the use of smaller inputs
(Additional file 15: Table S12). Thus, if differing starting
amounts or smaller starting amounts are required, and
interest in isomiRs is limited, the Clontech method may
be the best choice.
Additional studies of UMI use for other library prepar-

ation methods and across biological samples are neces-
sary to further understand the ability of UMIs to
improve the consistency and reproducibility of sRNA-
seq studies. Further work is also necessary to optimize
the length of the UMI. In some cases, all UMIs will be-
come saturated if a given small RNA is very highly
expressed. Our calculations suggest that this UMI length
is sufficient for the brain (using our current methods), in
which miRNA make up a very small fraction of the total
RNA and in which our data suggested that the most
abundant miRNA represented only 11% of the miRNA
reads. However longer UMIs may be required for tissues
with greater enrichment of miRNAs or greater enrich-
ment of other small RNAs of interest, where single
RNAs may have more than 65,536 individual copies

before amplification (see Additional file 16: Note S1,
which refers to Additional file 17: Table S13).

Conclusions
In conclusion, we observed significant differences in the
accuracy, detection, and consistency of the various
sRNA-seq methods tested suggesting that the methods
differ in terms of bias contributed by adapter ligation,
reverse transcription, and amplification. Our results
underscore the importance of the library preparation
methods and suggest that with moderately large starting
amounts, the NEXTflex kit with deduplication may pro-
duce the least biased and most consistent results within
and across studies. Our results suggest that bias is intro-
duced in sRNA-seq due to reverse transcription and/or
amplification and that the use of UMIs should be con-
sidered for further optimization to mitigate these biases
in future sRNA-seq studies. Additional work is needed
to decipher the role of these biases in sRNA-seq in order
to guide more accurate sequencing methods. Further,
and perhaps most noteworthy, our results indicate that
all methods may result in false isomiR detection, stres-
sing the importance of validation assessments for isomiR
studies, and that the Clontech template switching
method results in the detection of substantially more
false isomiRs. Therefore, we advise caution with isomiR
quantifications particularly when using this method and
we suggest the use of RT-qPCR [47, 48] or northern blot
[49] analysis for validation. Ultimately, additional
standardization of sRNA-seq data generation and ana-
lysis will improve our ability to understand the expres-
sion and regulatory role of these small but important
RNAs in conditions and disease.

Methods
Library preparation and sequencing
Two sample types were used to evaluate the performance
of the sRNA-seq methods, (Fig. 1d). To evaluate detection
and consistency we used various starting amounts in trip-
licate of total RNA from a homogenate human brain sam-
ple, purchased from Ambion and derived from a 74-year-
old Caucasian female. The cause of death of this individual
was respiratory failure. To evaluate accuracy, we used 300
ng of the Miltenyi Biotec miRXplore Universal Reference
equimolar pool of 962 synthetic sequences corresponding
to human, rat, mouse, and virus miRNA.
Each library preparation was performed by the same

two lab scientists using the same equipment. Each
protocol was followed exactly as provided by the vendor
for each kit. The number of PCR cycles for each sample
was determined based on the recommendations of each
kit for the various starting input amounts (Table 2).
Size selection using PAGE gels was recommended by

three of the manufacturers (Illumina, NEXTflex, and
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NEB kits) and was performed for these kits for better
comparisons. We used AMPure XP beads for size selec-
tion for the Clontech samples, as the vendor does not
recommend PAGE gel size selection.
A Qubit Fluorometer was used to determine the con-

centration of the final libraries. The library preparations
were sequenced using single-end sequencing on the Illu-
mina HiSeq 3000 with the Illumina Real Time Analysis
(RTA) module and the bcl2fastq2 v2.17 to generate 51
base pair reads.

Unique molecular identifier deduplication
In order to test the use of UMIs to mitigate reverse
transcription and amplification bias, reads derived from
the NEXTflex kit were collapsed based on random
sequences of 4 bases in length contained within both the
3′ and 5′ adapter sequences as a UMI using UMI-tools
[50] (Fig. 1c). In this method, the adapters are ligated
before reverse transcription and PCR amplification,
therefore allowing for the estimation of the abundance
of the sequences present in the sample before these
steps. In the collapsed NEXTflex data referred to as
“Deduped”, only reads that contained the same pair of a
unique transcript with a unique UMI were maintained,
while duplicate pairs were discarded. Therefore, each
unique sequence had the opportunity to bind up to 65,
536 different UMIs. As a control, we compared the per-
formance of the Deduped data to a random 5% subset of
the reads, referred to as “Fivepercent”. This was neces-
sary as only 5% of the total reads remained following the
collapsing method which required a preliminary align-
ment step. Thus this data was also produced with the
preliminary alignment step, all preprocessing was the
same except for the use of UMI-tools [50].
We utilized an in-house script to extract the degener-

ate bases from the adapters to determine the UMI se-
quence for each read and to add it to the identifier line
of the FASTQ files for each sample. In this script we also
removed reads which contained any unknown bases
within the UMI. We then used bowtie [39] (v1.2.2) with

a seed length of 15 allowing for 2 mismatches to
produce a liberally aligned bam file to be used with
UMI-tools [50] for deduping in order to retain miRNA
isoforms. With this liberal alignment, various isoforms
are aligned to reference miRNAs and thus if any are
paired with the same UMI as the reference or other iso-
forms, they are considered as a duplicate, thus greatly
reducing the concern brought up by Sena et al., 2018
[36] about similar inserts being considered different
sequences despite pairing with the same UMI instead of
being collapsed together. We utilized the directional
method in UMI-tools to remove duplicate reads from
the bam file, which is particularly stringent for correct-
ing sequencing errors in the UMI sequences themselves
[50]. We then converted the bam file to a FASTQ file
for alignment with miRge [51] with the other method
samples. Our script to prepare NEXTflex samples for
UMI-tools [50] is available on GitHub at https://github.
com/LieberInstitute/miRNA_Kit_Comparison.

Adapter and degenerate base trimming and alignment
For the NEXTflex (and therefore the Deduped and Five-
percent), NEB, and Illumina FASTQ files the 3′ adapter
sequences and all bases 3′ of the adapter were trimmed
from the ends of the reads using cutadapt [52] version
1.8.3. For the NEXTflex samples the first and last four
bases, which correspond to the random bases included
in the adapter sequences, were also trimmed. In the case
of the Deduped samples these sequences were added to
the identifier line prior to trimming. These bases corres-
pond to the random adapter sequences because sequen-
cing begins at the location of the 4 random bases in the
5′ adapter for this kit.
Unlike the other kits, the Clontech kit is stranded.

Read 1 corresponds to the sense strand of the input
RNA and the first three bases correspond to the nucle-
otides added during the SMART template-switching
method. Then 10 Adenine bases were removed from
the 3′ end, as well as all potential bases 3′ of this
stretch of bases.

Table 2 Number of PCR cycles used for each sample

Sample Clontech Illumina NEB NEXTflex

100 ng Brain total RNA 13 cycles NA 15 cycles 18 cycles

250 ng Brain total RNA 13 cycles NA 15 cycles 18 cycles

500 ng Brain total RNA 11 cycles NA 15 cycles 18 cycles

1000 ng Brain total RNA 10 cycles 11 cycles 15 cycles 18 cycles

1500 ng Brain total RNA 9 cycles 11 cycles NA 18 cycles

2000 ng Brain total RNA 7 cycles 11 cycles NA 18 cycles

300 ng of equimolar synthetic pool 7 cycles 11 cycles 15 cycles 18 cycles

Both batches of 1000 ng brain total RNA samples had the same number of cycles. We used the same number of cycles as suggested by each protocol for a range
of input amounts. The brain samples were all derived from the same RNA extraction, purchased from Ambion of a 74-year-old Caucasian Female. The cause of
death of this individual was respiratory failure. The Miltenyi Biotec miRXplore Universal Reference equimolar pool was used for the accuracy assessments
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When trimming the synthetic sample FASTQ files, a
lower length limit of 16 bases was used (as this was the
shortest synthetic RNA), while a lower length limit of 18
bases was used for the brain samples (as human miR-
NAs are generally longer than 16 bases), to reduce the
inclusion of reads that were too short in the data.
After trimming (and deduping in the case of the

Deduped method) samples were aligned to the miRBase
human miRNA sequences [53] and the Miltenyi syn-
thetic sequences using miRge [51].

Similarity analysis
To perform the hierarchical cluster analysis, we used the
miRNA quantifications from all brain libraries with all
starting amounts using both batches (total of 99 librar-
ies, 19 for the Clontech, NEXTflex, Deduped and Five-
percent methods and 10 for Illumina and 13 for NEB).
We normalized the data using the DESeq2 [40] method
with the method as the design, using the DESeqDataSet-
FromMatrix(), estimateSizeFactors(), and counts() func-
tions of the Bioconductor package DESeq2 [40](v 1.18.1)
. Normalization for small RNA sequencing is a debated
topic and further studies are needed to confirm the best
method for different small RNA sources [54–56]. How-
ever, we chose the widely used DESeq2 [40] method for
normalization as this method assumes very few differ-
ences between samples and we expected little difference
between the individual synthetic miRNAs, the replicates
across batches, and the triplicates within a given batch
given that the samples are biologically the same. Fur-
thermore, we chose this method because plotting the
raw data suggested that the various methods resulted in
different miRNA compositions, with some miRNAs
showing much higher abundance in some samples rela-
tive to others and this method not only normalizes for
overall library size, but also normalizes for differences in
composition or overall count dispersion of the samples
by determining the ratio of the counts for a given gene/
small RNA to the overall geometric mean of that tran-
script in all of the samples tested. The median of these
ratios is then used to scale the count data for each sam-
ple [40, 57]. Using this normalization method, we then
determined which normalized expression estimates were
greater than one for all 99 samples. This resulted in 151
common miRNAs above the threshold. We then log2
transformed these estimates. We determined the dis-
tance between the samples using the hclust() function of
the stats package (v 3.4.0). We also used these quantifi-
cation estimates in a sum of squares analysis to deter-
mine the percent of variance explained by method,
starting amount, batch, and the number of reads that
mapped to miRNA. To do this we used the Anova() type
II function of the CRAN car package(v 3.0–0). To create
the MA plots we used only the 1000 ng brain samples

from both batches (a total of 24 samples, 4 for each
method). We again normalized this subset of samples
using DESeq2 [40] and the sRNA-seq method as the
design. We again restricted our analysis to miRNAs with
greater than one normalized count in all 24 samples.
This resulted in 174 common miRNAs above the thresh-
old. We then manually created the MA plots. We then
ranked the log2 normalized quantifications and deter-
mined the overlap of the most abundant miRNAs.

Accuracy assessment
To perform the accuracy analyses, we used equimolar
pools of 962 synthetic miRNAs purchased from Miltenyi
Biotec. The minimum free energy of the secondary
structures for each synthetic miRNA was determined
using RNAfold as part of the ViennaRNA package 2
(version 2.3.5) [58, 59] GC content was determined
using the letterFrequency() function of the Bioconductor
package Biostrings [60] (v 2.46.0). Alignments were per-
formed using the miRge program. The miRge raw count
estimates were normalized using DESeq2 [40] (v 1.18.1)
with method as the design. The difference of each
miRNA count estimate was then calculated from the
mean of all synthetic sequences. The absolute of this
difference was then log2 transformed for statistical com-
parisons and is referred to as “accuracy error”.
A linear model was used to evaluate the influence of

method on accuracy error, using the lm() function of the
stats package, and paired t-tests using the t.test() function
of the stats package (v 3.4.0) were used for pairwise com-
parisons of each method. The Bonferroni method was
used to for multiple testing correction. The omega
squared value was calculated using the anova_stats() func-
tion of the CRAN package sjstats [61] (v 0.16.0). Hedge’s g
was calculated using the tes() function of the CRAN pack-
age compute.es (v 0.2–4). Catplots to evaluate concord-
ance of error rank were created using the CATplot()
function of the Bioconductor package ffpe (v 1.22.0).

Detection diversity assessment
To assess mapping rates to various classes of RNAs, we
collected FASTA files for a variety of RNAs: miRNA,
piRNA, rRNA, scaRNA, snoRNA, snRNA, and transfer
RNA (tRNA) and then created a merged FASTA file
from each of the smaller FASTA files. We used the
miRNA FASTA file included in miRge. The piRNA data
was acquired from piRNAQuest [62] (http://bicre-
sources.jcbose.ac.in/zhumur/pirnaquest/). The rRNA,
tRNA, and snRNA data came from the hg19 assembly
from the UCSC genome table browser [63] (http://gen-
ome.ucsc.edu). The snoRNA and scaRNA data came
from snoRNABase [64] (https://www-snorna.biotoul.fr/
browse.php). Only the C/D box snoRNAs were included
as all the H/ACA box snoRNAs overlapped with the
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snRNA data from UCSC. Six of the C/D snoRNA
sequences and the snRNA overlapped in our merged
FASTA file. Additionally, all of the scaRNAs overlapped
the snoRNA C/D box sequences, but we maintained
them in order to analyze scaRNA. Exact matches of
miRNA sequences and piRNA were removed from the
piRNA portion of the FASTA file. Bowtie [39] was used
for alignment to all the sequences simultaneously allow-
ing for zero mismatches within the default seed length
of 28 bases to better distinguish similar sequences of
different RNA classes. We then determined the count of
reads that mapped to each RNA class.
miRNAs were considered detected if they were observed

with > 10 normalized reads in all triplicates of a given
starting amount. Raw counts from miRge for the brain
batch 1 samples (93 in total) were normalized with
DESeq2 [40] but were not log transformed. Another ana-
lysis was performed using both batches and normalizing
with DESeq2 [40] using all brain samples and a threshold
of > 10 normalized reads for all samples of a given starting
amount. The percent of detected miRNAs that were
inconsistently detected was calculated as follows:

UX−U1;2;3

UX

� �
� 100

Where UX = number of unique miRNAs detected with
> 10 normalized reads in a given triplicate and where U1,

2, 3 = number of unique miRNAs detected with > 10 nor-
malized reads in all triplicates.
The same methods were used for the isomiR analysis,

however a threshold of 100 normalized reads was used
instead of 10.
Statistical analyses of the detection and detection incon-

sistency were performed as in the Accuracy assessment
with lm() and t.test() of stats package (v 3.4.0) and the
tes() function of the compute.es package (v 0.2–4) and the
anova_stats() function of the sjstats package (v 0.16.0) to
calculate effect sizes. Percent variance explained analyses
of sequence characteristics were performed using the
Anova() function of the CRAN package car (v 3.0–0).
Concordance was evaluated using the CATplot() function
of the Bioconductor package ffpe (v 1.22.0). The evalu-
ation of false isomiRs used the synthetic miRNA data. An
isomiR was considered as detected if over 100 normalized
reads were observed.

Consistency assessment
Consistency across batch was determined using all 1000
ng brain samples (24 samples). DESeq2 [40] (v 1.18.1)
was used to normalize these samples with method as the
design. Quantifications were filtered for those with > 10
normalized reads in all samples of a given method. The

mean of the quantifications from the first batch tripli-
cates was compared with that of the second batch quan-
tifications. The log2 transformed value of the absolute
difference between these two quantifications was used to
compare the batch consistency of the methods. Again
the lm() of the stats package (v 3.4.0) was used for global
analyses, while the t.test() function with Bonferroni cor-
rection was used to compare pairs of methods. Evaluat-
ing the intersection of all miRNAs detected across both
batches for each method (total of 162 miRNAs), we
determined the percent of variance in triplicate error for
sequence characteristics.
To evaluate the consistency of triplicates, we used all

93 brain samples of the first batch. This data was nor-
malized using DESeq2 [40] using method as the design.
The quantification estimates were filtered for those with
> 10 normalized counts in all samples for a given start-
ing amount. “Triplicate error” was determined as the
difference of the value of each triplicate relative to the
mean of all triplicates. The absolute value of these differ-
ences was then log2 transformed and the mean error
value of triplicates was determined for each miRNA
detected by each method for statistical comparisons.
Evaluating just the intersection of all miRNAs detected
for each starting amount and method (total of 228 miR-
NAs), we determined the percent of variance in tripli-
cate error for sequence characteristics. The consistency
of triplicates was then used to compare the various start-
ing amounts. The Bonferroni method was used for mul-
tiple testing correction.

Additional files

Additional file 1: Table S1. Table shows the top 20 most abundant
miRNAs for each method. The 6 miRNAs that were commonly among
the top 20 for all of the methods are highlighted in different colors.
(XLSX 43 kb)

Additional file 2: Table S2. Statistics for paired t-tests of “accuracy
error” of each synthetic miRNA from the mean for each method. Percent
difference is calculated as the percent difference of the first method in
the comparison relative to the second, thus Clontech had 4.55% less error
than Illumina. Percent difference was calculated using more precise
means than the rounded means shown in the table. Significant findings
are highlighted in yellow. (XLSX 41 kb)

Additional file 3: Figure S1. Boxplots and heatmaps of the influence of
various synthetic sequence aspects on accuracy error. Boxplots show
sequences grouped by various sequence aspects, including: Gibb’s free
energy secondary structure estimates, the identity of the last 2 bases, the
identity of the first 2 bases, and the number of Cs in the sequence. The
percent expression relative to the mean of all synthetic sequences is
plotted for each of the 962 synthetic sequences. Heatmaps also depict
the percent expression of synthetic sequences grouped by the sequence
aspect of interest relative to the mean expression of all the synthetic
sequences. Overall, most methods showed a positive quantification
relationship with higher or less negative Gibb’s free energy estimates.
Most methods showed consistent quantification despite the identity of
the last two bases, however NEB and Illumina showed more inconsistent
quantification. All of the methods showed fairly consistent quantification
despite the identity of the first two bases, however the Deduped method
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showed more consistent quantification. Most of the methods showed
decreased quantification with increasing numbers of Cs, however the
Clontech method showed the opposite relationship, and the Deduped
method was quite consistent. (PDF 663 kb)

Additional file 4: Figure S2. This figure depicts the secondary structure
of example of synthetic miRNAs with differences in detection that may
be due to secondary structure. Mmu-miR-540-5p/rno-miR-540-5p and
hsa-miR-614 were detected less than the average synthetic sequence by
all tested methods, while mmu-miR-654-5p and rno-miR-743b were
detected more than the average synthetic sequence by all tested
methods. (PDF 36 kb)

Additional file 5: Table S3. Percentage of reads mapping to various
types of small RNA. Columns E-K show the number of reads mapping to
each type of RNA, while L shows the total number of reads. Columns N-T
show the percentage of reads of the total mapped reads that map to each
type of small RNA. Column U shows the percentage of the total reads that
did not map to any off the evaluated RNAs. Column V through AB show
the percentage of reads of all reads that map to each type of small RNA.
miRNA =microRNA, piRNA = PIWI interacting RNA, rRNA = ribosomal RNA,
snoRNA = small nucleolar RNA, snRNA = small nuclear RNA, tRNA = transfer
RNA. Synthetic samples from are highlighted in red. These samples were
only aligned to the synthetic sequences. (XLSX 77 kb)

Additional file 6: Table S4..Statistics on percentages of reads mapping
to different types of RNAs. Statistics are shown for the t-test comparisons
of the percentages of reads mapping to each type of RNA for the data
derived from the same human brain using 1000 ng of total RNA for each
library preparation kit, using both batches. Percent difference is calculated
as the percent difference of the first method in the comparison relative
to the second, thus Clontech had 199% more snRNA mapped reads than
Illumina. Percent difference was calculated using more precise means
than the rounded means shown in the table. miRNA =microRNA,
piRNA = PIWI interacting RNA, rRNA = ribosomal RNA, snoRNA = small
nucleolar RNA, snRNA = small nuclear RNA, tRNA = transfer RNA.
Significant findings are highlighted in yellow. (XLSX 42 kb)

Additional file 7: Table S5. Number of miRNA and isomiRs detected by
each method. The top half of the table shows the number of miRNAs
detected above 10 normalized counts for each method in all 3 triplicates,
the number detected above the threshold in both batches, and the
percentage of miRNAs detected in the first batch that were not detected
in the second batch. The bottom half of the table shows the number of
non-canonical miRNA sequences, called isomiRs, detected above 100
normalized counts for each method in all 3 triplicates, the number
detected above the threshold in both batches, and the percentage of
isomiRs detected in the first batch that were not detected in the second
batch. (XLSX 33 kb)

Additional file 8: Table S6. Clontech subsample analysis. The original
number of reads was retained for all methods other than Clontech. The
variation in the number of detected miRNAs (number of those with > 10
normalized reads) for the other methods demonstrates the influence of
the inclusion of the different Clontech subsets on the DESeq2
normalization. The normalization in this case only included these
samples, therefore there may be differences compared to the other
tables. (XLSX 34 kb)

Additional file 9: Figure S3. Detection of miRNAs and isomiRs and
detection consistency of miRNA and isomiRs across various starting
amounts. For the detection plots, the number of miRNAs detected above
10 normalized counts and the number of isomiRs detected above 100
normalized counts in all triplicates of batch 1 for each method is plotted
on the y-axis. The starting total RNA amount is indicated on the x-axis in
nanograms. Only starting amounts in the range of suggested inputs were
tested for each method. For the consistency of detection plots, the
percentage of miRNAs or isomiRs detected above the threshold by a
single triplicate that were not detected above the threshold by the other
two triplicates is plotted on the y-axis. The starting total RNA amount is
indicated on the x-axis in nanograms. The relationship between the
percentage of inconsistently detected miRNAs or isomiRs and starting

amount is plotted as a line using a locally estimated scatterplot
smoothing regression (LOESS). (PDF 2586 kb)

Additional file 10: Table S7. Pairwise differences between methods for
miRNA detection inconsistency estimates. Percent difference is calculated
as the percent difference of the first method in the comparison relative
to the second, thus Clontech had 61% more inconsistency than Illumina.
Percent difference was calculated using more precise means than the
rounded means shown in the table. Significant findings are highlighted
in yellow. (XLSX 40 kb)

Additional file 11: Table S8. Pairwise differences between methods for
number of isomiRs detected by each method. Percent difference is
calculated as the percent difference of the first method in the
comparison relative to the second, thus Clontech detected 41.39% more
isomiRs than Illumina. Percent difference was calculated using more
precise means than the rounded means shown in the table. Significant
findings are highlighted in yellow. (XLSX 43 kb)

Additional file 12: Table S9. Method comparison of the number of
falsely detected isomiRs and the expression of those false isomiRs.
Percent difference is calculated as the percent difference of the first
method in the comparison relative to the second, thus Clontech had
181% more false isomiRs per sequence than Illumina and 26% less
expression than those of Illumina. Percent difference was calculated
using more precise means than the rounded means shown in the table.
Significant findings are highlighted in yellow. (XLSX 39 kb)

Additional file 13: Table S10. Pairwise comparisons of batch error.
Percent difference is calculated as the percent difference of the first
method in the comparison relative to the second, thus Clontech had
33% less error than Illumina. Percent difference was calculated using
more precise means than the rounded means shown in the table.
Significant findings are highlighted in yellow. (XLSX 43 kb)

Additional file 14: Table S11. Pairwise comparisons of triplicate
inconsistency of brain samples. Percent difference is calculated as the percent
difference of the first method in the comparison relative to the second, thus
Clontech had 29.56% more error than NEB in the comparison of triplicate
consistency of the 1000 ng samples. Percent difference was calculated using
more precise means than the rounded means shown in the table. Significant
findings are shown in yellow. (XLSX 42 kb)

Additional file 15: Table S12. Pairwise comparisons of triplicate
inconsistency error bewteen starting amounts. Statistics for t-tests of
triplicate inconsistency error between different starting amounts for
each tested method are shown. Percent difference is calculated as the
percentage that the first amount in the comparison is relative to the
second, thus Fivepercent 100 ng data had 13.84% more error than the
250 ng data. Percent difference was calculated using more precise means
than the rounded means shown in the table. Significant findings are
highlighted in yellow. Illumina did not show a significant difference in
consistency between the tested starting amounts, (F = 1.44, p = 0.23).
(XLSX 43 kb)

Additional file 16: Note S1. Analysis to determine if the length of our UMI
sequence was adequate. Also see Additional file 17: Table S13. (PDF 26 kb)

Additional file 17: Table S13. Evaluation of the most abundant miRNA in
the NEXTflex samples. To determine if our UMI length was adequate, we
estimated the number of starting sequences for the most abundant miRNA
(miR-9-5p) in the NEXTflex data. For comparison sake, we also show the
estimated number of starting molecules for a more moderately abundant
miRNA (miR-137). The possible number of starting sequences for each
miRNA was estimated assuming a PCR amplification efficiency of only
62.5%, all samples, thus enabling more conservative estimates for the
number of starting sequences. PCR efficiencies of miRNA generally range
from 75 to 95%, and previous studies demonstrate that the PCR efficiency
of miR-9-5p has been 98%. Therefore, our estimates of the number of start-
ing miR-9-5p sequences are likely higher than the true number of starting
sequences. (XLSX 44 kb)

Abbreviations
Clontech: the Clontech SMARTer smRNA-Seq Kit for Illumina, now owned by
Takara Bio; Deduped: NEXTflex data with the removal of duplicate reads
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based on UMI; Fivepercent: Random 5% subset of the NEXTflex data;
Illumina: the Illumina TruSeq Small RNA Library Prep Kit; isomiRs: isoforms of
miRNAs; miRNA: microRNA; NEB: the New England BioLabs Next Multiplex
small RNA kit; NEXTflex: the Bioo Scientific NEXTflex Illumina Small RNA
Sequencing Kit v3, now owned by Perkin Elmer and called NEXTFLEX;
piRNA: P-element induced wimpy testis (PIWI) interacting RNA;
rRNA: ribosomal RNA; scaRNA: small Cajal body-specific RNAs; snoRNA: small
nucleolar RNA; snRNA: small nuclear RNA; sRNA-seq: small ribonucleic acid
sequencing; tRNA: transfer RNA; UMIs: unique molecular identifiers
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