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Organisms adapt to infectious agents by

developing protective responses, and con-

versely, infectious agents develop adaptive

countermeasures to these responses. Host

defenses against infectious agents include

adaptive and innate immune responses

(e.g., natural killer cells, Toll-like recep-

tors, and interferons). Recently, additional

host defense systems against viruses have

been identified. These include the TRIM

[1], RIGI/MDA5 [2], Bst2/tetherin [3,4],

and APOBEC3 (A3) [5] proteins. Many of

these anti-viral defense mechanisms were

identified through the discovery of viral

gene products that counteract their action,

and thus it has been proposed that only

viruses resistant to host-encoded restriction

factors persist. However, recent in vivo

work in the murine system has indicated

that endogenous A3 proteins play impor-

tant roles in limiting pathogenicity by

murine viruses even though they only

partially restrict infection [6–8]. Here I

argue that these recent studies emphasize

the critical importance of studying natural

pathogenic viruses and host restriction

factors in vivo.

A3 proteins belong to a family of genes

that encode DNA- and RNA-editing

enzymes and confer innate immunity to

HIV-1 and perhaps other viruses, such as

hepatitis B virus (HBV) and human

papilloma virus (HPV) [9,10]. The A3

genes arose through gene duplication of a

single-copy primordial gene, are found in

a tandem array, and have expanded or

contracted in different species [11]; the

human genome encodes seven A3 (hA3)

genes, the feline four genes [12], the horse

six genes [13], artiodactyls species two to

three genes [14], and the mouse genome a

single A3 (mA3) gene [15]. The A3 genes in

general show a high degree of polymor-

phic variation, suggesting that they are

under strong selective pressure [8,12,16–

19]. Additionally, alternatively spliced

RNAs with the potential for generating

different A3 proteins have been found in

the mouse (Figure 1A; see below), felines

[12], and artiodactyls [14].

hA3G, the first identified family mem-

ber, was discovered because of its interac-

tion with the HIV-1 virion infectivity

factor (Vif) [5]. hA3G and subsequently

hA3F were shown to inhibit HIV-1 lacking

the vif gene. In vif-deficient HIV-1 pro-

ducer cells, both hA3G and hA3F are

packaged into progeny virions via interac-

tion with the nucleocapsid (NC) protein

and viral RNA. Once packaged, hA3

proteins inhibit infection in target cells by

deaminating deoxycytidine residues on the

DNA minus strand following reverse

transcription, inducing G to A hypermuta-

tion in newly synthesized HIV-1 DNA. A3

proteins also inhibit replication by cytidine

deaminase (CDA)-independent mecha-

nisms [20]. In cells infected with vif+
HIV-1, Vif binds hA3G and hA3F and

targets these proteins for ubiquitinylation

and degradation in the proteosome, there-

by overcoming the anti-viral activity [21–

24]. Simian immunodeficiency viruses

(SIVs) also encode Vif proteins, while

foamy viruses (FVs) encode a protein

(Bet) that interacts with A3G and prevents

its packaging via a mechanism that is

apparently different from that of Vif [25–

27]. There are also a large number of

studies demonstrating that A3 proteins

inhibit transposition of human and mouse

retroelements, such as LINE-1, Alu,

MusD, human endogenous retroviruses

(HERVs), and IAPs [28–34]. Although

no study has directly examined the effect

of A3 proteins on endogenous copies of

these elements, both HERV and endoge-

nous murine leukemia virus (MLV) se-

quences bear signatures of cytidine deam-

ination [35–37].

Several studies have examined packag-

ing of A3 proteins from different species

into retroviruses endemic to the species

using transfected tissue culture cells and

have suggested that these viruses are

resistant to the A3 proteins of their natural

hosts. For example, it has been shown that

human T cell leukemia virus I (HTLVI),

Mason Pfizer monkey virus (MPMV), and

MLV do not efficiently package human,

monkey, or mouse A3 proteins, respec-

tively, because of weak interactions be-

tween the NC proteins and the host A3

[38–46], although other studies have

shown some packaging of host A3 proteins

by HTLVI and MLV as well as viral

restriction [47–50]. The MLV protease

may also degrade mA3, thereby prevent-

ing its anti-viral function [45]. More

recently, equine infectious anemia virus

was shown to package several horse A3

proteins but these did not diminish

infection as effectively as human A3

proteins [13].

In contrast to studies demonstrating

that endogenous A3 proteins do not

restrict retroviruses that infect the same

species, there are many examples of cross-

species restriction in cultured cells. Human

A3B and A3C restrict SIV [51] and hA3G

restricts Rous sarcoma virus, feline FV,

MLV, and mouse mammary tumor virus

(MMTV) [6,25,42–44,48,52–54]. Indeed,

several human A3 proteins including

hA3G have been shown to restrict MLV

via deamination [42,43,54,55], although

to a lesser extent than HIV-1 [50]. There

is also species-specific degradation of

hA3G proteins by different Vifs. For

example, Vifs encoded by SIVs that infect

humans (chimpanzees and sooty manga-

beys) can cause the degradation of hA3G,

while Vifs from SIVs that don’t infect

humans (African green monkeys) don’t

interact with hA3G [56–59]. Additionally,

mouse A3, which does not bind Vif,

restricts HIV-1 infection [48], MPMV
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[40], and primate FV [27] via a CDA-

dependent mechanism. Thus, it has been

proposed that one role for A3 proteins is to

prevent zoonoses rather than to restrict

natural infections [9].

However, the studies showing that A3

proteins do not restrict viruses that infect

the same species need to be re-evaluated in

light of several recent studies with two

mouse viruses, MMTV and MLV. These

in vivo studies examined the role of A3 in

the resistance and susceptibility to infec-

tion in different inbred strains of mice and

in mice with targeted deletion of the mA3

gene and clearly demonstrate that the host

A3 protein plays a role in virus infection

and, more importantly, in virus-mediated

pathogenesis.

In the first of these studies, our lab

tested whether knockout mice that lack a

functional A3 gene were susceptible to

infection with MMTV [6]. MMTV is a

betaretrovirus that is normally acquired

through milk by suckling neonates and

first infects cells in the lymphoid compart-

ment followed by transmission to the

mammary epithelial cells [60]. We infect-

ed mA3+/+ and mA32/2 mice and

showed that mA32/2 mice had higher

levels of initial infection compared to their

wild-type littermates and moreover, that

virus spread was more rapid and extensive.

We have also found that MMTV-infected

mA32/2 mice develop mammary tumors

more rapidly (C. Okeoma and S. Ross,

unpublished data). These findings demon-

strate that mA3 provides partial protection

to mice against MMTV infection and

represent the first demonstration to our

knowledge that A3 proteins function

during in vivo retroviral infection.

Two groups more recently demonstrat-

ed that mA3 also restricts Friend MLV (F-

MLV) infection and virus-induced ery-

throproliferation [7,8]. In the 1970s,

genetic crosses between various strains of

inbred mice were carried out as a means of

identifying genetic loci that would confer

susceptibility or resistance to F-MLV [61].

The recovery from Friend virus 3 (Rfv3)

locus was subsequently found to affect the

ability of resistant mice, such as C57BL/6,

to recover from virus infection, at least in

part through the production of a high-level

antibody response [62,63]. Mapping stud-

ies placed Rfv3 to a 0.83 centimorgan

region of chromosome 15, close to the

APOBEC3 locus [64,65]. The Greene and

Miyazawa groups tested whether Rfv3 and

mA3 were one and the same, and their

data suggest that this may be the case

[7,8]. Both groups showed that mA32/2

mice were more highly infected by F-MLV

than were mA3+/+ mice, and when F-

MLV-susceptible (BALB/c) mice were

crossed with mA32/2 mice and infected

with virus, the F1 progeny had high virus

titers, did not develop a strong neutralizing

antibody response, and showed increased

erythroid cell proliferation characteristic of

F-MLV-mediated disease. Conversely,

mA32/2 X C57BL/6 F1 mice looked

like their resistant parent, with low viremia

and high antibody production.

The two groups differed in their con-

clusions regarding the mechanism of A3-

mediated resistance. There are a number

of differences between the A3 alleles in F-

MLV-resistant and –susceptible mice,

leading to differences in mRNA expression

levels, alternative splicing of the mRNA,

and amino acid polymorphisms

[7,8,45,65]. C57BL/6 mice predominant-

ly express a Dexon 5 variant of mA3

(Figure 1A) [7,8,66]. Using a transfection/

infection assay with hybrid A3 molecules,

Takeda and colleagues mapped the ability

of the C57BL6-derived allele to restrict

infection to polymorphic amino acids in

the N-terminal 192 amino acid region and

Figure 1. Polymorphisms in APOBEC 3 Genes. (A) Different splice variants and polymorphic exons found in different inbred mouse strains. Blue
boxes denote exons found in inbred strains such as BALB/c and 129; red boxes denote exons with polymorphic amino acid differences in C57BL-
derived strains. The table denotes the relative expression levels of the different splice variants expressed in the different strains, as well as the
susceptibility (S) or resistance (R) to F-MLV infection. Data taken from references [7,8,65,66]. (B) Different A3 alleles found in human populations. At
least seven SNP polymorphisms have been found in the A3G genes in humans, although only one polymorphic A3G allele, H186R, has been
associated with increased susceptibility to HIV-1-mediated disease [69]. Also shown is the presumed recombination event leading to the deletion of
part of A3B in some individuals and a fused hA3A/3B gene [71].
doi:10.1371/journal.ppat.1000347.g001
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not to the absence of exon 5. In contrast,

Santiago and colleagues suggested that a

lack of exon 2 in the mA3 made in BALB/

c (or A.BY) susceptible mice contributes to

the inability of mA3 from these back-

grounds to inhibit infection, although this

transcript was not detected in the studies

by Takeda et al. and our lab has more

recently found that the major transcript in

BALB/c mice contains exon 2 [66].

C57BL/6 mice also express higher levels

of A3 RNA than BALB/c mice [7,65,66].

We also found that the C57BL/6 mA3

allele restricts MMTV infection more

effectively than that encoded in BALB/c

mice [66]. Which of these differences

contribute to resistance to virus infection

in vivo awaits the creation of transgenic or

knock-in mice with the different alleles to

directly test their efficacy in restricting F-

MLV and MMTV.

Importantly, these studies demonstrate

that the tissue culture experiments that

examine the role of host restriction factors

can underestimate the role that these

restriction factors play in vivo. The numer-

ous studies regarding mA3’s effect on MLV

infection in cultured cells are conflicting,

providing evidence for and against a role in

restriction [43,44,49,50,67]. Although the

tissue culture studies predominantly exam-

ined the role of mA3 on Moloney MLV (M-

MLV) rather than F-MLV, a recent study

also shows that mA32/2 mice are more

susceptible than mA3+/+ mice to infection

and lymphoma induction by M-MLV [68].

While the F-MLV studies do not defini-

tively prove that Rfv3 is mA3, the fact that

mA32/2 mice are more susceptible to

infection by at least two murine retrovirus-

es, MMTV and MLV, and that the loss of

this gene in vivo leads to increased

pathogenesis by these viruses, provides

strong support that this host-encoded

restriction factor does function against a

natural pathogen.

What does this mean for HIV-1 and

other human pathogens and the role that

hA3 proteins play in restricting HIV-1

infection? There is increasing genetic

evidence that A3 proteins protect against

infection by HIV-1 and other viruses.

Indeed, one of the alleles that has been

linked to individuals who have received

multiple exposures to HIV but remained

sero-negative maps to chromosome

22q12-13, which contains the human A3

family member genes [64,65]. One A3G

polymorphism, H16R, is associated with

AIDS progression and declining CD4 T

cells, although the in vitro anti-viral

activity of the two alleles was the same

[69]. Several human A3 genes, particularly

A3G and A3H, are highly polymorphic,

suggesting positive selection by viruses or

retroelements [18,19,70], and there is a

known deletion in the A3B locus that leads

to a fused hA3A/3B gene [71] (Figure 1B).

Although alternative splicing has been

shown to generate different A3 proteins

in mice, artiodactyls, and felines, thus far

only APOBEC3H has been shown to

undergo alternative splicing in humans

[72]. This represents another potential

means of generating A3 proteins that more

effectively restrict infection and needs to

be more thoroughly examined for the

different human genes.

The mouse studies underscore the

importance of using in vivo models to

understand host restriction factors and

their importance in limiting viral patho-

genesis. Unfortunately, the lack of a good

animal model means we can at present

only infer that A3G or other A3 molecules

are retained in the genome as anti-HIV-1

(or other viruses) restriction factors in

humans and other species. In the absence

of being able to test species-specific A3

molecules in vivo against species-endemic

viruses, it is critical to look for genetic

associations between polymorphic A3 al-

leles and resistance to infection to HIV-1,

HTLVI, HBV, HPV, and other viruses

whose infection may be affected by A3

proteins in vivo.
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