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ABSTRACT
Objectives  Lung ultrasound (LUS) is a portable, low-
cost respiratory imaging tool but is challenged by user 
dependence and lack of diagnostic specificity. It is 
unknown whether the advantages of LUS implementation 
could be paired with deep learning (DL) techniques to 
match or exceed human-level, diagnostic specificity 
among similar appearing, pathological LUS images.
Design  A convolutional neural network (CNN) was trained 
on LUS images with B lines of different aetiologies. 
CNN diagnostic performance, as validated using a 10% 
data holdback set, was compared with surveyed LUS-
competent physicians.
Setting  Two tertiary Canadian hospitals.
Participants  612 LUS videos (121 381 frames) of B 
lines from 243 distinct patients with either (1) COVID-19 
(COVID), non-COVID acute respiratory distress syndrome 
(NCOVID) or (3) hydrostatic pulmonary edema (HPE).
Results  The trained CNN performance on the independent 
dataset showed an ability to discriminate between COVID 
(area under the receiver operating characteristic curve 
(AUC) 1.0), NCOVID (AUC 0.934) and HPE (AUC 1.0) 
pathologies. This was significantly better than physician 
ability (AUCs of 0.697, 0.704, 0.967 for the COVID, NCOVID 
and HPE classes, respectively), p<0.01.
Conclusions  A DL model can distinguish similar 
appearing LUS pathology, including COVID-19, that cannot 
be distinguished by humans. The performance gap 
between humans and the model suggests that subvisible 
biomarkers within ultrasound images could exist and 
multicentre research is merited.

INTRODUCTION
Lung ultrasound (LUS) is an imaging tech-
nique deployed by clinicians at the point-of-
care to aid in the diagnosis and management 
of acute respiratory failure. With accuracy 
matching or exceeding chest X-ray (CXR) 
for most acute respiratory illnesses,1–3 LUS 
additionally lacks the radiation and laborious 
workflow of CT. Further, as a low-cost, battery-
operated modality, LUS can be delivered at 

large scale in any environment and is ideally 
suited for pandemic conditions.4

B lines are the characteristic pathological 
feature on LUS, created by either pulmonary 
edema or non-cardiac causes of interstitial 
syndromes. The latter includes a broad list of 
conditions ranging from pneumonia, pneu-
monitis, acute respiratory distress syndrome 
(ARDS) or fibrosis.5 While an accompanying 
thick pleural line is helpful in differentiating 
cardiogenic from non-cardiogenic causes of B 
lines,6 reliable methods to differentiate non-
cardiogenic causes from one another on LUS 

Strengths and limitations of this study

►► The ability of a convolutional neural network (CNN) 
to differentiate between similar appearing lung ul-
trasound (LUS) images with pathological B lines of 
three different origins (COVID-19, non-COVID acute 
respiratory distress syndrome and hydrostatic pul-
monary edema) was evaluated using 612 LUS vid-
eos from 243 patients.

►► The performance of the neural network was bench-
marked against physicians competent in LUS inter-
pretation who completed an online interpretation 
exercise.

►► The performance of the neural network was evalu-
ated using a batch of 10% of our data that was held 
back from the training process, thereby estimating 
generalised performance and defending against 
model overfitting that may otherwise embellish deep 
learning (DL) results.

►► Explainability efforts using heatmap-based tools 
were employed to allow insight into the regions of 
LUS images that contributed most to the predictions 
of the neural network.

►► Our study used the largest volume of data to date for 
a DL problem related to LUS, although this amount 
of data is small and more heterogeneous relative to 
other imaging-based DL models.
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have not been established. Additionally, user-dependent 
interpretation of LUS contributes to wide variation in 
disease classification,7 8 creating urgency for techniques 
that improve diagnostic precision and reducing user 
dependence.

Deep learning (DL), a foundational strategy within 
present-day artificial intelligence techniques, has been 
shown to meet or exceed clinician performance across 
most visual fields of medicine.9–11 Without cognitive bias 
or reliance on spatial relationships between pixels, DL 
ingests images as numeric sequences and evaluates quanti-
tative patterns that may reveal information that is unavail-
able to human analysis.12 With CT and CXR research 
maturing,13–15 LUS remains comparably understudied 
with DL due to a paucity of organised, well-labelled LUS 
datasets and the seeming lack of rich information in its 
minimalistic, artefact-based images.

In this study, we trained a neural network using LUS 
images of B lines from three different aetiologies (hydro-
static pulmonary edema, ARDS and COVID-19). Using 
LUS-fluent physicians as comparison, we sought to deter-
mine if subvisible features in LUS images are available to 
a DL model that would allow it to exceed human limits of 
interpretation.

METHODS
Data identification, extraction and labelling
After University of Western Ontario Research Ethics 
Board (REB 115723) approval, LUS examinations 
performed at London Health Sciences Centre’s two 
tertiary hospitals were identified within our database of 
over 100 000 point-of-care ultrasound examinations. The 
curation and oversight of this archive have previously 
been described.16 The goal of this study was to deter-
mine if a deep neural network could distinguish between 
the B line profiles of three different disease profiles, 
namely, (1) hydrostatic pulmonary edema (HPE); (2) 
non-COVID ARDS (NCOVID) causes; and (3) COVID-19 
ARDS (COVID). These profiles were chosen deliberately 

to challenge the neural network to classify images with 
obvious qualitative differences (HPE vs ARDS) and with 
no obvious differences (NCOVID vs COVID) between 
their B lines patterns (Figure 1 and online supplemental 
files 1–3). The COVID class consisted of confirmed 
cases of COVID-19 via reverse-transcriptase PCR test. 
The NCOVID class consisted of an assortment of causes: 
aspiration, community-acquired pneumonia, hospital-
acquired pneumonia and viral pneumonias. Examina-
tions were conducted as part of patient encounters in the 
emergency department, intensive care unit and medical 
wards across the two hospitals.

Candidate examinations for inclusion were identified 
using a sequential search by two critical care physicians, 
ultrasound experts (RA, TA) from within the finalised 
clinical reports of our database of LUS cases (figure 2).

Videos from our dataset represented a variety of ultra-
sound systems with phased array probe predominantly 
used for acquisition. Videos of the costophrenic region 
(which included solid abdominal organs, diaphragm or 
other pleural pathologies such as effusions or translobar 
consolidations) were excluded as (1) these regions did 
not contribute greatly to alveolar diagnoses, (2) this 
would introduce heterogeneity into the still image data 
and (3) a trained clinician can easily distinguish between 
these pathologies and B lines. Duplicate studies were 
discarded to avoid overfitting. From each encounter, 
deidentified mp4 loops of B lines, ranging from 3 to 
6 s in length with a frame rate ranging from 30 to 60/s 
(depending on the ultrasound system), were extracted. 
As COVID was the newest class available to our database, 
its comparably smaller number of encounters governed 
the number of encounters we extracted from HPE and 
NCOVID. A balanced volume of data for each class of 
image is important to avoid model overtraining on a 
single image class and/or overfitting.

Data preprocessing
The images used to train the model were all frames from 
the extracted LUS clips. Hereafter, a clip refers to an LUS 

Figure 1  Sample images and lung ultrasound characteristics typical of the three lung pathologies that are the subject of our 
deep learning classifier (videos available in online supplemental files 1–3).

https://dx.doi.org/10.1136/bmjopen-2020-045120
https://dx.doi.org/10.1136/bmjopen-2020-045120
https://dx.doi.org/10.1136/bmjopen-2020-045120


3Arntfield R, et al. BMJ Open 2021;11:e045120. doi:10.1136/bmjopen-2020-045120

Open access

video that consists of several frames. An encounter is consid-
ered to be a set of one or more clips that were acquired 
during the same LUS examination.

Preprocessing of each frame consisted of a conversion 
to greyscale followed by a script written by one of our 
teams (JH) to scrub the image of extraneous information 
(index marks, logos and manufacturer-specific user inter-
face). See online supplemental appendix 1 for full details.

Data augmentation techniques were applied to images 
to each batch of training data during training experi-
ments to combat overfitting. Augmentation transfor-
mations included random zooming in/out by ≤10%, 
horizontal flipping, horizontal stretching/contracting by 
≤20%, vertical stretching/contracting (≤5%) and bidirec-
tional rotation by ≤10°.

Model architecture and training
In choosing an optimal architecture for our model, we 
investigated training from scratch on custom implemen-
tation of feedforward convolutional neural networks 
(CNNs), residual CNNs as well as transfer learning 
methods.17 Ultimately, Xception architecture18 achieved 
the highest performance among the custom and seven 
common architectures evaluated.

Individual preprocessed images were fed into the 
network as a tensor with dimensions of 600×600×3. 
Although the images were originally greyscale, they were 
converted to RGB representation to ensure that the model 
input shape was compatible with the pretrained weights. 
The output tensor of the final convolutional layer of the 
Xception model was subject to 2D global average pooling, 

Figure 2  Data acquisition, selection and verification workflow.
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resulting in a one-dimensional tensor. Dropout at a rate 
of 0.6 was applied to introduce heavy regularisation to 
the model and provided a noticeable reduction in over-
fitting. The final layer was a three-node fully connected 
layer with softmax activation. The output of the model 
represents the probabilities that the model assigned to 
each of the three classes, all summing to 1.0. The argmax 
of this probability distribution was considered to be the 
model’s decision. To further combat overfitting, early 
stopping was applied by halting training if the loss on the 
validation set did not decrease over the most recent 15 
epochs.19

For additional details on model selection, training, 
coding practice, our GitHub repository and hardware 
used in this project, see online supplemental appendix 1.

Validation strategy
A modification of the holdout validation method was 
used to ensure that the model selection process was inde-
pendent of the model validation. Our holdout approach 
began with an initial split that randomly partitioned all 
encounters into a training set and two test sets (hence-
forth referred to as test-1 set and test-2 set). The distri-
bution of encounters and frames after this split is shown 
in table  1. Test-1 was used to evaluate all of the candi-
date models so that a final model architecture and set of 
hyperparameters could be selected and was then incorpo-
rated into the training set for the final validation. Test-2 
was held back during model selection and was used to 
evaluate the model for the final validation phase. Valida-
tion sets for both experiments were derived as a subset of 
the encounters in the training set. A full account of vali-
dation methods can be found in the online supplemental 
appendix 1. It must be emphasised that by splitting sets by 
encounters, frames from the same encounter (and there-
fore the same clip) would only be found in the same set 
during any given experiment.

Measuring model performance
The final model performance was determined by its 
results on our hold-back, independent dataset (test-2). 
The results were analysed both at the individual frame 
level and at the encounter level. The latter was achieved 
through averaging the classifier’s predicted probabil-
ities across all images from within that encounter. We 
assessed the model’s performance by calculating the area 
under the receiver operating characteristic curve (AUC), 
analysing a confusion matrix and calculating metrics 
derived from the confusion matrix.

Human benchmarking
Benchmarking human performance for comparison to 
our model was undertaken using a survey featuring a 
series of 25 LUS clips from 25 different patients, varying 
from normal lung (four clips) to different LUS findings 
(six hydrostatic pulmonary edema HPE, 7 non-COVID 
pneumonia and 8 COVID pneumonia). All clips were 
sourced and labelled with agreement from three ultra-
sound fellowship trained physicians (MW, TA and RA; see 
online supplemental appendix 1 for complete survey). As 
to provide every advantage to the human interpretation 
exercise, survey clips—chosen from among the global 
study data—that particularly exemplified the character-
istics described in figure  1 were chosen for the survey. 
The survey was distributed to 100 LUS-trained acute care 
physicians from across Canada. Respondents were asked 
to identify the findings in a series of LUS loops according 
to the presence B lines versus normal lung (A line 
pattern), the characteristics of the pleural line (smooth 
or irregular) as well as the cause of the LUS findings. 
Responses were compared with the true, expert-defined 
labels consistent with our data curation process described 
above. The four clips of normal lung used were eventually 
discarded from analysis since the data used for modelling 
our algorithm did not include normal lungs. Any normal 
diagnoses (37 of 1281 diagnoses) for the remaining clips 
were replaced with uniformly randomly generated diag-
noses for the remaining causes.

Explainability
We used the Gradient-weighted Class Activation Mapping 
(Grad-CAM) method to visually explain the model’s 
predictions.20 Grad-CAM involves visualising the gradi-
ents of the prediction of a particular image with respect 
to the activations of the final convolutional layer of the 
CNN. A heatmap is produced that is upsampled to the 
original image dimensions and overlaid onto the original 
image. The resultant heatmap highlights the areas of the 
input image that were most contributory to the model’s 
classification decision.

Data statement
The GitHub link to the code used to generate the DL 
model and the full survey data results can be found in our 
online supplemental appendix 1.

Patient and public involvement
Patients or the public were not involved in the design, 
conduct, reporting or dissemination plans of this work.

Table 1  Distribution of clips and images assigned to each dataset

Data split Encounters (% of total) Frames (% of total) Clips (% of total)

Training set 204 99 471 500

Test-1 set 19 (7.82%) 9540 (7.86%) 49 (8.00%)

Test-2 set 20 (8.23%) 12 370 (10.19%) 63 (10.29%)

https://dx.doi.org/10.1136/bmjopen-2020-045120
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RESULTS
Ultrasound data
The data extraction process resulted in 84 cases of COVID 
(185 loops, average 2.23 loops/case) which, as part of our 
effort to balance the groups for unbiased training, led to 
78 of NCOVID (236 loops, average 2.91 loops/case) and 
81 (191 loops, average 2.42 loops/case) of HPE. All data 
originated from point-of-care, battery-operated machines 
primarily using a phased array transducer, abdominal 
imaging preset at an imaging frequency between 2 and 
5 megahertz (MHz). Images had similar imaging depths 
and, due to manufacturer standards, the focal zone was 
automatically set. With those machines allowing for 
manual focal zone control, the focus was directed at the 
pleural line. A variety of different clinician-sonographers 
obtained the data, as part of their clinical work. Further 
characteristics of the data, including patient demo-
graphics, are summarised in table 2.

Human benchmarking
The benchmarking survey was completed by 61 physicians 
with a median of 3–5 years of ultrasound experience, 
the majority of whom had done at least a full, dedicated 
month of ultrasound training (80.3%) and who described 
their comfort with LUS use as ‘very comfortable’ (72.1%). 

See online supplemental appendix 1 for a full summary 
of survey data.

The results of this survey highlight that the physicians 
were adept at distinguishing the HPE class of B lines 
from COVID and NCOVID causes of B lines. For the 
COVID and NCOVID cases, however, significant variation 
and uncertainty was demonstrated (see table 3 and the 
‘Comparing human and neural networks’ section).

Model performance on holdback data
The model’s predictions were evaluated at both the 
image and the encounter levels. The prediction for an 
image is the probability vector ‍p =

[
pCOVID, pNCOVID, pHPE

]
‍ 

obtained from the output of the softmax final layer, 
and the predicted class was taken to be ‍argmax

(
p
)

‍. Prediction for an encounter was considered to be 

‍

−
p =

[
−

pCOVID,
−

pNCOVID,
−

pHPE

]

‍
, where ‍

−
pc ‍ is the average 

predicted probability for class c over the predictions for 
all images within that encounter. Encounter-level predic-
tions were computed and presented to (1) replicate the 
method through which real time interpretation (by clini-
cian or machine) occurs with ultrasound by aggregating 
images within one or more clips to form an interpretation 

Table 2  Data profile for the three groups of lung ultrasound images used to train and test our model

COVID NCOVID HPE

No of patients 84 78 81

No of loops 185 236 191

No of still images 30 419 44 193 46 769

Average loops/patient 2.23 2.91 2.42

Female sex (%) 50% 40% 55%

Age (years) 60.6±11.3 56.0±16.0 67.2±15.3

Machines models (%) SS Edge (77.4)
SS X-porte (11.9)
Ph Lumify (5.9)
SS Edge-2 (1.2)
SS S-Cath (1.2)

SS X-Porte (56.4)
SS Edge (41.0)
MR M9 (2.6)

SS Edge (76.9)
SS X-Porte (19.2)
MR M9 (3.9)

Transducers (%) Phased (95.3)
Curvilinear (3.6)
Linear (1.2)

Phased array (98.7)
Curvilinear (1.3)

Phased array (92.3)
Curvilinear (7.7)

Imaging preset (%) Abdominal (98.8)
Venous (1.2)

Abdominal (97.4)
Lung (2.6)

Abdominal (87.2)
Cardiac (7.7)
Lung (5.1)

Focal point location (%) Automatic (100) Automatic (97.4)
Pleural line (2.6)

Automatic (96.1)
Pleural line (3.9)

Imaging frequencies (%) 2–5 MHz (98.8)
7–10 MHz (1.2)

2–5 MHz (100.0) 2–5 MHz (100.0)

Imaging depth average (cm) 13.4 12.5 13.1

Different sonographers 12 43 45

Date range March 2020–June 2020 August 2017–March 2020 October 2018–April 
2020

HPE, hydrostatic pulmonary edema; MR, Mindray; Ph, Philips; SS, Sonosite.

https://dx.doi.org/10.1136/bmjopen-2020-045120
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and (2) closely simulate a physician’s classification 
procedure, since the physicians who participated in our 
benchmarking survey were given entire clips to classify. 
Three models fit with our chosen architecture and set 
of hyperparameters were evaluated on test-1, achieving 
mean AUCs on the encounter level of 0.966 (COVID), 
0.815 (NCOVID) and 0.902 (HPE). The model’s ultimate 
ability was to be determined on the 10.1% of our images 
that constituted the holdback data (test-2) data. On these 
independent data, the model demonstrated a strong 
ability to distinguish between the three relevant causes of 
B lines with AUCs at the encounter level of 1.0 (COVID), 
0.934 (NCOVID) and 1.0 (HPE), producing an overall 
AUC of 0.978 for the classifier. Confusion matrices on the 

test-2 set at the frame and encounter levels (table 3) show 
strong diagonals that form the basis of these results and 
the performance metrics seen in table 4.

Comparing human and neural network results
We compared the physician-predicted results to our 
model’s test-2 results. Since AUC measures a classifier’s 
ability to rank observations, the raw survey data (in the 
form of classifications, not probabilities) were processed 
to permit an AUC computation by considering physician-
predicted probability of a LUS belonging to a specific 
class as the proportion of physicians that assigned the 
LUS to that class. The AUCs for the physicians, at face 
value, were 0.697 (COVID), 0.704 (NCOVID) and 0.967 

Table 3  Confusion matrices for the physicians (survey responses from 61 physicians classifying lung ultrasound clips 
into their respective causes, numbers in parenthesis reflect classifications from the aggregated approach used to calculate 
area under the receiver operating characteristic curve), model performance on the test-2 holdback set at the frame and the 
encounter level

Physicians

Predicted

TotalCOVID NCOVID HPE

Actual COVID 173 (3) 162 (3) 34 (2) 369 (8)

NCOVID 177 (4) 163 (1) 30 (2) 370 (7)

HPE 138 (0) 102 (0) 302 (6) 542 (6)

Total 488 (7) 427 (4) 366 (10)

CNN-Frames Predicted Total

COVID NCOVID HPE

Actual COVID 3188 256 7 3451

NCOVID 1176 3741 3 4920

HPE 109 1119 2771 3999

Total 4473 5116 2781

CNN-Encounters Predicted Total

COVID NCOVID HPE

Actual COVID 6 0 0 6

NCOVID 1 6 0 7

HPE 0 3 4 7

Total 7 9 4

‘Predicted’ represents the model or physicians’ opinions; ‘actual’ is the true label of the clip.
CNN, convolutional neural network; HPE, hydrostatic pulmonary edema.

Table 4  Classification performance metrics calculated from the model’s predictions and ground truth from the test-2 set

Prediction type Class Sensitivity/Recall Specificity Precision F1 score AUC

Frames COVID 0.924 0.883 0.713 0.805 0.965

NCOVID 0.760 0.815 0.731 0.746 0.893

HPE 0.693 0.999 0.996 0.817 0.991

Encounters COVID 1.0 0.929 0.857 0.923 1.0

NCOVID 0.857 0.769 0.667 0.75 0.934

HPE 0.571 1.0 1.0 0.727 1.0

Metrics are reported at both the frame and encounter levels.
AUC, area under the receiver operating characteristic curve; HPE, hydrostatic pulmonary edema.
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(HPE), leading to an overall AUC of 0.789 (as compared 
with 0.978 for our model). A comparison of the human 
and model AUCs is graphically displayed in figure 3. We 
took note of the AUC of approximately 0.7 for the physi-
cians when the positive class is COVID or NCOVID, as 
distinguishing between these classes is not known to be 
possible by humans. In examining the raw confusion 
matrix data (table 3), this suggests near random classifica-
tion (which corresponds to an AUC of 0.5) between these 
two classes, see online supplemental appendix 1 for a 
complete explanation. Given the important implications 
of the performance gap observed, we employed an addi-
tional step of statistical validation for our findings through 
a Monte Carlo simulation (MCS, see online supplemental 
appendix 1 for full details) of human performance, based 
on our survey results, across 1 million exposures to our 

test-2 data.21 After simulating this performance 1 million 
times, the MCS yielded an average AUC of 0.840 across all 
three classes, with very few cases matching or exceeding 
the performance of the CNN. Thus, we can conclude that 
our model exceeds human performance, and in partic-
ular, that the model can distinguish between COVID and 
NCOVID (p<0.01).

Explainability results
The Grad-CAM explainability algorithm was applied to the 
output from the model on the holdback data. The results 
are conveyed by colour on the heatmap, overlaid on the 
test-2 input images. Blue and red regions correspond to 
highest and lowest prediction importance, respectively. 
As the results in figure 4 show, the key activation areas for 

Figure 3  Receiver operating characteristic curves across the three classes of images that our human benchmarking 
(physicians) and our model (convolutional neural network (CNN)) were tasked with interpreting. The model’s performance on 
the test-2 (holdback) image set is plotted for both individual images and across the entire image set from one encounter. In all 
image categories, it can be seen that the model interpretation accuracy exceeded that of the human interpretation.

Figure 4  Grad-CAM heatmaps corresponding to a selection of our model’s predictions. Blue areas reflect the regions of the 
image with the highest contribution to the resulting class predicted by the model. In all cases, the immediate area surrounding 
the pleura appears most activated. COVID, COVID-19 pneumonia; HPE, hydrostatic pulmonary edema; NCOVID, non-COVID-
related acute respiratory distress syndrome.

https://dx.doi.org/10.1136/bmjopen-2020-045120
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all classes were centred around the pleura and the pleural 
line.

DISCUSSION
In this study, a DL model was successfully trained to 
distinguish the underlying pathology in similar point-of-
care LUS images containing B lines. The model was able 
to distinguish COVID-19 from other causes of B lines and 
outperformed ultrasound-trained clinician benchmarks 
across all categories. Our results, within the context of 
the limitations outlined below, are the first of their kind 
to support that digital biomarker profiles may exist within 
LUS images.

Our model was developed using a dataset of 243 
patients (612 video loops/121 381 frames) which is 
modest by machine learning standards. Owing to the scar-
city of labelled LUS data, this data volume does compare 
favourably to other published LUS work.22–24 Given the 
implications of successfully classifying LUS images, it was 
essential for us to protect against overfitting. While many 
approaches exist to avoid an overfit model, we, in addi-
tion to multiple data augmentation techniques, reserved 
10% of our data (test-2) as a holdback set, not involved 
in model fitting or selection. This approach mimics 
the unbiased, generalisable performance desired of an 
image classifier and is familiar to other notable DL vision 
research in medicine.9–11

DL has shown similarly favourable results in recent 
CXR and CT studies of COVID-19.25 26 Given LUS image 
creation is fundamentally different (producing artefacts, 
rather than anatomic images of the lung), it could not be 
expected that our work with LUS would have yielded such 
similar results. The value of identifying such accuracy in 
an LUS model rests in the ability of LUS (unlike CT or 
CXR) to be delivered by limited personnel, at low cost 
and in any location.

LUS artefact analysis has existed for several years in 
some commercially available ultrasound systems and has 
also been described using various methods in the litera-
ture.22 27 28 Automating the detection of canonical find-
ings of LUS, these techniques are convenient and serve 
to achieve what clinicians may be trained to do with 
minimal training.29 With attention to COVID-19, LUS 
has been shown to inform clinical course and outcome,30 
creating some further momentum towards broader LUS 
competence. As our work opens the door toward plau-
sible early, automated COVID identification using LUS, 
DL techniques to autogenerate clinical severity score for 
COVID has also recently been described.23 The eventual 
integration of various DL models into ultrasound hard-
ware seems plausible as a method to achieve real-time, 
point-of-care diagnosis and prognosis of COVID or other 
specific respiratory illnesses.

The implications of our work, at the time of writing, 
are strongly attached to the current challenges and 
importance of COVID-19 diagnosis. Our results point 
to a unique, pixel-level signature within the COVID-19 

image. Although the exact mechanism of distinction is 
unknown, the heatmap results suggest that subvisible vari-
ations in the pleural line itself is most active in driving 
the model’s performance. The value of Grad-CAM heat-
maps in explaining DL work on LUS has recently been 
highlighted by other experts in the field.31 The precise 
taxonomical implications of our findings, whether they 
are driven by COVID-19, coronaviruses or viruses a whole, 
will require additional research.

Our study has some important limitations. The first 
relates to the opaqueness that is implicit to deep neural 
networks. Despite using Grad-CAM, the decisions by the 
trained model are not outwardly justified and we are 
unable to critique its methods and must trust its predic-
tions. Our benchmarking survey did not exactly replicate 
the questions posed to our neural network which made 
our statistical analysis more complex than it might have 
needed to be otherwise. The other limitations of our 
study are related to the data. Although our model perfor-
mance signal was strong, the addition of further training 
data can only aid with generalisability of the model. 
Further, as our data were not prospectively acquired, 
we lacked the ability to standardise its characteristics, 
resulting in heterogeneous imaging properties. The use 
of non-standard imaging depths and imaging frequencies 
produces sufficient heterogeneity which, combined with 
the inability to precisely audit the learning points of the 
CNN, does introduce the risk that the basis of our results 
could be driven by these variations rather than the vari-
ations in B line artefacts. Given that heterogeneous data 
can introduce such strong bias to model performance, 
a proposed pathway for standardised LUS image acqui-
sition may serve as a roadmap for future DL work.32 By 
setting standards, including imaging sets, shared inter-
national database, standard LUS interpretation scores 
and the use of linear or convex ultrasound transducers 
(rather than phased array, which was used predominantly 
in our work and is common in North America) will mini-
mise bias and enrich the results of future scholarship in 
DL and LUS. Lastly, our data were all from hospitalised 
patients and our results may not generalise to those who 
are less ill.

CONCLUSIONS
With strong performance in distinguishing LUS images of 
COVID-19 from mimicking pathologies, a trained neural 
network exceeded human interpretation ability and 
raises the possibility of disease-specific, subvisible features 
contained within LUS images. To confirm these findings, 
research using homogeneous, well-labelled, multicentre 
data is indicated.
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