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Tumor-mediated regulation of the host immune system involves an intricate signaling

network that results in the tumor’s inherent survival benefit. Myeloid cells are central

in orchestrating the mechanisms by which tumors escape immune detection and

continue their proliferative programming. Myeloid cell activation has historically been

classified using a dichotomous system of classical (M1-like) and alternative (M2-like)

states, defining general pro- and anti-inflammatory functions, respectively. Explosions

in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro-

and anti-inflammatory states with different combinations of tissue- and disease-specific

phenotypic and functional markers. These new definitions have allowed researchers

to target specific subsets of disease-propagating myeloid cells in order to modify or

arrest the natural progression of the associated disease, especially in the context of

tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor

initiation and maintenance, and strategies to reprogram their phenotypic and functional

fate, thereby disabling the network that benefits tumor survival.
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INTRODUCTION

In recent decades the traditional view of tumor development and metastasis has evolved to include
new and emerging cell types, extrinsic to the tumor itself. Over time it has become apparent that
tumors are composed of many cell types from different origins, all with varying functions. By
defining the tumor as a distinct organ, cell populations can be broadly separated into two categories:
parenchymal tumor cells and stromal tumor-associated cells. Tumor-associated cells can originate
either from the tissue in which the malignancy arises, or they can migrate from the periphery
and infiltrate the tumor after it forms. The tumor itself and the tumor-associated cells together
comprise what is termed the tumor microenvironment (1). When the tumor microenvironment
being discussed relates to the influx and function of the immune system, it is termed the
tumor immune microenvironment (TIME) (2). Therapies targeting different components of
the tumor microenvironment, such as neovascularization, cellular proliferation, growth factors,
extracellular matrix proteins, and more, have all been utilized to regulate tumor growth, each with
various levels of success (3). More recently, targeting the immune component of the malignancy,
deemed immunotherapy, has shown great promise and curative potential in several tumors (4).
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Fundamentally, the goal of immunotherapy is to modulate the
mechanisms that tumors use to suppress the immune response.
The ability of a tumor to evade immune mediated killing
is one of the hallmarks of cancer development, highlighting
the importance of the immune response in preventing cancer
formation (1). Classically, the immune system is divided into two
branches: adaptive and innate. The innate division determines
how to respond to danger by sensing the environment with an
array of pattern recognition receptors and cytokine receptors that
allow them to sense tissue damage, pathogens, and inflammation.
The defining feature of the adaptive branch is its ability to
respond in an antigen specific manner and memory responses
(5). The importance of the innate immune system in regulating
malignancies has come into sharper focus with the discovery of
immunomodulatory myeloid cells residing within and around
tumors. These myeloid cells are known to play a central role
in suppressing adaptive immunity and are comprised of diverse
clusters that fulfill various roles in promoting the viability of
the developing malignancy. Two central groups of suppressive
myeloid cells are the tumor-associated macrophages (TAMs)
and myeloid-derived suppressor cells (MDSCs) (6). Initially
called natural suppressor cells, these cells were shown to inhibit
cytotoxic lymphocyte activity and support tumor growth (7). A
body of work has shown that tumor development frequently
causes defects in the differentiation and activity of myeloid cells,
ultimately leading to a functional state that favors the tumor
progression. Given the massive heterogeneity of infiltrating
leukocytes found in tumors, and the striking difference in the
TIME seen between different tumor types, there is a need to
better understand the mechanisms contributing to this overall
immune suppressive environment at the single cell and high-
dimensional level. Advances in single-cell RNA sequencing
(scRNAseq) and mass cytometry have enabled these types of
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studies and comparisons and are giving rise to new generations of
data that may provide greater understanding of the mechanisms
leading to immune suppression, TAM and MDSC polarization,
and immune evasion.

Studies testing the potential of modulating the TIME via
altering cellular recruitment, differentiation, proliferation,
and survival are currently underway. These are reviewed
elsewhere (8–11). Here, we discuss tumor associated suppressive
myeloid cells, analyze recent findings obtained through high
resolution dissection of their phenotypes, and highlight
potential reprogramming strategies to orient cells toward
anti-tumor functionality.

THE PLAYERS: TAMs AND MDSCs

In the 1960’s, it was first observed that tumor bearing mice
developed a leukemoid reaction with expanded myeloid cell
populations in both the circulation and in the tumor. This
correlated with enhanced tumor growth and these cells were
subsequently shown to suppress cytotoxic T cell activity (7).
Over time additional research has demonstrated that these
myeloid cells exist as two separate populations: TAMs and
MDSCs (12). Studies seeking to understand the factors that led
to the differentiation of these populations demonstrated that
tumor-associated macrophages develop from both tissue resident
and circulating monocyte populations (13). New myeloid cells
recruited from the bone marrow exhibit different programming
from embryonically derived tissue resident macrophages (TRMs)
(14), and commonly represent the definition of “tumor-
associated macrophage” populations (15, 16), albeit not without
debate, depending on tumor model (17–19).

Myeloid-Derived Suppressor Cells
Correctly identifying MDSCs in vivo remains challenging despite
decades of intense study. MDSCs are commonly identified in
tumor bearing mice by the Gr-1 surface marker, and recently,
CD84 has arrived into the spotlight as another potential marker
in murine models. There is potential for application of CD84 to
differentiate MDSCs from conventional myeloid cells in human
studies, but this has yet to be validated (20). Despite shortcomings
in MDSC phenotypic definitions, several surface markers are
employed in the literature with varying degrees of success and
have been discussed elsewhere (12, 21). Thus, the gold standard
and only reliable method to correctly identify MDSCs is to
evaluate their ability to suppress CD3-mediated T cell activation
and function in vitro (22–24).

MDSC recruitment and maintenance within the tumor tissue
is thought to be more complex than that for TAMs, in part
because of the hypothesized signaling required to maintain
MDSCs in an immature state. This is thought to be accomplished
by a combination of multiple growth factors and polyunsaturated
fatty acids (25). Supplementary inflammatory signals generated
by the tumor traps these immature cells in a pathogenic
suppressive state (25, 26). A combination of TLR4/IFNγ/GM-
CSF signaling and activation of intracellular STAT3 is needed
to control the development and function of MDSCs (27–30).
MDSCs are typically replenished by bone marrow precursors
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and the spleen functions as their reservoir (31), but it is
unclear as to how extramedullary hematopoiesis contributes to
their replenishment.

A growing body of evidence supports that MDSCs retain
some ability to polarize to a cell displaying more characteristics
of typical monocytes (32, 33). Genetic and pharmacologic
methods can promote maturation or polarization in MDSCs,
with multiple groups reporting that M-MDSCs can be
functionally characterized into not only suppressive states,
but also into reactive states (32, 34, 35). Transcriptional
programs initiated by c-EBPβ, STAT3, PU.1, IRF8, and
RORC1, among others, regulate the suppressive activities
of MDSCs (36). Blocking these programs to force MDSCs
into an activating, rather than suppressive role, is a potential
therapeutic strategy, with several mechanisms to do so (37).
MDSCs represent just one of the suppressive populations in
the TIME; quantifying the phenotypes and functional states of
the environment at the single cell level will offer more clues for
therapeutic applications.

Tumor-Associated Macrophage
Tumor-associated macrophages comprise the macrophage
populations located in and around a solid tumor (38).
Originating from both tissue resident macrophages and
circulating monocytes, TAMs are also known to perform a
prominent role in modulating immune responses to tumors
(39). TAMs can arise from peripheral monocytes in response to
a combination of CCL2 and CSF1 produced by the tumor (27–
30, 40, 41). Once monocytes reach the tumor site, they follow a
maturation course that leads to their TAM finale (42, 43), under
the influence of tumor factors, local cytokine milieu, and integrin
signaling (44). Other than replenishment of TAM populations,
the role of undifferentiated monocytes within the TIME has not
been clearly defined at the single-cell level. Additional important
signaling pathways resulting in macrophage recruitment and
subsequent TAM differentiation include VEGF, IL-4, CCL2,
CCL18, and CCL9 (45). TAMs further mobilize additional TAMs
to the tumor niche by signaling to the bone marrow via CCL8
(14) to replenish and maintain their populations, although an
undefined mechanism for the transition of TRMs to TAMs has
been observed (15). Through a combination of TLR and cytokine
signaling, infiltrating MDSCs can also differentiate into TAMs
and function as a source of TAM replenishment (46–49).

TAMs are identified and distinguished from MDSCs by
the presence of characteristic surface markers that are shared
with mature macrophages (22). Frequently described as
M2-like macrophages, TAMs have distinct phenotypic and
transcriptional characteristics that can be used to distinguish
them from conventional M2-macrophages. Additionally, TAMs
demonstrate marked immunosuppressive functionality not seen
in the M2 macrophage population (50).

TRMs have an interesting role in tumorigenesis. Because
they develop with the tissue, they are present long before
any noticeable malignancy, but are thought to contribute to
the early stages of tumor development (2). The contribution
of various myeloid cell ontologies to tumor development and
immunosuppression is highly debated (51), although myeloid

cells recruited from the periphery seemingly have a more
important role in propagating the growth and invasiveness
of malignancies (17, 52). However, this might be a tumor-
specific phenomenon, as evidence from breast cancer patients
and murine models shows proliferating resident macrophages in
the tumor contributing to the bulk of the myeloid compartment
(19). Interestingly, there is some evidence that both populations
may also play distinct roles in supporting tumor growth, and
their origins bias their transcriptional networks (53). Therefore,
it is possible that the developing tumor modulates both the tissue
resident and infiltrating myeloid cell populations concurrently.

SUPPRESSIVE MECHANISMS

The mechanisms of immunosuppression employed by TAMs
and MDSCs are targeted toward inhibiting the activity of
the adaptive immune system, namely T-cells, and NK cells.
Suppressive myeloid cells do so by either direct cell-cell
interaction with target cells, or through secreted factors.
The mechanisms to suppress anti-tumor immune responses
in vivo and have been extensively reviewed elsewhere (45,
50, 54–56). Briefly, they utilize four distinct functions to
suppress T-cell mediated immunity: (1) signaling via the
stereotypical inhibitory receptors PD-1 and CTLA-4 mediate
leukocyte apoptosis and anergy (57–61); (2) depriving the
local environment of nutrients necessary for T-cell activation
and function (62–67); (3) generation of nitric oxygen and
reactive nitrogen species, by iNOS expression, that induce T-
cell exhaustion (12, 23, 62, 68, 69); (4) production of reactive
oxygen species (12, 70). These mechanisms ultimately lead to
a decrease in the effect and numbers of anti-tumor T-cells
while enhancing the populations of tumor supporting regulatory
T-cells (23, 24, 71, 72).

Suppressive Programming
Stereotypically, STAT and PPAR signaling pathways are
independently responsible for programming that drives
suppressive functionality of myeloid cells (73, 74), but there are
studies that describe their joint interaction in programming as
well (75). STAT3 signaling in myeloid cells can be initiated by
tumor derived factors, including IL-10 and lactate. Activation
of STAT3 typically results in activation of SOCS to block
intracellular inflammation cascades and initiate an “M2-like”
state, complete with functional and phenotypical markers, such
as ARG1 and CD206. More importantly, STAT3 activation also
results in the production of factors that benefit tumor viability
and invasiveness, such as VEGF, matrix metalloproteases,
and IDO (76–78). With respect to MDSCs, STAT3 has been
identified as a crucial factor for both their development and
function. STAT3 is capable of modulating gene expression of
anti-apoptotic proteins Bcl-xL, c-Myc, Cyclin D1, and others to
promote cell survival. STAT3 also engages programs that prevent
monocytic lineages from terminal differentiation to maintain an
immature phenotype, a hallmark of M-MDSCs (27). Supporting
the central role STAT3 plays in MDSC function, inhibition or
deletion of STAT3 abrogates the function and development of
MDSCs in vivo (79, 80).
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STAT6 signaling also promotes a suppressive program
in myeloid cells. IL-4 and IL-13 induce a cascade of
phosphorylation events that eventually lead to phosphorylation
and homodimerization of STAT6, translocation to the nucleus,
and binding to the promoters for various “M2-like” genes, such as
ARG1 and CD206. As is the case for STAT3, STAT6 can also bind
to IFNγ-induced activation sites and repress the transcription
of associated genes (81). One of the transcriptional targets of
STAT6 is PPARγ, which augments the effect of the suppressive
programming set in place by STAT6 (75, 82). Moreover, PPARγ

also increases oxidative pathways that result in increased ROS
production (83), among other suppressive pathways (84).

GCN2, an intracellular nutrient sensor, also regulates
macrophage function and promotes the pro-tumorigenic
phenotype of both TAMs and MDSCs by enhancing translation
of the CREB-2/ATF4 transcriptional factor responsible for
promoting their differentiation (64). Fundamentally the
changes induced by these altered differentiation pathways
results in a pro-tumorigenic response rather than mediating
tumor elimination.

TUMOR-ASSOCIATED MYELOID CELL
SUPPORT OF TUMOR GROWTH &
PROGRESSION

In addition to their role in aiding tumor immune evasion,
TAMs and MDSCs also help orchestrate tumor progression.
MDSCs remodel the extracellular matrix and promote blood
flow to increase nutrient delivery via the production of
various metalloproteases, cathepsins, and pro-angiogenic factors
(24, 69). M-CSF can promote recruitment of peripheral
myeloid cells to the tumor site and differentiate them into
directors of angiogenesis (85). This distinct proangiogenic TAM
subset, identified by surface TIE2 expression, secretes classic
proangiogenic factors, such as VEGF proteins and SEMA4D
(86, 87). These factors simultaneously retain anti-inflammatory
functionality via autocrine and paracrine signaling through
TIE2 (88). The combination of neovascularization and immune
suppression can promote early dissemination of malignant cells
(89), potentially through the breakdown of cadherin junctions
between vascular endothelial cells (90). In some cases, the
mobilization of TIE2+ macrophages is initialized as a response
to chemotherapy, highlighting the complex systemic reaction
to therapy.

Myeloid cell support of tumoral fitness isn’t limited to the
primary site of malignancy, as subsets of patrolling monocytes
have been found to increase angiogenesis to distal metastatic sites
(19).MDSCs can serve a similar role and “fertilize the soil” in pre-
metastatic sites for malignant cells to settle. Through undefined
mechanisms, MDSCs can be recruited to a premetastatic niche
before TAMs and establish a nutrient-rich, vascularized, and
immunosuppressive environment for tumors to seed (91, 92).
Along the same lines, a subset of CCR2+ myeloid cells has
also been associated with primary tumor recurrence (19), or re-
fertilizing the soil for any remaining local or circulating tumor
cells to grow.

TAM/MDSC IDENTIFICATION ACROSS
TUMOR TYPES

Identification of cells implicated in facilitating cancer growth is
imperative for several reasons. Despite established knowledge
that TAM/MDSC infiltration is associated with worse prognosis
(93), it is clear that not all myeloid cells in the tumor
microenvironment directly benefit the growing malignancy.
Finding a defined population specifically associated with tumor
aggressiveness or invasiveness can serve as a prognostic marker.
Furthermore, chemotherapy is not a “silver-bullet” to diminish
or deplete malignant cells. It results in changes to the local and
distant environment that are not easy to predict without studying
the effects in vivo or ex vivo (40). Beneficial off-target effects
are possible, such as concurrently depleting myeloid cells from
the tumor microenvironment (94). Some therapies, however,
can exacerbate the suppressive actions of TAMs, MDSCs, and
other local myeloid cells, reducing their in vivo efficacy (95–
97). It is also unclear as to which myeloid cell subsets are
most affected by the therapy. Defining the myeloid cell subsets
that are resistant, or even retaliatory, to a particular therapy
is crucial for response prediction. Lastly, defining the myeloid
suppressive phenotype that is most associated with malignancy
and most associated with therapy resistance brings therapeutic
efforts one step closer to targeting a specific cell cluster that
contributes to several requirements of the hallmarks of cancer
(1, 98, 99).

Historically, identification of stromal contribution was
achieved with immunohistochemistry and staining for a limited
set of markers on serial sections. This practice, however, can
be quite wasteful of precious biological specimens and data
due to the limited number of concurrent stains that can
be performed. As the definitions of all of the players in
the tumor microenvironment are expanding exponentially, an
expanded panel of markers must be employed to adequately
study the TIME. Tissue analysis at single-cell resolution is
allowing for discoveries of distinct myeloid cell phenotypes
and connecting their gene and protein expression patterns
to immunosuppressive and tumor-promoting mechanisms (98,
100). The myeloid compartment has vast heterogeneity in itself,
even within monocyte/macrophage subsets (43). Commonly
identified subsets are TAMs, monocytes, TRMs, and MDSCs.
TAMs and MDSCs are the most interesting populations, as
they seem to have the highest correlation to tumor progression
and are typically present in the greatest quantities, compared
to other immune cells (69). Within these populations are even
more complex subsets. Technologies such as scRNAseq (101)
and mass cytometry (102, 103) have created new definitions
for these populations that highlight heterogeneity previously
unappreciated by conventional flow cytometry, allowing for
discoveries of rare cell populations. These technologies have
also effectively outdated the standard classification scheme of
M1- vs. M2-like phenotypes for macrophages. Standard M1/M2-
like phenotypic markers should not be applied with absolute
exclusivity, as many of the stereotypic genes that represent
classical or alternative activation states can be co-expressed and
even correlated with each other (43). Therefore, it is crucial

Frontiers in Immunology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 1842

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Davidov et al. One Cell at a TIME

to perform deeper statistical analyses to identify these smaller
subsets that are more closely associated with the initiation,
progression, andmaintenance of themalignant niche, in addition
to patient outcomes.

In defining the PD-1/PD-L1 (104) interaction and CTLA-
4/CD80/86 (105), the search for novel immune checkpoints
broadened into identifying new mechanisms that keep the
adaptive immune cell out of the tumor environment and
immunologically ignorant (2). More recently, myeloid cells in
and around the tumor microenvironment have been recognized,
as their utility for prognostication becomes more delineated.
Generally speaking, TAMs, and MDSCs perform the same task
of nurturing tumor growth among all cancers (106). The subset
of culprit cells and the mechanisms by which they cloak or
support the cancer can range. The surface markers of TAMs
and MDSCs are not easily defined. Some markers of alternative
activation are shared among TAMs and MDSCs, such as
CD163+, CD68+ (40), or CD206+ (107), the same cells can also
express markers of classical activation, such as CD169 and CD163
(107). Additionally, TAMs and MDSCs of different malignancies
have different phenotypes, indicating differences in mechanisms
of suppression, albeit with minimal conservation. Below, we
highlight breast, lung, and central nervous system malignancies
to address the myeloid cell heterogeneity, as these are the
tumor models that have sufficient studies defining single-cell
immune populations. For quick reference, immunosuppressive
mechanisms discussed throughout the text are summarized in
Figure 1 and Table 1. We have also summarized outstanding
myeloid cell populations discussed in the text in Table 2.

Breast Malignancy
Without stratifying by breast cancer subtypes or stages,
the myeloid landscape presented by different studies shows
similarities. Notably, individual TAMs co-express both M1-like
and M2-like associated genes along the same positive correlation
trajectory (43, 107). Azizi et al. (43) identified TAM populations
from human samples that expressed both classical and alternative
activation markers, such as CCL3 and MARCO, respectively, in
addition to enrichment of signaling networks that are associated
with each of the activation states. Highlighting a potential role
for further recruitment of additional TAMs to the malignant site,
one TAM cluster in the study by Azizi et al. (43) had distinctly
enhanced expression of STAT3, B7H3, CSF1R, and CCL3. This
same cluster also had upregulated SIGLEC1, which can serve as
an independent predictor of poor prognosis [(14, 43), Supp.]. A
separate TAM cluster in the same study was enriched in PPARG
and NRP2, indicating distinct functional properties as a potential
suppressor of T-cell activity through NRP2 (43, 119). Azizi et
al. (43) further validated the individuality of the clusters and
rejected the null hypothesis of unimodality across components
that explain their variation.

Using scRNAseq information, Wagner et al. (107) detailed
TAMs and MDSCs present in human breast cancer. A unique
population of PD-L1+ TAMs and a population of MDSCs
with high expression of CD38 is also identifiable among
breast cancer samples (107). Notably, CD38 has been found
to aid the proliferation and migration of tumor cells and

is also independently associated with the establishment of
an immunosuppressive environment, even when expressed on
M-MDSCs isolated from peripheral blood (120–122). As a
note of caution, studying peripheral blood immune cells as
biomarkers for diseases comes with its own challenges, as
PBMC phenotypes don’t necessarily agree with tumor-infiltrated
immune cells (106). The complexity and heterogeneity of intra-
tumoral myeloid cell populations is not well-represented by
peripheral myeloid cells, possibly due to the effect of local
tumor-associated signaling, therefore care must be taken when
associating peripheral cells to the local disease. However, locally
expressed CD38 can bypass disinhibition from PD-1/PD-L1
targeted therapy (123).

The TAM population in breast cancer studies seems to be
the most mature cell population, defined by a signature defined
by several factors, such as TREM2, APOE, and MARCO (43).
All can be used as phenotypic markers of mature myeloid
populations, such as macrophages, but TREM2 can serve as
a functional marker of an anti-apoptotic state (124). Similar
populations of TAMs are described in other cancers later (14,
112). Several studies showed the presence of undifferentiated
monocyte populations within the breast TIME. Azizi et al. (43)
described several monocyte populations with no enrichment of
immune gene sets in addition to several other populations that
are on track to dendritic cell differentiation. Likewise, Wagner et
al. (107) described a border of monocytes to wall off the TAMs
within the tumor core.

In murine models of breast cancer by Alshetaiwi et al. (20)
MDSCs can be distinguished with scRNAseq. However, their
identification presents a sizable challenge, as they do generally do
not form distinct clusters by standard informatics analyses. With
deeper analysis, they are distinguishable from other myeloid
cell populations by their own transcriptional signature (20).
Most notable in their transcriptional signature is the dramatic
upregulation of IFITM1 and SOCS3, marking their suppressive
programming, in addition to TSPO (translocator protein)
when compared to other myeloid cell clusters, highlighting
their functional role in the TIME. TSPO is a mitochondrial
membrane protein that, when activated, results in a respiratory
burst and generates reactive oxygen species from myeloid
cells, subsequently causing inhibition of T-cell activity (125).
Unfortunately, no studies to date have evaluated the phenotypes
of individual MDSC clusters to differentiate their functional roles
in the TIME, although it is hypothesized that distinct clusters do
exist (126).

Taken together, phenotypically distinct populations of
TAMs/MDSCs have different functional responsibilities
within the TIME in breast cancer. Notably, the majority of
these suppressive cells are more mature TAMs, rather than
MDSCs. Yet to be determined is the ontogeny of TAMs,
i.e., whether they are the product of MDSC maturation or
monocyte differentiation.

Lung Malignancy
Normal lung tissue is rich in immune cells responsible
for eliminating foreign bodies and infections, therefore it
is important to segregate TAM/MDSC populations from the
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FIGURE 1 | the growing tumor itself through various combinations of ligand-receptor interactions, and can be propagated by the tumor-associated myeloid cells.

Several markers, both surface and intracellular, can be used to not only identify the individual populations of tumor-associated myeloid cells, but also as therapeutic

targets. Therapies aimed at these targets generally serve to either deplete the individual clusters of cells from the TIME, or to reprogram them from pro- to anti-tumor

states. Presented are conserved targets on MDSCs and TAMs across tumor types, although they exist in different combinations amongst various tumor-associated

clusters. The simplified cell diagram on the top presents various surface targets to reprogram (red), deplete (blue), or a combination of both (purple), tumor-associated

myeloid populations, and the simplified diagram on the bottom presents intracellular targets. While only a single cell diagram is portrayed, these strategies represent

individualized therapies in targeting specific tumor-associated myeloid cell populations. While some receptors may overlap between populations, we hypothesize that

a multifactorial approach is imperative to abolish myeloid cell support of tumor growth.

TABLE 1 | Immunosuppressive mechanisms employed by MDSCs and TAMs, as well as stereotypic programming that regulate the mechanisms.

Effect Tumor type References

Immunosuppressive mechanism

PD-1/PD-L1 T-cell exhaustion/suppression

Myeloid cell suppressive programming

Glioma, Breast, Lung (non-small cell) (45, 55, 58–61)

(108, 109)

CTLA-4/CD80/86 T-cell exhaustion Breast, Lung (45, 58, 110, 111)

B7-H3 Receptor/B7-H3 T-cell exhaustion/suppression Breast, Lung (206, 207)

ARG Environmental nutrient depletion Breast, Lung (45, 62, 63)

IDO Environmental nutrient depletion Breast, Lung (55)

NOS T-cell suppression Breast, Brain, Lung (12, 23, 45, 55, 62, 68, 69)

ROS T-cell suppression Breast, Brain, Lung (12, 55)

Immunosuppressive program

STAT Inhibition of intracellular inflammation cascade

in suppressive myeloid cells

Anti-apoptosis in suppressive myeloid cells

Breast, Brain (GBM), Lung (75–78, 81, 82)

(27, 79, 80)

PPARγ Inhibition of intracellular inflammation cascade

in suppressive myeloid cells

Metabolic reprogramming in suppressive

myeloid cells

Lung, Breast (74, 75)

(83)

normal lung myeloid populations for correct analysis. In
adenocarcinoma, TAMs may have expression networks that
make them more readily identifiable from normal myeloid cells,
but deeper analyses like scRNAseq is required in order to
differentiate their signatures and identify distinct populations
(112, 113). TAMs in a later stage of macrophage differentiation
within lung adenocarcinoma are distinguishable from resident
myeloid cells via concurrent expression of TREM2, MARCO,
and APOE, as mentioned earlier. As in other tumors, the
TAMs from early lung adenocarcinoma express M1- and M2-
like markers, including HLA-DR and CD163, respectively.
Importantly, subsets of TAM populations in non-squamous cell
lung cancer (NSCLC) show an enrichment of PPARG expression
that can initiate anti-inflammatory transcriptional networks that
propagate immune ignorance (127, 128), differentiating them
from both normal lung macrophages and peripheral myeloid
cells (106, 112, 115, 129). Zilionis et al. (106) also describe a
population of tumor-infiltrating monocytes that express anti-
inflammatory-like markers, such as LILRB2, a potent activator of
the STAT6 signaling network. As this population has comparably
low CD14 expression, we speculate that this population of
monocytes could represent newly-trafficked cells [(106), Supp.]
that display immunosuppressive functionality early in the TAM
differentiation process. This supports the notion that tumoral
recruitment of suppressive cells happens early and at a systemic
level. Our group has shown that the murine homolog to

LILRB2, PIRB, can regulate the entire network of suppressive
functionality of myeloid cells, making the expression of LILRB2
an interesting therapeutic target (130). Additionally, we have
shown that targeted therapy against LILRB2 on tumor-infiltrating
myeloid cells can reverse their suppressive fate initiated by the
malignancy and diminish lung cancer tumor burden in murine
models (131).

Tumor associated myeloid cells in lung cancer have the ability
to further recruit newmyeloid cells, as seen in other cancer types.
Lambrechts et al. (113) describe the heterogeneity of immune
cells within NSCLC, and describe a particular myeloid cell
compartment that is enriched in several genes that recruit more
immune cells to its location, such as CCL2, CCL3, and CCL8,
in addition to IDO1, IL1RN (132). The same cluster exhibits
high expression of IL4I1, NFKBIA, VISTA, and LILRB4. Like
LILRB2, LILRB4-mediated ITIM signaling has a strong effect
on the anti-inflammatory phenotype of myeloid cells (133), and
we hypothesize that LILRB4 could act as a central regulator of
the immunosuppressive cascade network in this myeloid cluster,
as Deng et al. (134) showed a significant decrease of NFKBIA
(IκB) at the protein level, following genetic ablation of LILRB4
in myeloid cells (135). The additional correlation to VISTA
within the same cluster is of particular importance, as VISTA is
proving to be an attractive target to prevent inhibition of T-cell
cytotoxicity (136). In concert, this network would presumably
directly program newly recruited myeloid cells to a suppressive
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state and add to the immunosuppressive border surrounding the
growing malignancy.

Clusters of suppressive myeloid cells can incorporate other
cell types to augment their effect. A population of macrophages
has been shown to induce T-regulatory cells to further
fortify the immune barrier to cancer recognition (115). This
macrophage cluster expresses markers of T-cell recruitment,
such as CXCL9, CXCL10, and CXCL11, but the cluster is also
enriched for anti-inflammatory-like genes, such as STAT3, CCR2,
and LILRB2 [(115), Supp.]. Most importantly, the same cluster
is extraordinarily enriched for PDL1, IL4I1, and IDO1—genes
heavily implicated in suppression of cytotoxic T-cell activity
and induction of T-regulatory cell programming (137–142).
According to Maynard et al. (115), this cell population is
expanded in patients that show progression of malignancy on
therapy, highlighting a crucial mechanism for therapy failure that
corroborates previous work (143). This demonstrates another
role of myeloid cells in tumoral viability—creating a hospitable
environment for recurrence. While the entire population of
myeloid cells is frequently targeted for cancer therapeutics (144),
it’s clear that more efficient strategies are needed. From the
study by Lambrechts et al. [(113), Supp.], there does not appear
to be any one particular myeloid cluster that has outstanding
expression of PD-L1, PD-1, or B7-H3, underscoring the relevance
of the other strategies employed by TAMs to keep the adaptive
immunity at bay.

In summary, the lung cancer studies show off the power
of deep analysis of the tumor microenvironment. Even in the
case of the TAM compartment, which is frequently depicted
as a single cell type, there is substantial heterogeneity in
cell types that seemingly assume different roles to protect
and contribute to the tumor growth. This also underlines
a key aspect of immunotherapy targeted against the tumor
microenvironment: it is unlikely a single therapeutic would have
the capability to transform or reprogram all involved cells—in
this case, TAMs/MDSCs. While targets such as PD-1/PD-L1 or
CTLA4/CD80 are important, these mechanisms address just one
mechanism of TAM-mediated suppression, and a downstream
effector, which could explain the limited clinical benefit.

Central Nervous System Malignancy
Central nervous system (CNS) malignancies account for a small
percentage of all diagnosed cancers (145), but they are frequently
associated with abysmal prognoses. The resident immune system
of the CNS, namely the microglia, are established contributors to
CNS malignancies (146), but there are several other phagocytic
myeloid cell populations in the CNS that are also, if not more
so, implicated in a poor prognosis of the most aggressive form of
CNS malignancy, glioblastoma multiforme (GBM). Perivascular,
meningeal, and choroid plexus macrophages of the CNS have
generally been overlooked as contributors to GBM (147, 148),
but the involvement of bone marrow-derived myeloid cells has
recently been established, and even positively correlated, to poor
outcomes in GBM models (116, 149). As seen in the previous
cancer studies, GBM TAMs co-express M1- and M2-associated
markers, again making simple surface phenotyping of cells rather
difficult, and creating the need for mechanism and pathway

analysis (116). Invading peripheral myeloid cells show a greater
suppressive potential than do microglia, marked by increased
expression of IL10 and TGFB2—potent inducers of T-regulatory
cells (12, 43)—compared to the resident immune cells (116, 117).
Likewise, peripheral myeloid cells were also enriched in genes
involved in the citric acid cycle and TSPO compared to the
residentmicroglia, resembling TAMs that we speculate to directly
inhibit T-cell functionality mentioned previously in the Breast
Cancer section [(116), Supp.].

Unfortunately, current scRNA-seq studies of the TIME in
GBM use consensus clustering only to distinguish the roles of
microglia and peripheral macrophages. This method limits the
resolution and only allows for the evaluation of two myeloid
cell clusters. Despite this, Muller et al. (116) describe myeloid
cell heterogeneity that is the result of their spatial relationship
with the malignancy, suggesting that suppressive myeloid cells
perform different roles according to their physical location.
Likewise, Darmanis et al. (114) show that macrophages make
up the majority of myeloid cells within the tumor core and
microglia make up the myeloid population of the surrounding
stroma. The macrophages in the core seemingly contribute more
to the overall viability of the tumor via their expression ofVEGFA
and HIF1A, while the juxtatumoral microglia serve as the main
masqueraders of the malignancy with increased expression of
PDL1, B7H3, CD80, and CD86 (114). The myeloid cells within
the tumor core are also the main source of LILRB2 expression,
offering a selective target for reprogramming a significant cell
population for maintaining tumoral viability. Also interesting
is that the majority of LILRB2-expressing myeloid cells do not
co-express MARCO, a pattern recognition receptor enriched on
TAMs (150); we speculate that these cells could be MDSCs (114).
Most GBM-associated myeloid cell populations are involved in
recruiting additional immunosuppressive myeloid cells, marked
by exorbitant expression of CCL3 and TGFB2 in numerous GBM
specimens (116). Combined expression of CCL3 and TGFB2 in
a variety of bulk tumor samples from tissues of different origin
is strongly associated with the local presence of MDSCs, despite
the difficulty in their identification (151). More importantly, high
expression of the combination is associated with a worse overall
median survival in high grade glioma, referenced inmultiple data
repositories (152).

While there are limited studies that recognize the presence
of MDSCs, and specifically analyze heterogeneity of MDSCs,
in models of CNS malignancy, it is imperative that we discuss
them in this context. MDSCs have been detected in the
tumor microenvironment and play a significant role in tumor
progression (153). They do not exist in healthy CNS tissue
outside of the context of malignancy (149, 153). Alban et al.
(118) use MDSC infiltration in GBM as prognostic markers and
indicate a hazard ratio of 4.7 (1.69–13.4) when comparing overall
survival of patients with high MDSC GBM infiltration to low
infiltration. Under the assumption that all M-MDSC populations
that infiltrate GBMs are programmed into the same functional
state, their role is to secrete IL-10 and TGF-β, just like their
macrophage counterparts. The presence of these cytokines is
correlated to overall stage of the malignancy [(118, 149), Supp.,
(154)], indicating that there is most likely a dose effect as a
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greater amount of MDSCs in the local environment is correlated
to staging as well.

In addition to the local involvement of suppressive myeloid
cells, the peripheral differential cell count offers insight to
prognosis of GBM patients (118, 149). MDSCs in the periphery
are heavily implicated in higher grade, more aggressive
CNS malignancies. Peripheral MDSCs have a strong positive
correlation with worse prognoses in GBM patients, and the
converse is true as well. Alban et al. (118) showed that, after
surgical resection of GBMs, patients with increasing fractions
of MDSC populations had inferior survival time, compared to
those of decreasingMDSC fractions. A cohort of newly diagnosed
patients in the study received standard-of-care adjuvant therapy
(155), but the expansion of M-MDSCs were variable, indicating
a potential difference in activation of myeloid cells following
chemo- or radiotherapy (156, 157). Additionally, a number of
studies show increased peripheral MDSC counts in subsets of
patients who received dexamethasone perioperatively, indicating
a potential confounder, or contributor, in correlating overall
survival with MDSC levels (118, 148, 149).

GBM is well-known to be an extraordinarily heterogeneous
malignancy, making it very difficult to target with “off-the-
shelf ” therapy. However, it is striking to see that even across
the heterogeneity of malignancies from different patients,
the myeloid cell clustering, and signaling networks seem
to remain conserved (114). Manipulating the programming
of both bone marrow-derived myeloid cells and resident
microglia is important in regulating the entire network
of immune suppression and pro-tumor functionality.
While microglia appear to be attractive targets for the
popular therapies targeting PD-L1 or B7 family of proteins,
involvement of the peripheral immune system within the tumor
microenvironment is more closely associated to prognoses
and should also be considered for immunomodulation.
Whether the infiltrating TAMs, the malignancy itself, or a
combination of both is causing the suppressive programing
of the microglia remains to be determined. Table 1 details
the pathways and receptors that mediate immunosuppression
along with the specific effect and tumors impacted by the
signaling pathway.

METHODS TO PREVENT MYELOID CELL
CONTRIBUTION TO CANCER GROWTH

Currently, there are two main strategies for manipulating
tumor associated myeloid cells: depletion and reprogramming.
Depletion involves broad, systemic targeting of myeloid
cells, although newer, more specific approaches are aimed
at depleting only the myeloid cells that are specifically
involved with the malignancy (40). The therapeutic strategies
are summarized in Table 3, along with recent clinical
trial information.

Depletion
Strategies to deplete myeloid cells from the TME include
mechanisms to prevent myeloid cell trafficking to the malignancy

or initiate apoptosis. Tumoral recruitment and expansion
of bone marrow-derived myeloid cells occurs through a
CCR2-CCL2–dependent signal and, along with increasing
serum levels of CCL2, is independently associated with
worse prognosis. Disruption of CCR2 signaling prevents the
recruitment and development of suppressive myeloid cells,
while suppressing tumor metastasis and prolongs survival across
several cancer models (16, 176, 177). Importantly, disrupting
CCR2 signaling also reduces TAM/MDSC recruitment to
premetastatic niches (16).

Antagonizing the CSF1–CSF1R axis is an interesting approach
as it disrupts several mechanisms for therapeutic effect. Blocking
the axis can disrupt localization of suppressive TAMs to
the site of malignancy (178) as well as reprogram TAMs
for anti-tumor activity (162), in addition to preventing the
conversion of M-MDSCs to TAMs (12). JNJ-28312141, a
CSF1R inhibitor, depleted F4/80+ TAMs in a subcutaneous
H460 human lung tumor xenograft model and increased
plasma CSF1, a potential biomarker in CSF1R inhibition
(179). Biologics have also been studied in this regard—
RG7155, a monoclonal CSF1R antibody, greatly reduced
F4/80+ TAMs in animal models of colon cancer. RG7155
showed promise in human applications as well, as it induced
apoptosis of CSF1R+CD163+ macrophages in patients with
diffuse type giant cell tumor tissue (Dt-GCT) (178). However,
as CSFR1 blockage with pexidartinib has proven to be
ineffective in patients, targeting the CSF1–CSF1R signaling axis
might have limited applications (180). Combination therapy
of CSF1R blockade with immune checkpoint blockade is
currently ongoing in a solid malignancy clinical trial (Trial
# NCT02713529).

Targeting CD38 is proving to be a good strategy for
antibody-mediated depletion in some cancer models. CD38+

MDSC populations are expanded in cancer patients and
can even serve as an escape mechanism after PD-1/PD-L1
therapy. Daratumumab, a CD38 antagonist antibody, can deplete
immunosuppressive myeloid cells from circulation, as well as
serve as an independent therapy for CD38+ myelomas. CD38
antibody therapy initiates apoptosis via antibody-dependent cell-
mediated cytotoxicity and complement-dependent cytotoxicity.
Other suppressive cell types, such as T-regs, are also sensitive to
anti-CD38 treatment (122, 123, 181).

Liposomal delivery of dichloromethylene biphosphonates is
another effective method to deplete tumor associated myeloid
cells, as it deposits its payload directly into the intracellular space.
Liposomes are enclosed multifunctional structures that consist
of one or more phospholipid bilayers surrounding a hydrophilic
core. This organization allows for hydrophobic therapies to
associate with the lipid bilayer, and hydrophilic therapies,
including genetic material such as RNA, DNA or siRNA, to
be carried in the core. Clodronate and other bisphosphonates
are a class of drugs typically used for the treatment of
osteolytic bone disease and osteoporosis by inhibiting bone
resorption, as they specifically target the phagocytic cells
involved (182). By encapsulating clodronate in liposomes,
clodronate can be delivered to the tumor site where it is
phagocytosed by macrophages, ultimately initiating apoptosis.
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TABLE 2 | Specific clusters of myeloid cells highlighted in the text are summarized here.

Outstanding clusters Hypothesized role Cell type Tumor

studied

Species Reference

STAT3, B7H3, CSF1R, CCL3,

SIGLEC1

Additional myeloid recruitment TAM Breast cancer Human (43)

PPARG, NRP2 T cell suppression TAM Breast

cancer, lung

cancer

Human, murine (43, 106, 112)

PD-L1 T cell suppression TAM Breast cancer Human (107)

CD38 Tumor proliferation and migration M-MDSC Breast cancer Human (107)

TREM2, APOE, MARCO Mature TAM markers; global

immunosuppression;

anti-apoptosis

TAM Breast

cancer, lung

cancer

Human (43, 112, 113)

IFITM1, SOCS3, TSPO Global immunosuppression;

ROS production and T cell

suppression

MDSC Breast cancer Murine (20)

LILRB2 Global immunosuppression Monocyte-early TAM/MDSC Lung cancer,

GBM

Human (106, 114)

CCL2, CCL3, CCL8, IDO1, IL1RN,

IL4I1, NFKBIA, VISTA, LILRB4

Additional myeloid recruitment;

global immunosuppression

Monocyte-early TAM Lung cancer Human (113)

CXCL9, CXCL10, CXCL11, STAT3,

CCR2, LILRB2, PDL1, IL4I1, IDO1

Global immunosuppression; T

cell recruitment & suppression;

chemotherapy resistance

TAM Lung cancer Human (115)

IL10, TGFB2 Global immunosuppression;

tumor progression

MDSC & infiltrating macrophage GBM Human, rat (116–118)

TSPO ROS production and T cell

suppression

Infiltrating macrophage GBM Human (116)

VEGFA, HIF1A Tumor progression Infiltrating macrophage GBM Human (114)

PDL1, B7H3, CD86 T cell suppression Microglia GBM Human (114)

CCL3, TGFB2 Additional myeloid recruitment MDSC GBM Human (116)

Several clusters overlapped between various malignancies.

However, these effects have only been shown in vitro and animal
models (183–185).

An interesting, albeit controversial, aspect of MDSCs in the
TIME is the effect of chemotherapies on MDSC quantities
and suppressive programming. 5-fluorouracil (5-FU) and
gemcitabine were able to induce apoptosis and deplete MDSCs
in both spleens and tumors in 4T1 murine breast cancer model.
Moreover, both 5-FU and gemcitabine can activate caspase-1 and
induce IL-1β production via the NLRP3 inflammasome pathway
(186, 187). Evidence points to conflicting effects of IL-1β with
respect to the TIME. While some studies show a beneficial effect
of increased IL-1β in the TIME (64), others show that blockade of
IL-1β signaling can prevent immunosuppressive cell recruitment
(163). Other secondary effects of chemotherapy on the immune
system are discussed in depth elsewhere (40, 54).

Reprogramming
The tumor microenvironment can polarize TAMs to an
immunosuppressive M2-like functional state, leading to
enhanced tumor growth, progression, and metastasis. Besides
depleting TAMs andMDSCs,myeloid cells can be reprogrammed
toward a pro-inflammatory state by direct intervention via
small molecules and antibodies targeting key receptors. Two
reprogramming strategies can be used—blocking a receptor that

normally transduces an inhibitory intracellular signal, or using
an exogenous ligand to activate a receptor that stimulates pro-
inflammatory intracellular cascades (188). Despite its success in
diminishing tumor burden, pro-inflammatory agonist therapy is
frequently associated with systemic toxicity (189, 190), therefore,
we will discuss the former strategy.

Surface Targets
In some cases where disruption of the CSF1-CSF1R signaling
axis is unsuccessful in depleting TAMs, antagonism of CSF1R
signaling can reprogram TAMs away from an M2-like state.
Using glioma xenograft models, Pyonteck et al. (162) describe
how CSF1R antagonism did not decrease TAM numbers nor did
it alter their CSF1R expression pattern. However, inhibition of
AKT phosphorylation and M2-related gene expression, such as
ARG1 and CD206, indicated that CSF1R antagonism initiated
a functional shift to a pro-inflammatory state to block glioma
progression (162).

In a murine pancreatic ductal adenocarcinoma (PDAC)
model, crosstalk between B-cells and FcRγ+ TAMs resulted
in an M2-like phenotype through Bruton’s tyrosine kinase
(BTK) activation in a PI3Kγ-dependent manner. Using the
BTK inhibitor ibrutinib, PI3Kγ inhibition in PDAC tumor-
bearing mice reprogrammed TAMs toward an M1-like state and
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TABLE 3 | Therapies used to reprogram tumor associated macrophages and MDSCs.

Target Therapy/Treatment Clinical Trials References

BTK/ PI3Kγ Small molecule BTK inhibitor: Ibrutinib

Small molecule PI3K inhibitor: IPI-549

NCT03379428

NCT02403271

NCT02321540

NCT02950038

NCT02403271

NCT03535350

NCT03961698

NCT03719326

(158)

(159)

LILRB Anti-LILRB2 antibody N/A (131)

C5a/C5aR C5aR genetic deletion N/A (160)

Dectin-1 (CLEC7A)/Gal-9 Anti-Gal-9 antibody N/A (161)

CSF-1/CSF-1R Small molecule CSF-1R inhibitor: BLZ945 NCT02829723 (162)

IL-1β Anti-IL-1β antibody NCT02900664

NCT03742349

NCT03447769

NCT03968419

NCT03631199

NCT03626545

NCT03064854

(163)

HIF1α/β HIF1 genetic deletion N/A

NCT01036113

(164)

ANGPT2/TIE2 Small molecule TIE2 inhibitor: Rebastinib

Anti-ANGPT2 antibody: Nesvacumab

NCT02824575

NCT03717415

NCT03601897

NCT01688960

(164)

(165)

PERK (UPR) Inhibitor of unfolded protein response:

Tauroursodeoxycholic acid (TUDCA)

N/A (166)

Glutamine Synthetase (GS) Methionine Sulfoxamine N/A (167)

CPT1 (FAO enzyme)

HADHA (FAO enzyme)

Small molecule CPT1 inhibitor:

Etoximir/Perhexiline

Small molecule HADHA inhibitor: Ranolazine

N/A (168)

(169)

(170)

FPP Small molecule FPP inhibitor: Zoledronic Acid NCT02347163

NCT00295867

NCT00320710

NCT03664687

(171)

(172)

(173)

MARCO Anti-MARCO antibody N/A (150)

IRF5

IKKβ

Nanoparticle encapsulated mRNAs N/A (174)

DICER DICER genetic deletion NCT01353300

NCT00565903

(175)

PD-1/PD-L1 PD-1 genetic deletion

Anti-PD-1 antibody

NCT04173325

NCT03414684

NCT03925246

(108)

(109)

increased CD8+ T-cell cytotoxicity to slow PDAC tumor growth
(158). PI3K is a critical switch to promote suppressive activity
in macrophages, as PI3K signaling via AKT and mTOR inhibits
NFκB to promote M2-like functionality in TAMs. Conversely,
inhibiting PI3K prevents C/EBPβ activation and disinhibits
NFκB to induce a pro-inflammatory phenotype. Combining
PI3K blockade with anti-PD-1 therapy can promote tumoral T-
cell infiltration to slow tumor growth and enhance survival in
tumor-bearing mice (159).

Signaling pathways that activate NFκB to initiate pro-
inflammatory functionality represent valuable therapeutic
strategies. Our group found that PIRB/LILRB signaling pathways
can function as crucial regulators of NFκB activity. Ablation of

PIRB in MDSCs forced a transition to an M1-like phenotype,
resulting in decreased suppressive function, T-reg activation,
tumor growth, and metastasis (130). PIRB−/− monocytes
expressed stereotypic markers of inflammatory functionality,
such as increased iNOS, TNFα, with decreased IL-10 and ARG1
when compared to WT monocytes. PIRB−/− MDSCs also
demonstrated increased ERK, MAPK, and NFκB activation
upon LPS stimulation, and enhanced IFNγ-related inflammatory
responses. LILRB2—the human ortholog to murine PIRB—
blockade via monoclonal antibodies favored the activation of
NF-κB and STAT1 and the inhibition of STAT6 activation by
IL-4. In vitro, we observed decreased levels of CD14, CD163,
CD16, and DC-SIGN in A549-derived macrophages cultured
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in the presence of αLILRB2 antagonist antibodies. Humanized
MISTRG (M-CSFhi, IL-3/GM-CSFhi, and TPOhi) mice treated
with αLILRB2 antibodies to reprogram human macrophages
to a M1-like classically activated phenotype. Our group has
also generated BAC-transgenic mice expressing LILRB2 for
various studies. Recently we showed that αLILRB2 antibody
therapy had a synergistic effect when combined with αPD-1
therapy to diminish tumor burden in a lung cancer model with
BAC-transgenic LILRB2 mice, while simultaneously suppressing
MDSC and T-reg infiltration into the tumor site (131).

High Dectin-1 and the novel Dectin-1 agonist Galectin-9
expression were found in the TME of PDAC bearing mice.
Dectin-1 is a c-type Lectin expressed mainly on macrophages
and other myeloid-monocytic lineage cells. It is postulated
that Dectin-1 ligation in TAMs leads to immunosuppression,
thereby promoting PDAC growth. Dectin-1 does not have direct
pro-tumorigenic effect on transformed PDAC but its deletion
in tumor infiltrating macrophages induced immunogenic
reprogramming. Similar to the outcome of Dectin-1 deletion,
Galectin 9 neutralization enhanced intra-tumoral T-cell
activation in PDAC (161).

MARCO (macrophage receptor with collagenous structure) is
a scavenger receptor found on M2 immunosuppressive TAMs.
We discussed the presence of this receptor in TAMs across
multiple tumor types. Conditioned medium from cultured B16
melanoma cells and IL-10 stimulated culture resulted MARCO
expression on M0 bone marrow derived macrophages (BMDM).
Treatment with anti-MARCO antibodies decreased tumor sizes,
increased M1-like, and decreased M2-like TAM populations
in the TIME in 4T1 breast cancer and B16 melanoma mouse
models. The TIME displayed decreased immature macrophages,
increased CD4/T-reg cell ratio, and an upregulation of M1-like
genes such as TNF, IL-1β , NOS2, and a downregulation of IL-
10 suggesting polarization of TAMs to a more inflammatory
phenotype (150).

Last but not least, the PD-1/PD-L1 axis is one the best
studied and most clinically successful checkpoint inhibitors. In
cancer, the PD-1/PD-L1 axis is best known for T cell regulation.
Previously, macrophages were known to express PD-1 during
pathogenic infections (191, 192). Since then, it was discovered
that TAMs can also express high levels of PD-1, with increasing
levels over time in murine models and higher expression in
increasing human cancer disease stage. PD-1/PD-L1 blockade
in vivo increased PD-1+ macrophage phagocytosis activity and
reduced tumor growth in murine colon carcinoma models (108).
A more recent study showed that PD-1 ablation or blockade
with monoclonal antibodies prevented the accumulation of
granulocyte/macrophage progenitors under cancer driven
emergency myelopoiesis. Interestingly, PD-1 deficient myeloid
progenitors also had increased cholesterol synthesis which is
required for the differentiation of inflammatory macrophages.
Additionally, PD-1 ablation on myeloid cells decreased tumor
growth more effectively than T-cell specific PD-1 ablation
in a murine fibrosarcoma and melanoma models (109).
Cumulatively, PD-1/PD-L1 blockade or ablation on myeloid
cells promotes phagocytosis in macrophages, reprogramming of
myeloid progenitors and even furthers myeloid differentiation

via metabolic pathways. None of the aforementioned single-cell
studies show exceptional levels of PD-1 on myeloid cells, but that
does not exclude it from being a potential target for diminishing
immunosuppressive phenotypes of myeloid cells.

Soluble Targets
C5a is a protein fragment released from cleavage of complement
C5 that may be involved with PMN-MDSC recruitment. In
one study, C5a was found to enhance tumor growth and
inhibit CD8 T-cell mediated cytotoxicity by recruiting PMN-
MDSC (CD11b+Gr1+) to the tumor microenvironment. C5a
also enhanced PMN-MDSC’s suppressive capacity by increasing
the production of reactive oxygen (ROS) and nitrogen species
(RNS) which inhibits CD8+ T cell response (193). Ablation of
C5aR reduced the ratio of PMN-MDSC to M-MDSC in tumor
bearing mice compared to wild type mice. C5aR blockade is
a potential strategy to modulate the tumor microenvironment
by preventing the recruitment of immunosuppressive PMN-
MDSC (160).

IL-1β, a proinflammatory cytokine, is a potential target for
macrophage reprogramming because it impacts CSF1/CSF1R
signaling. In early tumor progression models using 4T1 cells
in Balb/c mice, IL-1β acts as a master cytokine, exhibiting
both pro- and anti-tumoral functionality (163). IL-1β recruited
CCR2+ inflammatory monocytes to the tumor site through the
induction of CCL2 but also promoted the differentiation of these
monocytes into immunosuppressive macrophages by inducing
CSF1. IL-1β deficient mice displayed significant reduction
in inflammatory monocytes recruitment and macrophage
differentiation. Combination therapy of αIL-1β and αPD-1
completely abrogated breast tumor progression (163).

Microenvironment
Besides cell surface receptors, cytokines and chemokines, the
oxygen level in the tumor also affects the microenvironment.
Tissue hypoxia develops as tumor cells proliferate until oxygen
demand overwhelms the supply. To restore oxygen to the
microenvironment, malignant cells initiate a hypoxic response
to drive a more aggressive phenotype, promoting angiogenesis,
cell proliferation, self-renewal, and other pro-tumoral programs.
Two master regulators of hypoxia in cells are HIF1α and
HIF2α. TAMs within this hypoxic environment are more
strongly associated with M2-like functionality (194), and HIF2α
ablation in TAMs resulted in a more favorable outcome in
models of hepatocellular carcinoma and colitis associated colon
carcinoma (164).

Just as oxygen levels affect the TIME, tumor vascularization
also plays a role. The angiopoietin (ANGPT2)/TIE2 kinase
signaling axis is essential to angiogenesis. TIE2 can be
found on a subset of pro-angiogenic macrophages (TIE2+

macrophages) and promote tumor angiogenesis and tumor
metastasis. Rebastinib, a TIE2 kinase inhibitor, suppressed the
infiltration of TIE2+ macrophages to the tumor site in the PyMT
mouse model of breast cancer (195). Another study showed that
vascular endothelial production of ANGPT2 recruited TIE2+

macrophages to the tumor and the inhibition of ANGPT2
binding suppressed TAM recruitment (165).
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Recent studies have attempted to explain why tumor-
associated immunosuppressive myeloid cells cannot simply be
binned in an M1/M2-like dichotomy, and Mohamed et al.
(166) describe ER stress as a potential mechanism. Undefined
tumoral signaling causes an upregulation in the unfolded protein
response of MDSCs, leading to an activation of the intermediate
media PERK and NRF2 drive the immunoregulatory phenotype.
PERK ablation led to a reprogramming of MDSC functionality,
specifically, to initiate a type I interferon anti-tumor response.
More importantly, similar anti-tumor effects can be achieved
with the exogenous administration of PERK inhibitors (166).

Metabolism
Recent studies have shown that immunometabolism plays a very
important role in the regulation of macrophage function in
the tumor microenvironment. The metabolic profile of TAMs
determines their status as pro- or anti-tumoral effector cells.
M1-like macrophage metabolism is generally characterized with
increased glycolysis, fatty acid synthesis, and a truncated TCA
cycle whereas M2-like macrophage metabolism is skewed toward
fatty acid oxidation (FAO) and the TCA cycle (196–200). For
example, tumor-derived lactate induces an M2-like state in
macrophages, measured by the induction of theM2-related genes
VEGF, RELMA, MGL1, andMGL2. Lactate can also promote the
expression of ARG1 and stabilize HIF1α–key functional elements
of a suppressive macrophage (201). Preventing the metabolic
profile initiated by lactate using a small molecule inhibitor
may reduce the presence of immunosuppressive myeloid cells
(77). Similarly, methionine sulfoxamine, a potent inhibitor of
glutamine synthetase, skewedM2-polarizedmacrophages toward
anM1-like state characterized by reduced intracellular glutamine
and increased succinate to promote glycolysis (167).

However, promoting glycolysis in macrophages of the TIME
is a risky endeavor as cancer cells also preferentially use
glycolysis as an energy source, according to the Warburg effect.
Therefore, targeting a metabolic pathway that inhibits tumor
progression while simultaneously promoting an anti-tumor
immune response would be an attractive strategy. FAO is one
potential pathway, as it is the defining metabolic program of M2-
like macrophages. FAO inhibition can impair the proliferation
of leukemia cells (168) and reduced cellular ATP and viability
in glioma (169). In multiple tumor models, tumor infiltrating
MDSC were found to have increased fatty acid uptake and
activated FAO (170). Etomoxir, a pharmacologic inhibitor of
FAO, decreased the overall metabolic activity of MDSCs, their
ability to prevent T-cell proliferation, and production of critical
cytokines that maintain the induction and differentiation of
MDSCs. Tumor-bearingmice treated with etomoxir and a related
inhibitor, ranolazine, showed delayed tumor growth attributable
to increased T-cell mediated cytotoxicity (170).

As previously mentioned, liposomal delivery of
bisphosphonates can be used to deplete macrophages via
apoptosis. Zoledronic acid (ZA) is a bisphosphonate containing
a double nitrogen group. It inhibits the active site of the enzyme
farnesyl pyrophosphate synthase in the mevalonate pathway,
which is critical for isoprenoid and cholesterol synthesis (171).
ZA also has a direct proapoptotic effect on tumor cells and

reduces their metastatic potential (172). TAMs were significantly
reduced in a TUBO cell murine mammary tumor model.
Peritoneal macrophages and TAMs in ZA-treated mice displayed
enhanced M1-like markers, shown by nuclear translocation of
NFκB, NOS expression, and NO production (173).

Genetic Modification
Gene therapy is a unique strategy to polarize TAMs. Zhang et
al. (174) describe using in vitro-transcribed mRNA encoding
IRF5 and its activating kinase IKKβ encapsulated in nanoparticles
to reprogram TAMs in models of ovarian cancer, melanoma,
and GBM. The nanoparticles were engineered with D-mannose
on the surface to efficiently and specifically target the mannose
receptor CD206+ on TAMs. UponmRNAuptake, TAMs adopted
a tumor-clearing, pro-inflammatory profile (174).

Similarly, endogenous RNA processing mechanisms can be
exploited to reprogram TAMs. MicroRNAs (miRNA) are a
class of small non-coding RNAs that negatively regulate RNA
transcription and transcript levels through a sequence dependent
mechanism. Normally, DICER, an RNAse-III enzyme, processes
hairpin-shaped precursor miRNAs into mature miRNAs (202).
Baer et al. (175) describe conditional deletion of DICER in TAMs
to prevent maturation of miRNAs that otherwise inhibit M1-like
functionality, rewiring the cells toward a pro-inflammatory state
characterized by the activation of IFNγ and STAT1 signaling.
Moreover, DICER-deficient TAMs promoted the recruitment of
cytotoxic T cells that completely eradicated tumors in mouse
models when combined with PD-1 checkpoint blockade (175). A
summary of these methods, specific targets, and ongoing clinical
trials to target them is provided in Table 3.

CONCLUSION, QUESTIONS, LIMITATIONS

Emerging techniques such as scRNAseq and mass cytometry
have allowed for enhanced analyses of previously uncharacterized
cell subsets in the tumor immune microenvironment, offering
new avenues for discovering potential novel therapeutic targets
and pathways that support tumor progression. Although these
have not translated into the clinic yet, there is optimism that
greater understanding of the tumor immune microenvironment
and associated immunomodulatory mechanisms will allow for
targeted therapeutic strategies to improve patient survival.
While the tumor-associated myeloid cell population collectively
functions to support the growing malignancy, subsets of
the population are driven by assorted environmental cues
that induce different functional programs. Different subsets
of tumor-associated myeloid cells can directly contribute to
the viability of the tumor, prohibit recognition of the tumor
by the adaptive immune system, and drive chemotherapy or
immunotherapy resistance. The questions left to be answered
are: what combinations of signals cause the heterogeneity
within the microenvironment and do they originate from the
parenchyma, stroma, or both? What effect does chemotherapy
or immunomodulation have on the various populations? Is
there a specific population that is correlated with local or distal
recurrence? For any of these cases, is one subset enough to drive
any of these phenomena, or is the collection of these subsets
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necessary? Is there a combination of therapies that would bemost
effective in eradicating these detrimental subsets?

Defining previously uncharacterized subsets of immune cells
by single-cell analyses is crucial to the understanding of tumor
biology, but in situ cell relationships also require attention. Loss
of tissue architecture is a major limitation to suspension-cell-
based assays, such as scRNAseq and suspension mass cytometry,
thereby discounting important spatial information that comes
from delineating cell-cell interactions. Several of the studies
referenced above underscored heterogeneity of myeloid cell
phenotypes based on their physical orientation to the tumor—
within the tumor or surrounding the periphery of the tumor
(18, 107, 116, 203). The location in which cells are found
also dictates their functional role in the development of the
malignancy, as juxtatumoral immune cells most likely serve as
a suppressive barrier to cloak the malignancy, while intratumoral
immune cells directly contribute to the viability of the growing
tumor (114). Techniques that incorporate spatial information
also offer the ability to determine direct cell-cell interaction
using Cell Neighborhood Analysis (204) and predict the roles
of immune cells (205). These functional states can serve as
additional prognostication metrics, as several studies to date
have already defined the presence of bulk TAMs and MDSCs
in tumor parenchyma vs. stroma in terms of patient outcomes

(19, 40, 100, 206, 207). Further work in associating the added
dimension of space to the tumor immune microenvironment
is required to fully understand the complex interplay between
myeloid cells and malignancies.
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