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Abstract: In intelligent vehicles, extrinsic camera calibration is preferable to be conducted on a
regular basis to deal with unpredictable mechanical changes or variations on weight load distribution.
Specifically, high-precision extrinsic parameters between the camera coordinate and the world
coordinate are essential to implement high-level functions in intelligent vehicles such as distance
estimation and lane departure warning. However, conventional calibration methods, which solve a
Perspective-n-Point problem, require laborious work to measure the positions of 3D points in the
world coordinate. To reduce this inconvenience, this paper proposes an automatic camera calibration
method based on 3D reconstruction. The main contribution of this paper is a novel reconstruction
method to recover 3D points on planes perpendicular to the ground. The proposed method jointly
optimizes reprojection errors of image features projected from multiple planar surfaces, and finally,
it significantly reduces errors in camera extrinsic parameters. Experiments were conducted in
synthetic simulation and real calibration environments to demonstrate the effectiveness of the
proposed method.

Keywords: computer vision; intelligent vehicles; extrinsic camera calibration; structure from motion;
convex optimization

1. Introduction

Recovering the positions of 3D points from 2D-2D correspondences is a fundamental
building block in geometric computer vision. This is called triangulation, and it is an
essential procedure for many applications including structure-from-motion (SfM) [1–3],
simultaneous localization and mapping (SLAM) [4–6], and visual odometry [7,8]. Trian-
gulation is conducted based on displacements between image correspondences obtained
from stereo cameras or a moving camera. In an ideal case, back-projected rays from an
image correspondence intersect at a point in three dimensional space, and it can be simply
formulated by a direct linear transformation. However, in practice, the rays do not neces-
sarily intersect due to measurement noise involved in image features, and these features
do not in general satisfy the epipolar geometry [9]. Therefore, recovering 3D information is
not a trivial problem even in a two-view case.

A standard approach for addressing the problem of noisy measurements is to estimate
2D corrected correspondences which satisfy the epipolar geometry with the minimum geo-
metric cost [9–11]. These 2D corrected points are maximum likelihood estimates under the
assumption of zero-mean isotropic Gaussian noise on the measurements [10]. Triangulation
is conducted for the corrected correspondences, and it is equivalent to estimate 3D points
which minimize the reprojection error. This procedure is called optimal triangulation. In
case that all the 3D points are on a plane, their projected points in two views are associated
with a projective transformation which is called homography [12]. Chum et al. proposed a
method to find optimal 2D correspondences projected from 3D points on a plane, and it
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is called optimal planar reconstruction [13]. Kanatani et al. further derived an optimal
solution for planar scene triangulation in case that plane and camera parameters are un-
known [14]. Planar constraint in general reduces a significant amount of reconstruction
error by associating multiple image features for correcting individual 2D measurements.
This motivates us to associate image features projected from multiple planar surfaces to
improve the precision of 3D reconstruction.

In this paper, we propose a multiple planar reconstruction method which can be
applicable in a man-made environment: planes of interest are perpendicular to the ground.
It is worth noting that this scenario is quite reasonable in environments for end-of-line
calibration and indoor camera calibration. This assumption implies that the normal vectors
of planes are coplanar. Whereas previous methods reconstruct individual planes, we
seek to jointly optimize the structures of multiple planes simultaneously by introducing
coplanarity constraints of their normal vectors.

Another main work of this paper is a novel extrinsic camera calibration method.
Among various types of extrinsic parameters, our goal is to estimate extrinsic parameters
between the camera coordinate and the world coordinate, which are essential prerequisite
for high-level functions in intelligent vehicles such as distance estimation and lane depar-
ture warning. Extrinsic parameters consist of relative rotation and translation between
the camera and world coordinates, and the world coordinate is also called the vehicle
coordinate. In recent intelligent vehicles, due to unpredictable mechanical changes or
variations on weight distribution, it is desirable to perform extrinsic camera calibration on
a regular basis [15], e.g., at the start of every driving. However, camera calibration requires
correspondences between 2D image projections and their 3D points [16] to solve a variant
of Perspective-n-Point (PnP) problems [17–21], and the procedure for measuring accurate
3D points in the world coordinate is the biggest bottleneck in conventional methods.

Recently, deep learning methods have been utilized in automatic camera calibration for
intelligent vehicles [22–24]. However, many original equipment manufacturers (OEMs) and
Tier 1 component companies require conventional computer vision methods to guarantee
the safety and reliability of the camera calibration function. Moreover, even OEMs, which
employ deep learning techniques in recognition and planning algorithms, parallelly utilize
conventional methods to acquire a satisfactory level of functional safety for several essential
functions such as camera calibration. This paper proposes an extrinsic camera calibration
method to reduce manual work in conventional approaches. The proposed method uses
3D cues in the camera coordinate to infer 3D information in the world coordinate by
utilizing 3D points on a planar chessboard which is perpendicular to the ground. The
main advantage of the method is that it is able to estimate extrinsic parameters without
measuring 3D points in the world coordinate.

The contributions of this paper are twofold: (1) multiple planar reconstruction method
to jointly recover 3D structures of multiple planar surfaces and (2) extrinsic camera cal-
ibration method based on the reconstructed points. This paper is organized as follows.
Section 2 presents the multiple planar reconstruction method, and Section 3 explains the
extrinsic camera calibration method based on 3D reconstruction. Section 4 presents experi-
mental results in both synthetic and real environments to demonstrate the effectiveness of
the proposed methods.

2. Optimal Multiple-Planar Reconstruction

This section presents the proposed method for joint reconstruction of multiple planar
surfaces. We assume that planar chessboards are installed perpendicular to the ground,
and a vehicle with a camera moves along the ground with a planar motion. Under these
assumptions, the plane normal vectors and camera motion vector are orthogonal to the
ground normal vector, and therefore, the plane normal and camera motion vectors are
coplanar. Although these assumptions are not easy to satisfy in a road situation, it is worth
utilizing the proposed method to improve the precision and robustness of end-of-line
and indoor calibrations, which are usually conducted in a man-made environment. In
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Figure 1, a synthetic configuration containing four planar boards in three dimensional
space is projected onto an image plane by using a camera matrix and arbitrary extrinsic
parameters. The camera motion vector is indicated by m, and the tetragons filled with
a reddish color and the tetragons filled with 2D points depict the projections of the four
planar boards from the first and second views, respectively.

Figure 1. Synthetic simulation environment for multiple planar reconstruction and camera extrinsic calibration.

The outline of the proposed method is as follows. First, normal vectors of the pla-
nar chessboards are jointly optimized to minimize the algebraic error of homographies
subject to the coplanarity constraints. Then, these homographies are used to correct 2D
measurements, and 3D structures of the planar surfaces are recovered via triangulation of
the corrected 2D correspondences. Finally, extrinsic parameters are estimated by using the
method presented in Section 3.

2.1. Plane Induced Homographies

Suppose that planar surfaces are imaged by a calibrated camera in two views under
planar motion of a vehicle. In three dimensional space, the k-th plane can be represented
as its scaled normal vector nk so that n>k XC + 1 = 0, where XC is a 3D point in the camera
coordinate. Suppose that the essential matrix between the two-view is given by E = [t]×R,
where R is rotation matrix, t is translation vector, and [·]× is a 3× 3 skew-symmetric matrix
for representing cross product as a matrix multiplication. Then, it is well-known that a
homography induced by the k-th plane can be represented as

Hk = R− tn>k . (1)

The essential matrix, R, and t can be computed via ego-motion estimation. There are
several methods to estimate ego-motion of a vehicle, and many previous methods utilize
optical flow of background features [25,26].

Suppose that the i-th point on the k-th plane in three dimensional space is projected
onto two image planes, and xi,k and x′i,k are homogeneous representations of the 2D
projections in the first and second views, respectively. Then the 2D correspondence satisfies
x′i,k ' Hkxi,k = (R− tn>k )xi,k, and it can be reformulated as

x>i,knk =
(x′i,k × Rxi,k)

>(x′i,k × t)

(x′i,k × t)>(x′i,k × t)
= bi,k, (2)
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when x′i,k and t are not parallel. The operation × indicates cross-product between two
vectors, and ' implies that two vectors are equal up to scale. The scaled normal vector nk
of the k-th plane can be obtained by solving the unconstrained optimization problem:

minimize
nk

‖Aknk − bk‖2, (3)

where bk = [b1,k, · · · , bNk ,k]
> ∈ RNk and Ak = [x1,k, · · · , xNk ,k]

> ∈ RNk×3. Homogra-
phy optimization in the previous work [14] can be reformulated as a two-step process:
optimization of a scaled normal vector by (3) and homography recovery by (1).

2.2. Multiple Planar Reconstruction

This section presents the main idea of the proposed method which introduces copla-
narity constraints of plane normal vectors and camera motion vector to jointly reconstruct
multiple planar surfaces. In three dimensional space, coplanarity of the normal vectors ni
(i = 1, · · · , K) and camera motion m = −R>t can be represented as

(n1 × nk) ·m = 0, k = 2, · · · , K. (4)

To formulate the quadratic constraints in terms of optimization variables, all of the
constraints are associated with the camera motion vector m, which is constant in the opti-
mization problem. The number of equations for constraining the coplanarity of K normal
vectors and m is K(K + 1)/2. However, these equations have redundancy, because, for ex-
ample, the coplanarities of (ni, nj, m) and (ni, nk, m) ensure the coplanarity of (nj, nk, m).
Therefore, the minimum number of equality constraints for the coplanarity of K normal
vectors is K− 1.

Let w be a concatenated normal vector such that w = [n>1 , · · · , n>K ]
>, then the copla-

narity (4) can be reformulated as

w>Ckw = 0, k = 2, · · · , K, (5)

where Ck is a 3K× 3K symmetric block matrix, of which partitions are 3× 3 zero matrices
except that C1k = [m]× and Ck1 = [m]>×; Cij is a 3 × 3 submatrix corresponding to
the i-th row and j-th column block. By introducing an auxiliary dimension to w so that
w̃ = [w>, 1]>, the optimization problem for minimizing the objective function of (3) subject
to the coplanarity constraints (4) can be formulated as

minimize
w̃

w̃>Qw̃

subject to w̃>C̃kw̃ = 0, k = 2, · · · , K,

w̃>C0w̃ = 1,

(6)

where Q =

[
Ã>Ã −Ã>b
−b>Ã 0

]
, C̃k =

[
Ck 0
0> 0

]
, C0 =

[
03K 0
0> 1

]
, Ã ∈ R(∑K

k=1 Nk)×3 is the

block diagonal matrix, of which the k-th diagonal submatrix is Ak ∈ RNk×3 and off-
diagonal blocks are zero matrices, and 03K is a 3K × 3K zero matrix. This optimization
problem (6) is a quadratically constrained quadratic program (QCQP); the objective is a
quadratic function with a positive semidefinite matrix, and the constraints are quadratic
with symmetric matrices. Becuase (6) is an NP-hard optimization problem, we reformulate
it as a semidefinite program (SDP) by applying the parameterization of S = w̃w̃> and
relaxation of a rank constraint.
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2.3. SDP Relaxation

With the parametrization of S = w̃w̃> ∈ S+, where S+ is the set of positive semidefi-
nite matrices, the QCQP (6) can be reformulated in terms of inner products of matrices as

minimize
S∈S+

〈Q , S〉

subject to 〈C̃k , S〉 = 0, k = 2, · · · , K,

〈C0 , S〉 = 1,

rank(S) = 1.

(7)

By eliminating the rank constraint in (7), we can obtain the semidefinite relaxation:

minimize
S∈S+

〈Q , S〉

subject to 〈C̃ , S〉 = 0, k = 2, · · · , K,

〈C0 , S〉 = 1.

(8)

Becuase the SDP (8) is a convex optimization, we can find the global optimum reliably.
Zhao proved the tightness between a primal QCQP and its rank relaxation at noise-free
observations, and further showed the stability of rank relaxation at noisy observations [27].
We indeed observe that the solution of rank-relaxed problem (8) always satisfies the rank-1
in both synthetic simulation and real calibration environments.

2.4. Recovering 3D Points

Once the optimal S of the SDP (8) is obtained, w̃ can be recovered by computing the
eigenvector of S corresponding to the largest eigenvalue. By utilizing w̃ and ego-motion of
the vehicle, individual homographies are computed by (1). Based on the plane induced
homographies, optimal corrections x̂i,k and x̂′i,k can be obtained for each 2D measurements
xi,k and x′i,k, by solving a polynomial of degree 8 [13] or by using Sampson’s method [28].
The positions of 3D points can be recovered by applying triangulation to the corrected 2D
points x̂i,k and x̂′i,k. Figure 2 shows 3D points on planar surfaces reconstructed by naïve
triangulation [28], optimal planar reconstruction [13], and our method.

Figure 2. Reconstructed 3D points by using Naïve triangulation (top row), optimal planar reconstruction (middle row),
and proposed reconstruction method (bottom row) in different viewpoints.
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3. Camera Calibration Based on 3D Reconstruction
3.1. Vehicle Modeling

In this section, we propose a monocular camera calibration method based on 3D
reconstruction. Figure 3 shows our vehicle model. Our world coordinate is defined so
that its origin is the perpendicular projection of the camera centre to the ground, and the
direction of ZW axis is identical to the normal vector of the world coordinate so that it
follows ISO 8855. Under the definition of the world coordinate, fixed values of longitudinal
and lateral offsets between the world origin and the foremost point of a vehicle can be
compensated at the process of generating signals such as distances to frontal vehicles and
time to collision.

The relation between the world and camera coordinates can be formulized in terms of
Euler angles (pitch θ, yaw ψ, roll φ) and camera height (h) as

XC = R(θ, φ; ψ)XW + t(θ, φ, h; ψ), (9)

where XC = [XC, YC, ZC]
> is a 3D point in the camera coordinate, XW = [XW , YW , ZW ]> is

a 3D point in the world coordinate, and the rotation matrix R(θ, φ; ψ) is defined as (10).

R(θ, φ; ψ) =

cos θ sin ψ cos φ + sin θ sin φ − cos ψ cos φ − sin θ sin ψ cos φ + cos θ sin φ
cos θ sin ψ sin φ− sin θ cos φ − cos ψ sin φ − sin θ sin ψ sin φ− cos θ cos φ

cos θ cos ψ sin ψ − sin θ cos ψ

. (10)

Since 0 = R(θ, φ; ψ) · [0, 0, h]> + t(θ, φ, h; ψ), the translation can be represented as

t(θ, φ, h; ψ) = −r3h, (11)

where ri is the i-th column vector of R(θ, φ; ψ).
Suppose that 3D world points of interest are on rectangular planar boards, which are

perpendicular to the ground, and their ZW components (height) are measured beforehand
in the world coordinate. Image features projected from these 3D points are detected while
a vehicle with a camera moves along the ground, and yaw angle of the camera is estimated
by computing a focus of expansion as presented in [29]. The 3D positions corresponding to
these image features are recovered in the camera coordinate by using the multiple planar
reconstruction method which is explained in Section 2. The objective of the automatic
calibration algorithm is to estimate pitch (θ), roll (φ), and camera height (h) to recover
relative rotation and translation between the camera and world coordinates.

Figure 3. The definition of camera and world coordinates in our vehicle model.
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3.2. Estimation of Extrinsic Parameters

Let Xi
W and Xj

W be the 3D points on a vertical line which is perpendicular to the

ground. Since Xi
W − X j

W = 0 and Yi
W −Y j

W = 0, component-wise differences between Xi
W

and Xj
W can be simplified as (12).

Xi
C − X j

C = −(sin θ sin ψ cos φ− cos θ sin φ)(Zi
W − Zj

W),

Yi
C −Y j

C = −(sin θ sin ψ sin φ + cos θ cos φ)(Zi
W − Zj

W),

Zi
C − Zj

C = − sin θ cos ψ(Zi
W − Zj

W).

(12)

Based on (12), pitch angle (θ) can be estimated by

sin θ = −
Zi

C − Zj
C

cos ψ(Zi
W − Zj

W)
. (13)

By solving Xi
C and Yi

C in terms of sin φ, roll angle (φ) can be estimated by

sin φ =
cos θ(Xi

C − X j
C)− sin θ sin ψ(Yi

C −Y j
C)

(sin2 θ sin2 ψ + cos2 θ)(Zi
W − Zj

W)
. (14)

After the computation of θ and φ, camera height (h) can be obtained by solving the
following equation with respect to XW , YW , and h:

[r1, r2,−r3][XW , YW , h]> = XC − r3ZW . (15)

Finally, camera extrinsic parameters can be recovered by using (10) and (11).

4. Experimental Results

The proposed method is composed of constrained multiple planar reconstruction and
automatic extrinsic camera calibration. To demonstrate the effectiveness of each method, we
synthesized a simulation environment, and the reconstruction and calibration errors were
evaluated step by step. In both simulation and real experiments, Naïve triangulation [28]
and optimal planar reconstruction method [13] were compared with the proposed method.
To analyze the effect of the coplanarity constraint, we evaluate the proposed method with
two experimental setups: the coplanarity of two plane normal vectors (K = 2) and the
coplanarity of four plane normal vectors (K = 4). For fairness, we used all of the 3D points
on the four planar surfaces in every reconstruction method. For example, in the case of
K = 2, two SDPs were optimized to use all of the image features projected from the four
planar surfaces. The reconstruction and camera height errors were measured in millimetre
(mm), and rotation errors were measured in degree.

4.1. Synthetic Environment

To generate a simulation environment, camera extrinsic parameters were randomly
sampled under the normal distributions: θ, ψ, φ∼N (0, 12) and h∼N (1300, 502), where N
is normal distribution with a given mean and variance. This synthetic environment reflects
the variations of real extrinsic parameters in our vehicle model, and degree and mm units
are utilized for representing angles and camera height, respectively. In the simulation envi-
ronment, known 3D world points on planar surfaces were projected onto two-view images
with the size of 1920× 1200 by using similar intrinsic parameters to the real case, and Gaus-
sian noise with zero mean and standard deviation of σ was added to the 2D projected
image points. To generate the synthetic two-view images, we utilized the vehicle motion
when the vehicle moves 1000 mm in forward direction as presented in Figure 4. From the
2D noisy correspondences, reconstruction methods were utilized to recover their 3D points
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in the camera coordinate, and the proposed calibration method was applied to estimate
extrinsic parameters. Each experiment was conducted 100 times, and averaged absolute
errors were measured for both reconstructed 3D points and estimated extrinsic parameters.

To evaluate reconstruction accuracy, root-mean-square errors between 3D estimates
and their true positions were measured in three dimensional space. Table 1 presents
reconstruction errors with respect to various amounts of noise on 2D image projections; the
standard deviation σ of the Gaussian pixel-noise was varied from 0.1 to 3.0. We present two
cases of simulation results: In one case, virtual planar boards are located at the longitudinal
distance of around 8 m from the camera at the first view, and in the other case, those
are located around 10 m. With an identical amount of pixel-noise, reconstruction error
increases as the distance to the planar boards increases. Although reconstruction error
increases as the amount of pixel-noise increases, the proposed reconstruction method
consistently shows higher accuracies compared to the other methods. Furthermore, Table 1
demonstrates that joint optimization of one SDP for the four planes is more advantageous
than separate optimization of two independent SDPs for upper two planes and lower
two planes. It is because normal vectors of planes in upper and lower groups are not
associated with a coplanarity constraint in the case of K = 2. This result implies that joint
reconstruction of entire planar surfaces is effective to reduce the reconstruction error.

Table 1. Reconstruction errors (mm) with respect to various amounts of pixel noise.

Method Distance σ
0.1 0.2 0.3 0.5 0.7 1.0 1.5 2.0 3.0

Naïve triangulation

8 m

15.7 30.8 46.6 78.0 110.4 156.0 236.6 318.2 474.8
Optimal triangulation 15.7 30.8 46.7 78.0 110.4 156.0 236.5 317.9 473.8
Planar reconstruction 3.7 7.3 11.4 17.9 26.5 37.7 58.0 77.3 119.5
Propoased method (K = 2) 3.2 6.2 9.8 15.2 22.4 32.4 51.2 70.6 110.5
Propoased method (K = 4) 3.0 5.8 9.1 14.1 20.5 30.1 48.1 67.9 106.3

Naïve triangulation

10 m

30.1 60.7 90.3 152.4 210.6 301.0 455.4 610.2 938.5
Optimal triangulation 30.1 60.7 90.3 152.4 210.5 300.9 455.1 609.1 935.4
Planar reconstruction 6.9 13.9 21.0 34.7 49.3 70.2 108.8 151.9 252.2
Propoased method (K = 2) 6.0 11.6 18.3 30.0 43.0 62.3 99.4 140.8 240.1
Propoased method (K = 4) 5.6 10.9 17.2 28.0 40.1 60.6 95.8 138.0 237.4

Figure 4. Reconstruction and calibration errors in simulation experiments.

Figure 4 shows the reconstruction and calibration errors in the case that distances
to targets were around 8 m and the standard deviation of pixel noise was σ = 0.5. By
reducing the reconstruction error, calibration error was significantly decreased especially
for pitch angle and camera height. In the results of the proposed method, the reconstruction
and calibration errors of K = 4 case were lower than those of K = 2 case. It implies that
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increasing the number of planes was beneficial to reduce the amount of errors. However, it
was not practical to setup more than four planes in real experiments, because 2D image
features projected from planes which were located far from the vehicle caused a large
amount of pixel noise. Therefore, we utilized four planar surfaces for extrinsic calibration
in real experiments.

In the proposed reconstruction method, ego-motion was assumed as a planar motion
to formulate a coplanarity constraint with plane normal vectors. To analyze the effect of
vehicle motion noise to the performance of the proposed method, we conducted simulation
experiments with and without vehicle motion noise. The motion noise was modeled as a
Gaussian distribution, and we utilized the standard deviation of ego-motions measured in
real driving scenarios to generate Gaussian motion noise in the simulation environment.
Table 2 presents calibration accuracies with and without vehicle motion noise under various
amounts of pixel noise. Although calibration errors were increased by the ego-motion noise,
experimental results show that the proposed method was robust compared to previous
methods even under the motion noise.

Table 2. Calibration accuracy in simulation environment with respect to various amounts of pixel noise.

Method σ = 0.3 σ = 0.5 σ = 0.7 σ = 1.0
Pitch Roll Height Pitch Roll Height Pitch Roll Height Pitch Roll Height

Without camera-motion noise
Naïve triangulation 0.9829 0.2859 141.3 1.3705 0.4759 197.3 2.4338 0.9065 349.8 3.3727 2.2364 483.3
Planar reconstruction 0.6383 0.2017 91.7 1.0972 0.3225 158.0 1.6317 0.3994 234.8 2.2217 0.7261 319.5
Propoased method (K = 2) 0.0372 0.2048 5.3 0.0751 0.3295 10.9 0.1647 0.4021 23.6 0.3394 0.6990 48.8
Propoased method (K = 4) 0.0312 0.1587 4.5 0.0557 0.2549 8.0 0.0683 0.2890 9.8 0.1330 0.5153 19.1

With camera-motion noise
Naïve triangulation 3.0058 0.3214 432.7 3.4568 0.5304 498.9 4.5159 0.9182 646.8 4.9208 1.7227 704.0
Planar reconstruction 2.8668 0.2067 412.8 2.9781 0.3346 429.9 3.8155 0.4555 547.0 4.0049 0.6995 574.8
Propoased method (K = 2) 0.0703 0.2152 10.2 0.1290 0.3486 18.3 0.2741 0.4797 39.4 0.4505 0.7181 65.2
Propoased method (K = 4) 0.0587 0.1501 9.2 0.1076 0.2538 15.1 0.2200 0.3271 31.7 0.3097 0.5023 44.2

4.2. Real Calibration Environment

This section presents experimental results in a real calibration environment to demon-
strate the effectiveness of the proposed method. In our garage, chessboards were installed
so that they are perpendicular to the ground as shown in Figure 5. While a vehicle moved
smoothly, images were collected with the size of 1920 × 1200 by utilizing an in-vehicle
frontal camera, FLIR Point Grey Grasshopper 3. Intrinsic parameters of the camera were
computed in advance by using the method presented in [30]. Background features were
extracted and tracked by grid-based feature detection and Lucas–Kanade method [31], and
the essential matrix was computed by the five-point method [32] with RANSAC [33] to
estimate camera motion. The correspondences of chessboard features were independently
detected, and yaw angle of the camera with respect to moving direction was calculated
based on focus of expansion, which was computed from the chessboard features. The
multiple planar reconstruction method was applied to recover 3D structures of chessboard
features, and finally, camera extrinsic parameters were estimated by using the proposed
calibration method. This calibration process was performed multiple times while a vehi-
cle was passing the chessboards, and these estimates were averaged to compute a final
calibration parameters. In our experiment, the vehicle moved about 5 km/h to obtain
enough number of image pairs, and the averaged values of 10 estimates were utilized as
final extrinsic parameters. The number of calibration trials could be affected by vehicle
speed, field of view of the camera, and distances between chessboards.
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(a) (b)

Figure 5. Real calibration environment: (a) optical flow of background features for estimating ego-motion of the vehicle. (b) Optical
flow of chessboard features for 3d reconstruction.

To evaluate the accuracy of the proposed method, we collected reference values of
extrinsic parameters from an identical experiment environment. In the procedure for
generating reference parameters, we manually measured 3D locations of multiple feature
points with respect to the world coordinate using a laser range finder, and corresponding
2D projections in the image domain were labelled. 2D-3D correspondences were used
to solve a Perspective-n-Point (PnP) problem to compute extrinsic parameters. All the
procedures took around 30 min, and it was repeated eight times to obtain averaged extrinsic
parameters; the reference values for camera height, pitch angle, roll angle are 1195.48 mm,
0.2413 degree, 0.3663 degree, respectively. In the real experiment, we measured absolute
errors between the reference parameters and estimated extrinsic parameters.

To demonstrate the effectiveness of the proposed method, we conducted experiments
with four different reconstruction methods: Naïve triangulation [28] and optimal planar
reconstruction method [13], and the proposed constrained multiple planar reconstructions
(K = 2 and K = 4). Calibration errors in the real calibration scenario are presented in
Figure 6, and the proposed reconstruction method gives much lower calibration errors
compared to the conventional methods. Similar to experimental results in synthetic simula-
tion, calibration accuracy was improved by utilizing a greater number of planar surfaces in
a SDP. Compared to the previous planar reconstruction method [13], height error of the
proposed method (K = 4) was reduced from 110.1 mm to 23.9 mm, and pitch angle and
roll angle errors were reduced from 0.2764 degree to 0.0470 degree and from 1.1098 degree
to 0.0859 degree, respectively; about 78% and 87% of height and angle errors were reduced
by using the coplanarity constraint. Because angle errors less than 0.1 degree and height
error less than 30 mm were not significant to perform high-level functions such as distance
estimation and lane departure warning, the proposed method was able to be utilized
in intelligent vehicle industries for computing extrinsic parameters between the camera
coordinate and the world coordinate.
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Figure 6. Calibration errors in real calibration scenario.

5. Conclusions

In this paper, we propose a method for automatic camera calibration of intelligent
vehicles. The proposed method is based on 3D reconstruction of a man-made environment,
and the key contribution of this paper is novel multiple planar reconstruction method
to reduce errors in camera extrinsic parameters. We first formulate a QCQP with the
coplanarity constraints between plane normal vectors and camera motion vector. The
QCQP is reformulated into an SDP, and the optimal solution is obtained using rank-1
relaxation. From the optimal solution of the relaxed SDP, normal vectors are computed for
3D reconstruction of planar surfaces.

We also propose a method to compute camera extrinsic parameters by utilizing planar
surfaces which are perpendicular to the ground. This man-made environment is quite
reasonable for end-of-line calibration and indoor camera calibration. Main benefit of the
proposed method is that it does not require 3D measurements of image features, and thus,
extrinsic calibration can be conducted automatically at the start of every driving. In both
synthetic simulation and real calibration environment, the proposed reconstruction method
significantly outperformed the previous 3D reconstruction methods, and thus errors in
extrinsic parameters were dramatically reduced.
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