

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3S)-14,16-Dihydroxy-3-methyl-3,4,5,6,9,10,11,12-octahydro-1*H*-2benzoxacyclotetradecine-1,7(8*H*)-dione (zearalanone) monohydrate

Sarah Drzymala,* Werner Kraus, Franziska Emmerling and Matthias Koch

BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 Berlin, Germany

Correspondence e-mail: sarah.drzymala@bam.de

Received 11 April 2012; accepted 23 April 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.134; data-to-parameter ratio = 20.6.

The absolute configuration of the title compound, $C_{18}H_{24}O_5 \cdot H_2O$, was not been determined by anomalousdispersion effects, but has been assigned by reference to an unchanging chiral centre in the synthetic procedure. Intramolecular $O-H \cdots O$ hydrogen bonds stabilize the molecular conformation. In the crystal, $O-H \cdots O$ hydrogen bonds link the main molecules and the water molecules, forming an infinite three-dimensional network.

Related literature

For the preparation of zearalanone from natural zearalenone, see: Urry *et al.* (1966). For the crystal structures of zearalenone and its derivatives, see: Panneerselvam *et al.* (1996); Gelo-Pujić *et al.* (1994); Zhao *et al.* (2008). For the estrogenic and anabolic effects of zearalenone and its derivatives, see: Mirocha *et al.* (1968). For the exploitation of zearalanone as an internal standard, see: Berthiller *et al.* (2005); Maragou *et al.* (2008); Ren *et al.* (2007); Shin *et al.* (2009).

Experimental

a = 8.2727 (11) Å
b = 24.579 (3) Å
c = 9.3703 (14) Å

V = 1905.3 (5) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.151, T_{max} = 0.477$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.134$ S = 0.90 4626 reflections 225 parameters3 restraints $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.45 \times 0.25 \times 0.1 \text{ mm}$

organic compounds

20473 measured reflections 4626 independent reflections 2870 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.109$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4A…O6	0.82	1.87	2.693 (2)	176
$O5-H5A\cdots O2$	0.82	1.86	2.581 (2)	147
$O6-H6C\cdots O3^{i}$	0.96 (2)	1.85 (2)	2.810 (3)	178 (3)
$O6-H6D\cdots O5^{ii}$	0.96 (2)	1.95 (2)	2.887 (2)	164 (2)
	-		_	

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 2, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{5}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Dr Robert Köppen from the Federal Institute for Materials Research and Testing (BAM) for his assistance in obtaining zearalanone crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2544).

References

- Berthiller, F., Schuhmacher, R., Buttinger, G. & Krska, R. (2005). J. Chromatogr. A, 1062, 209–216.
- Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gelo-Pujić, M., Antolić, S., Kojić-Prodić, B. & Šunjić, V. (1994). *Tetrahedron*, 50, 13753–13764.
- Maragou, N. C., Rosenberg, E., Thomaidis, N. S. & Koupparis, M. A. (2008). J. Chromatogr. A, 1202, 47–57.
- Mirocha, C. J., Christensen, C. M. & Nelson, G. H. (1968). Cancer Res. 28, 2319–2322.
- Panneerselvam, K., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 3095–3097.
- Ren, Y., Zhang, Y., Shao, S., Cai, Z., Feng, L., Pan, H. & Wang, Z. (2007). J. Chromatogr. A, 1143, 48–64.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shin, B. S., Hong, S. H., Hwang, S. W., Kim, H. J., Lee, J. B., Yoon, H. S., Kim do, J. & Yoo, S. D. (2009). *Biomed. Chromatogr.* 23, 1014–1021.
- Urry, W. H., Wehrmeister, H. L., Hodge, E. B. & Hidy, P. H. (1966). *Tetrahedron Lett.* **7**, 3109–3114.
- Zhao, L.-L., Gai, Y., Kobayashi, H., Hu, C.-Q. & Zhang, H.-P. (2008). Acta Cryst. E64, 0999.

supplementary materials

Acta Cryst. (2012). E68, o1577 [doi:10.1107/S1600536812018168]

(3*S*)-14,16-Dihydroxy-3-methyl-3,4,5,6,9,10,11,12-octahydro-1*H*-2-benzoxacyclotetradecine-1,7(8*H*)-dione (zearalanone) monohydrate

Sarah Drzymala, Werner Kraus, Franziska Emmerling and Matthias Koch

Comment

Zearalanone (ZAN) is a semisynthetic resorcylic acid lactone (RAL) belonging to the group of Zearalenone (ZEN) analoga. ZAN was first prepared by catalytic hydrogenation of the double bond between C11 and C12 of natural ZEN (Urry *et al.*, 1966).

ZEN is a well known crop contaminant produced by a variety of *Fusarium* fungi. Its crystal structure was elucidated by Panneerselvam and colleagues (1996). Since the first isolation of ZEN from Fungi, a range of structurally closely related analoga have been isolated or prepared from ZEN (Gelo-Pujić *et al.*, 1994, Zhao *et al.*, 2008).

These RALs exhibit interesting estrogenic and anabolic effects due to their coupling with the estrogenic receptors alpha and beta (Mirocha *et al.*, 1968). Hence, ZAN was patented as a growth promoter in cattle as early as 1966 (U. S. P., 3239354). Furthermore, ZAN is not occurring in food, wherefore it was exploited as an internal standard for ZEN and its metabolites (Berthiller *et al.*, 2005, Maragou *et al.*, 2008, Ren *et al.*, 2007, Shin *et al.*, 2009).

The compound crystallizes in the orthorhombic space group $P2_12_12_1$. The compound has a macrocyclic structure. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1. The absolute configuration could not be defined confidently based on the single-crystal diffraction data. The isomeric purity of the title compound was confirmed by ¹H-NMR, HPLC-DAD and –MS/MS data. Besides the intramolecular hydrogen bonds between O5—H5A and O2, each molecule is connected to three adjacent water molecules *via* intermolecular hydrogen bonds (see dashed red bonds in Fig. 2). As a result a three dimensional network is formed.

Experimental

Zearalanone was obtained from Toronto Research Chemicals (Canada, purity 98.0%). 5 mg (15.6 μ mol) were weighed in a 1.5 ml HPLC glass vial and solved in 0.5 ml DCM. Subsequently, 0.3 ml of *n*-Hexane were added. Colorless crystals of the title compound were formed after 7 days of slow solvent evaporation at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}$ (C) for aromatic 0.98 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH, 0.97 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂, 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms, and 0.82 Å, $U_{iso} = 1.5U_{eq}$ (C) for hydroxyl groups. The water hydrogen atoms were treated independently. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details

Data collection: *APEX2* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97*

(Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Figure 2

View of the unit cell of the title compound, showing the hydrogen-bonded network. Hydrogen bonds are drawn as dashed red lines.

(3*S*)-14,16-Dihydroxy-3-methyl-3,4,5,6,9,10,11,12-octahydro-1*H*-2- benzoxacyclotetradecine-1,7(8*H*)-dione monohydrate

Crystal data	
$C_{18}H_{24}O_5 \cdot H_2O$	Hall symbol: P 2ac 2ab
$M_r = 338.39$	a = 8.2727 (11) Å
Orthorhombic, $P2_12_12_1$	<i>b</i> = 24.579 (3) Å

c = 9.3703 (14) Å $V = 1905.3 (5) \text{ Å}^3$ Z = 4 F(000) = 728 $D_x = 1.180 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.151, T_{\max} = 0.477$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.134$

4626 reflections

225 parameters

direct methods

3 restraints

S = 0.90

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.051$

Cell parameters from 5584 reflections $\theta = 2.3-25.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.45 \times 0.25 \times 0.1 \text{ mm}$

20473 measured reflections 4626 independent reflections 2870 reflections with $I > 2\sigma(I)$ $R_{int} = 0.109$ $\theta_{max} = 28.2^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -32 \rightarrow 23$ $l = -12 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0708P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.02619 (16)	0.98111 (5)	0.36315 (17)	0.0478 (4)	
O2	-0.16664 (17)	1.05917 (5)	0.35375 (17)	0.0554 (4)	
03	0.1136 (3)	0.77977 (7)	0.4127 (2)	0.0839 (6)	
O4	0.5417 (2)	1.15308 (6)	0.4798 (2)	0.0680 (5)	
H4A	0.5221	1.1805	0.5264	0.102*	
05	-0.03447 (19)	1.14487 (6)	0.46197 (19)	0.0616 (4)	
H5A	-0.1084	1.1253	0.4345	0.092*	
C1	-0.0353 (2)	1.03555 (8)	0.3654 (2)	0.0425 (5)	
C2	-0.2267 (3)	0.95504 (10)	0.1831 (2)	0.0589 (6)	
H2A	-0.2494	0.9924	0.1610	0.088*	

H2B	-0.3218	0.9335	0.1667	0.088*
H2C	-0.1406	0.9422	0.1232	0.088*
C3	-0.1771 (2)	0.95029 (8)	0.3378 (2)	0.0455 (5)
H3A	-0.2632	0.9647	0.3988	0.055*
C4	-0.1378 (3)	0.89190 (8)	0.3826 (2)	0.0505 (5)
H4B	-0.2274	0.8687	0.3553	0.061*
H4C	-0.0435	0.8799	0.3299	0.061*
C5	-0.1054 (3)	0.88393 (8)	0.5415 (2)	0.0552 (5)
H5B	-0.2021	0.8935	0.5945	0.066*
H5C	-0.0201	0.9086	0.5708	0.066*
C6	-0.0556 (3)	0.82491 (9)	0.5808 (3)	0.0654 (7)
H6A	-0.0491	0.8215	0.6837	0.078*
H6B	-0.1377	0.7998	0.5470	0.078*
C7	0.1051 (3)	0.80991 (8)	0.5160 (3)	0.0589 (6)
C8	0.2570 (3)	0.83280 (9)	0.5834 (3)	0.0615 (6)
H8A	0.2925	0.8081	0.6578	0.074*
H8B	0.2305	0.8672	0.6284	0.074*
C9	0.3968 (3)	0.84196 (8)	0.4802 (3)	0.0694 (7)
H9A	0.4214	0.8079	0.4328	0.083*
H9B	0.4916	0.8526	0.5344	0.083*
C10	0.3630 (3)	0.88553 (8)	0.3663 (3)	0.0606 (6)
H10A	0.4530	0.8861	0.3000	0.073*
H10B	0.2675	0.8749	0.3132	0.073*
C11	0.3374 (3)	0.94306 (7)	0.4230 (2)	0.0507 (5)
H11A	0.4313	0.9536	0.4786	0.061*
H11B	0.2447	0.9431	0.4863	0.061*
C12	0.3099 (3)	0.98564 (7)	0.3038 (2)	0.0464 (5)
H12A	0.4046	0.9868	0.2428	0.056*
H12B	0.2187	0.9744	0.2458	0.056*
C13	0.4138 (3)	1.07391 (8)	0.3932 (2)	0.0477 (5)
H13A	0.5159	1.0599	0.3737	0.057*
C14	0.4003 (3)	1.12590 (8)	0.4520 (2)	0.0510 (5)
C15	0.2481 (3)	1.14844 (8)	0.4758 (2)	0.0516 (5)
H15A	0.2387	1.1831	0.5144	0.062*
C16	0.1105 (3)	1.11881 (8)	0.4414 (2)	0.0463 (5)
C17	0.1200 (2)	1.06443 (7)	0.3887 (2)	0.0410 (5)
C18	0.2776 (2)	1.04239 (7)	0.3628 (2)	0.0415 (4)
O6	0.4912 (3)	1.24388 (7)	0.6343 (2)	0.1064 (8)
H6C	0.458 (5)	1.2351 (13)	0.730 (2)	0.162 (17)*
H6D	0.484 (5)	1.2781 (8)	0.585 (3)	0.142 (14)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0409 (7)	0.0411 (7)	0.0614 (9)	0.0008 (6)	-0.0041 (7)	0.0008 (7)
O2	0.0449 (8)	0.0494 (7)	0.0720 (10)	0.0083 (6)	0.0012 (8)	0.0019 (7)
03	0.1077 (16)	0.0612 (10)	0.0827 (13)	0.0028 (10)	-0.0138 (12)	-0.0180 (10)
O4	0.0628 (10)	0.0552 (9)	0.0859 (13)	-0.0091 (8)	-0.0132 (9)	-0.0058 (9)
O5	0.0568 (9)	0.0424 (7)	0.0856 (12)	0.0099 (7)	0.0087 (9)	-0.0011 (8)
C1	0.0454 (11)	0.0442 (10)	0.0379 (10)	0.0057 (9)	0.0052 (10)	0.0050 (9)

C2	0.0575 (14)	0.0706 (14)	0.0487 (12)	0.0015 (11)	-0.0035 (11)	-0.0040 (11)
C3	0.0379 (10)	0.0493 (10)	0.0493 (12)	-0.0020 (9)	0.0003 (10)	-0.0056 (9)
C4	0.0491 (13)	0.0473 (11)	0.0551 (13)	-0.0063 (9)	-0.0022 (11)	-0.0060 (9)
C5	0.0613 (14)	0.0511 (11)	0.0531 (13)	-0.0053 (11)	0.0037 (13)	0.0009 (10)
C6	0.0741 (16)	0.0544 (13)	0.0676 (16)	-0.0143 (12)	-0.0036 (14)	0.0111 (11)
C7	0.0837 (17)	0.0355 (9)	0.0574 (14)	-0.0020 (11)	-0.0090 (14)	0.0074 (10)
C8	0.0753 (16)	0.0467 (11)	0.0627 (15)	0.0016 (11)	-0.0158 (14)	0.0093 (11)
C9	0.0693 (16)	0.0412 (11)	0.098 (2)	0.0113 (11)	0.0005 (16)	0.0084 (12)
C10	0.0639 (15)	0.0454 (11)	0.0725 (16)	0.0075 (10)	0.0122 (14)	0.0020 (11)
C11	0.0510 (12)	0.0391 (10)	0.0622 (13)	0.0030 (9)	-0.0041 (11)	0.0017 (9)
C12	0.0448 (11)	0.0426 (10)	0.0517 (12)	0.0038 (9)	0.0053 (10)	-0.0010 (9)
C13	0.0441 (11)	0.0449 (10)	0.0541 (13)	0.0032 (9)	-0.0006 (10)	0.0044 (9)
C14	0.0553 (13)	0.0465 (10)	0.0511 (13)	-0.0085 (10)	-0.0081 (12)	0.0078 (10)
C15	0.0659 (14)	0.0341 (9)	0.0548 (13)	-0.0002 (10)	0.0007 (12)	-0.0004 (9)
C16	0.0535 (12)	0.0386 (9)	0.0469 (12)	0.0071 (9)	0.0053 (11)	0.0091 (9)
C17	0.0452 (11)	0.0381 (9)	0.0398 (11)	0.0024 (8)	0.0015 (10)	0.0070 (8)
C18	0.0476 (11)	0.0379 (9)	0.0391 (10)	0.0032 (8)	0.0003 (10)	0.0078 (8)
06	0.187 (3)	0.0491 (10)	0.0833 (15)	-0.0237 (12)	0.0217 (17)	0.0017 (10)

Geometric parameters (Å, °)

01—C1	1.340 (2)	C8—C9	1.524 (4)
O1—C3	1.479 (2)	C8—H8A	0.9700
O2—C1	1.237 (2)	C8—H8B	0.9700
O3—C7	1.221 (3)	C9—C10	1.538 (3)
O4—C14	1.372 (3)	С9—Н9А	0.9700
O4—H4A	0.8200	С9—Н9В	0.9700
O5—C16	1.373 (3)	C10-C11	1.525 (3)
O5—H5A	0.8200	C10—H10A	0.9700
C1—C17	1.484 (3)	C10—H10B	0.9700
C2—C3	1.511 (3)	C11—C12	1.548 (3)
C2—H2A	0.9600	C11—H11A	0.9700
C2—H2B	0.9600	C11—H11B	0.9700
C2—H2C	0.9600	C12—C18	1.524 (3)
C3—C4	1.531 (3)	C12—H12A	0.9700
С3—НЗА	0.9800	C12—H12B	0.9700
C4—C5	1.525 (3)	C13—C18	1.396 (3)
C4—H4B	0.9700	C13—C14	1.396 (3)
C4—H4C	0.9700	C13—H13A	0.9300
C5—C6	1.552 (3)	C14—C15	1.394 (3)
С5—Н5В	0.9700	C15—C16	1.389 (3)
С5—Н5С	0.9700	C15—H15A	0.9300
C6—C7	1.507 (4)	C16—C17	1.427 (3)
С6—Н6А	0.9700	C17—C18	1.433 (3)
С6—Н6В	0.9700	O6—H6C	0.960 (10)
С7—С8	1.515 (3)	O6—H6D	0.961 (10)
C1—O1—C3	117.78 (15)	H8A—C8—H8B	107.5
C14—O4—H4A	109.5	C8—C9—C10	113.91 (19)
С16—О5—Н5А	109.5	С8—С9—Н9А	108.8

O2—C1—O1	121.12 (18)	С10—С9—Н9А	108.8
O2—C1—C17	123.31 (17)	С8—С9—Н9В	108.8
O1—C1—C17	115.53 (16)	С10—С9—Н9В	108.8
C3—C2—H2A	109.5	H9A—C9—H9B	107.7
C3—C2—H2B	109.5	C11—C10—C9	115.4 (2)
H2A—C2—H2B	109.5	C11-C10-H10A	108.4
C3—C2—H2C	109.5	C9—C10—H10A	108.4
H2A—C2—H2C	109.5	C11-C10-H10B	108.4
H2B—C2—H2C	109.5	C9—C10—H10B	108.4
O1—C3—C2	110.14 (18)	H10A—C10—H10B	107.5
O1—C3—C4	104.88 (15)	C10-C11-C12	113.32 (19)
C2—C3—C4	113.18 (18)	C10-C11-H11A	108.9
O1—C3—H3A	109.5	C12—C11—H11A	108.9
С2—С3—НЗА	109.5	C10-C11-H11B	108.9
С4—С3—НЗА	109.5	C12—C11—H11B	108.9
C5—C4—C3	115.21 (17)	H11A—C11—H11B	107.7
C5—C4—H4B	108.5	C18—C12—C11	112.51 (17)
C3—C4—H4B	108.5	C18—C12—H12A	109.1
C5—C4—H4C	108.5	C11—C12—H12A	109.1
C3—C4—H4C	108.5	C18—C12—H12B	109.1
H4B—C4—H4C	107.5	C11—C12—H12B	109.1
C4—C5—C6	113.45 (18)	H12A—C12—H12B	107.8
С4—С5—Н5В	108.9	C18—C13—C14	121.60 (19)
С6—С5—Н5В	108.9	C18—C13—H13A	119.2
C4—C5—H5C	108.9	C14—C13—H13A	119.2
С6—С5—Н5С	108.9	O4—C14—C15	123.12 (18)
H5B—C5—H5C	107.7	O4—C14—C13	116.9 (2)
C7—C6—C5	111.56 (19)	C15—C14—C13	119.94 (19)
С7—С6—Н6А	109.3	C16-C15-C14	119.67 (18)
С5—С6—Н6А	109.3	C16—C15—H15A	120.2
С7—С6—Н6В	109.3	C14—C15—H15A	120.2
С5—С6—Н6В	109.3	O5-C16-C15	116.03 (17)
H6A—C6—H6B	108.0	O5-C16-C17	122.26 (19)
O3—C7—C6	121.3 (2)	C15—C16—C17	121.71 (19)
O3—C7—C8	120.5 (3)	C16—C17—C18	117.60 (18)
C6—C7—C8	118.2 (2)	C16—C17—C1	116.80 (17)
C7—C8—C9	114.8 (2)	C18—C17—C1	125.60 (16)
С7—С8—Н8А	108.6	C13—C18—C17	119.32 (17)
С9—С8—Н8А	108.6	C13—C18—C12	116.14 (17)
С7—С8—Н8В	108.6	C17—C18—C12	124.54 (17)
C9—C8—H8B	108.6	H6C—O6—H6D	128.6 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O4—H4 <i>A</i> …O6	0.82	1.87	2.693 (2)	176
O5—H5 <i>A</i> ···O2	0.82	1.86	2.581 (2)	147

supplementary materials

O6—H6 <i>C</i> ···O3 ⁱ	0.96 (2)	1.85 (2)	2.810 (3)	178 (3)	
O6—H6 <i>D</i> …O5 ⁱⁱ	0.96 (2)	1.95 (2)	2.887 (2)	164 (2)	

Symmetry codes: (i) -x+1/2, -y+2, z+1/2; (ii) x+1/2, -y+5/2, -z+1.