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1. Introduction

   Andrographis paniculata (Burm. f.) Nees (Acanthaceae) 
(A. paniculata, Chuanxinlian), is a medicinal herb 
used in many regions such as Taiwan, Mainland China 
and India to treat liver disorders, colic pain, common 
cold, and respiratory infections[1-3]. Andrographolide 
and its derivatives have been widely used for treating 
respiratory infections in China and India for decades. 
It contains diterpenoids, flavonoids and polyphenols as 

the major bioactive components[4]. Andrographolide is 
the major diterpenoid in A. paniculata, making up about 
4%, 0.8%~1.2% and 0.5%~6% in dried whole plant, stem 
and leaf extracts respectively[5-7]. It is also used as a 
wonder drug in traditional Sidha and Ayurvedic system of 
medicine as well as tribal medicine in India for multiple 
clinical applications, since ancient and also been shown 
to be effective against certain cancers and is an effective 
purgative. The plant extracts exhibit antityphoid and 
antifungal, antihepatotoxic, antibiotic, antimalarial, 
antihepatitic, antithrombogenic, antiinflammatory, anti-
snake venom and antipyretic properties to mention a 
few, besides its general use as an immunostimulating[8-

11]. Andrographolide has been tested in different 
experimental studies on human and animals which 
proved andrographolide was a safe drug with no harmful 
side effects[12]. 
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Methods: The present study is an attempt to elucidate inhibition potential of andrographolide 
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Conclusions: Hence, andrographolide has the potential to inhibit neuraminidase activity of H1N1 
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   The swine flu is a severe contagious disease caused 
by H1N1 virus which leads to respiratory tract infection, 
other complications such as bronchitis and pneumonia 
in human. World Health Organization reported 12 787 
cumulative confirmed cases and 413 cumulative deaths 
cases, all caused by H1N1, on 18 Oct 2009[13]. H1N1 
contains two surface glycoproteins: hemagglutinin 
and neuraminidase. Hemagglutinin facilitates the 
influenza virus to attach to a host cell during the initial 
infection and viral RNA enters the cell by endocytosis. 
Neuraminidase cleaves α-ketosidic linkage between 
the sialic acid (N-acetylneuraminic) and an adjacent 
sugar residue and spread infection in cells. The amino 
acid sequence of neuraminidase is coded by the 6th RNA 
segment and the polypeptide chain and neuraminidase 
comprises of 470 amino acid residues. The inhibition of 
neuraminidase is useful in prevention of H1N1 and could 
serve as potential drug target. Due to development of 
resistance in many strains of H1N1, the Food and Drug 
administration approved neuraminidase inhibitor drugs 
such as Oseltamivir and Zanamivir[14-16]. Moreover, due 
to several sides effects like nausea, vomiting, abdominal 
pain and headache, rash and sometimes allergic reactions 
including anaphylaxis etc, there is a call for new 
inhibitors against H1N1 influenza A virus with less or no 
side effects. 
   The amino acid sequence of neuraminidase [A/Blore/
NIV236/2009(H1N1)] (GenBank: ACZ97474.1) is known but the 
three-dimensional structure is not available[17]. In this 
study, therefore, we have constructed the 3D structure 
of ACZ97474 by homology modeling and thereafter taken 
for interaction study between andrographolide and 
ACZ97474. The utmost importance in a structure-based 
drug design is the reliable filtering of putative hits in 
terms of their predicted binding affinity; which is based 
on the in-silico generated near native protein-ligand 
configurations. Andrographolide and its derivatives were 
used in this study to identify inhibitory potential through 
several receptor-centric computational methodologies 
for computational modeling of andrographolide and its 
derivatives as potent inhibitors of neuraminidase protein 
of H1N1 (ACZ97474).

2. Materials and methods

2.1. Sequence analysis

   The protein sequence of ACZ97474 {neuraminidase 
(A/Blore/NIV236/2009(H1N1)} strain was obtained from 
Influenza Virus Resource, the official database of the 

Influenza Virus Resource at the National Center for 
Biotechnology Information[18]. This protein comprises 421 
amino acids. Sequence similarity search with BLAST in 
Protein Data Bank (PDB) database gives similar proteins 
99% identical. Template (pdb ID: 3TI4) was selected 
for molecular modeling of ACZ97474 which has a good 
resolution of 1.6 Å. We performed the pairwise alignment 
of ACZ97474 with 3TI4 as reference using the LALIGN of 
EMBOSS (Figure 1)[19]. 
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Figure 1. Alignment of ACZ97474 receptor protein sequence with 3TI4 as 
reference protein.

2.2. Homology model construction

   The homology model of the protein (ACZ97474) was built 
using ModWeb online server[20]. ModWeb is a server 
for comparative protein structure modelling which 
depends on the large scale protein structure modelling 
pipeline, ModPipe, for its functionality[21]. The structural 
template used to build models in ModPipe was 3TI4 (PDB 
ID). Sequence-structure matches are established using 
multiple variations of sequence-sequence, profile-
sequence, sequence-profile and profile-profile alignment 
methods. Significant alignments (E-value better than 1.0) 
covering at least 30 amino acid residues are selected for 
modeling. Finally, the resulting models are evaluated 
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using several model assessment schemes. Model 
evaluation was performed in PROCHECK v3.4.4 producing 
plots which were analyzed for the overall and residue-by-
residue geometry[22]. Ramachandran plot provided by the 
program PROCHECK assured very good confidence for the 
predicted protein[23]. Nevertheless, PROCHECK assured the 
reliability of the structure and the protein was subjected 
to Verify3D available from NIH MBI Laboratory Servers[24].

2.3. Ligand Binding Site Prediction 

   In-silico prediction of binding site was done for the 
ACZ97474 in neuraminidase [A/Blore/NIV236/2009(H1N1)] 
using CASTp, Q-Site finder and compared by extensive 
literature search[25-27]. Best active sites were selected 
by comparing prediction of CASTp algorithm and Q-Site 
Finder. The binding sites, active sites, surface structural 
pockets (accessible), interior cavities (inaccessible), 
shape (alpha complex and triangulation), area and volume 
(solvent and molecular accessible surface) of each pockets 
and cavities of proteins were identified and measured 
by CASTp method. The number, area, circumference of 
mouth openings of each pocket in solvent and molecular 
accessible surface was determined by CASTp[25]. Ligand 
binding site on a protein was predicted by Q-site finder. 
Binding of hydrophobic probes to proteins are used to 
determine binding energy of the probe clusters on the 
protein and probe clusters with  favourable binding energy 
are arranged in an order[26]. Pockets on the surface of the 
protein were detected by Pocket finder method which 
scans the probe radius (1.6 Å) with a grid resolution 0.9 Å, 
cubic diagonals and ligands along the proteins[28]. 

2.4. Ligand preparation 

   An initial dataset of 140 andrographolide analogues was 
collected from NCBI PubChem compound database and 
virtually screened on the basis of Lipinski’s rule of 5 in 
which several different ring systems are represented[29-30]. 
The ligands were converted into PDB coordinate files using 
OpenBabel software (<www.openbabel.org/>). Ligands were 
prepared by adding hydrogen bonds and neutralization of 
charged groups. The optimized ligands were subsequently 
docked against NS2B using Autodock4.2[31]. Each of these 
compounds had associated in vitro bioactivity values 
(IC50 values reported in nmol/L) against neuraminidase 
[A/Blore/NIV236/2009(H1N1)] strain. In order to check 
the reliability of the geometry obtained, we compared 
the structural parameters of the andrographolide with 
theoretical and experimental values from the literature. 

2.5. Docking of ligands

   In order to understand the binding pattern and 
mechanism of andrographolide herbal derivatives towards 
the inhibition of H1N1, docking of all herbal compounds to 
the ACZ97474 receptor was performed using Autodock4.2[31]. 
After ensuring that protein and ligands are in correct form 
for docking the receptor-grid files were generated using 
grid-receptor generation program using van der Waals 
scaling of the receptor at 0.6. The default size was used 
for the bounding and enclosing boxes. The ligands were 
docked initially using the “standard precision” method 
and further refined using “xtra precision” (Lamarckian 
genetic algorithm) with standard docking protocol. Ten 
independent docking runs were carried out for each 
ligand and results were clustered according to 1.0 Ǻ 
RMSD criteria. Best ligands were selected on the basis 
of H-bonds formation, hydrophobic interactions and 
minimum binding energies obtained after docking. A 
single best conformation for each ligand was considered 
for further analysis.

3. Results 

   The atomic coordinates of ACZ97474 neuraminidase 
Influenza A virus[A/Blore/NIV236/2009(H1N1)] was not 
available in PDB, hence, to develop a protein model was 
necessary. The final model, which we took for further 
analysis, consisted of 469 amino acid residues with a 
resolution of 2 Å. Both PROCHECK and Verify3D softwares 
have been used to check the quality of the modeled protein 
structure. Ramachandran plot obtained from the program 
PROCHECK, which checks the stereochemical quality of a 
protein structures, producing a number of postscript plots 
analyzing its overall and residue-by-residue geometry, 
assured the reliability of the modeled protein with 83.3% 
residues in most allowed region and 10.8% in additional 
allowed region. There were none residues in disallowed 
region and only 0.9% in generously allowed region (Figure 
2). The assessment with Verify3D, which derives a “3D-1D” 
profile based on the local environment of each residue, 
described by the statistical preferences for: the area of 
the residue that is buried, the fraction of side-chain 
area that is covered by polar atoms (oxygen and nitrogen) 
and the local secondary structure, also substantiated the 
reliability of the three-dimensional structure. Active 
sites were identified with reference to the studies done 
on 3TI4 using CASTp, Q-Site finder and further verified 
from available literature (Table 1). Here, we combined 
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the results obtained from a standard docking protocol 
and then investigated efficiency for andrographolide 
derivatives and other four herbal compounds imperatorin, 
andrographolide, epigallocatechin and arabinoxylan 
from Angelica archangelica, A. paniculata, Green tea and 
Hyphomycetes mycelia, respectively (Figures 5-8). 
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Figure 4. Dcoked C20H30O5 (CID: 6857767) into active site residues of ACZ97474.
A: docked ligand in binding surface; B and C: ligand intraction with active 
site residues in neuraminidase using Chimera and Ligplot, respectively.
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Table 1
Active sites in neuraminidase (ACZ97474) of A/Blore/NIV236/2009(H1N1) strain.
From literature CASTp Q-Site finder
Arg118 Arg118 Arg118

Asp151 Asp151 Asp151

Arg152 Arg152  Ser367
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Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms 
and R-factor no greater than 20%, a good quality model would be expected 
to have over 90% in the most favoured regions.
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Figure 2. Predicted structure and Ramachandran plot of neuraminidase 
protein (ACZ97474).
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Figure 7. Dcoked Epigallocatechin (CID: 65064) into active site residues of 
ACZ97474.
A: docked ligand in binding surface; B and C: ligand intraction with active 
site residues in neuraminidase using Chimera and Ligplot, respectively.
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   Docking simulation of andrographolide derivatives 
to the homology modeled ACZ97474 was performed 
using Autodock4.2 .  Al l  the 140  andrographolide 
ligands were docked into the defined binding site. 
The top 10 configurations after docking were taken 
into consideration to validate the result (Table 2). The 
RMSD value calculated out of ten accepted poses for 
each configuration was found in between 0.59-1.33 
Å. This revealed that the docked configurations have 
similar binding positions and orientations within the 
binding site and are similar to the crystal structure. 
The best docked structures which are the configuration 
with the lowest binding score are compared with the 
crystal structure as shown in Figures 2-8. Docking of 
andrographolide derivatives to this binding site was 
performed using the standardized docking protocol. The 
binding mode of andrographolide within the binding 
site is represented in Figure 5. In this figure we can 
observe that both the molecules were well fitted to 
the defined binding pocket. All 140 andrographolide 

analogues were also found to be good binders with 
ACZ97474. The binding modes of andrographolide and 
its derivatives showed hydrophobic interaction with 
ACZ97474. This binding mode proved the hypothesis 
that the andrographolide derivatives bind to ACZ97474 
with almost hydrophobic interactions and it should be 
the pre-organized shape binding between the rigid 
structure of andrographolide analogues and the binding 
pocket of ACZ97474. All the docking and interaction 
analysis were carried out as per our previous studies[32-

33].

Figure 8. Dcoked Zanamivir (CID: 60855) into active site residues of ACZ97474.
A: docked ligand in binding surface; B and C: ligand intraction with active 
site residues in neuraminidase using Chimera and Ligplot, respectively. 
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4. Discussion

   Highly pathogenic H1N1 influenza A viruses have 
spread relentlessly across the globe since 2003, more 
than 300 infections in humans have been reported, and 
the mortality rate is 60%[34]. Influenza A viral infection 
is still a major health concern, and the options for the 

Table 2
Characteristics of top ligand derivatives of 4-thiazolidinone identified form PubChem database after virtual screening, along with Food and Drug Admistraton 
approved drugs.

Compound name LogP
M. W. 
(g/mol)

Binding energy 
(Kcal/mol)

No. of H-bonds
No. of hydrophobic 

interactions
Ki 

(nmol/L)

Total intermolecular energy 
(Kcal/mol)

Andrographolide (CID:5318517)   2.2 350.449          -10.88 3 (Arg152, Lys150, & Gly197) 4 10.59 -12.07

Arabinoxylan (CID:6438923) -3.6 560.502            -6.64 5 (Arg118, Lys432, Ser367, Arg368, & Asn344) 2 13.48 -11.72

Epigallocatechin (CID:65064)   0.0 306.267            -7.93 2 (Ser367, Lys432) 4 1.54 -11.51

Zanamivir (CID:60855) -3.2 332.309            -7.73 4 (Glu278, Glu228, Glu119, Trp179) 3 2.15 -10.12

Oseltamivir (CID:65028)   1.1 312.405            -6.28   2 (Lys432, Ser367) 9 156.39 -7.88

Imperatorin (CID:10212)   3.4 270.280           +50.37 2 (Ser367, Lys432) 9 - +48.58

C20H30O5 (CID: 29927575)   2.3 350.449           -10.90 3 (Arg152, Lys150, & Gly197) 3 10.27 -12.09

C20H30O5 (CID: 6857767)   2.2 350.449           -10.90 3 (Arg152, Lys150 & Gly197) 4 10.26 -12.09

C20H30O5 (CID: 11382524)   2.2 350.449           -10.90 3 (Arg152, Lys150 & Gly197) 3 10.22 -12.09

Andrographis C20H30O5  (CID: 5318517)   2.2 350.449           -10.88 3 (Arg152, Lys150 & Gly197) 4 10.59 -12.07
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control and treatment of the disease are limited. In 
recent years the normally mortality associated with 
influenza H1N1 virus that circulated five years ago also 
hit younger people, is highly noticiable and this variant 
of the virus appears to be even more lethal. The strains 
of influenza H1N1 virus is unexpected mutate year 
to year, therefore it is important to get an annual flu 
vaccine[35]. 
   Unfortunitely all vaccines are immune suppressive i.e. 
they suppress our immune system, which might increase 
the risk of contracting the flu or other infectious disease. 
Since vaccines bypass your natural first-line defense, 
therefore, they are never 100% protective and typically 
provides inferior immunity compared to our body would 
receive from naturally contracting and recovering from a 
disease. Additionally, Flu vaccinations are particularly 
ineffective which is reducing illness and mortality 
from the flu[36]. According to the US Centers for Disease 
Control and Prevention about 20% of flu-like illnesses 
are actually caused by influenza type A or B and the 
other 80% are caused by more than 200 other viruses 
such as respiratory virus, bocavirus, coronavirus, and 
rhinovirus, etc. Therefore this threat of a new pandemic 
requires the development of new therapeutic agents.
   Docking results show that andrographolide (CID: 
5318517) is the best among four herbal compounds as 
its carboxyl functional group binds with the active 
site residues Arg152 along with Lys150, and Gly197 
of neuraminidase (ACZ97474)  with lowest binding 
energy (-10.88 Kcal/mol) i.e. high binding effeciency, 
only 10 compounds including andrographolide show 
binding with Lys150 (150 loop) and active site Arg152 
of neuraminidase. Total intermolecular energy was 
found to be -12.07 Kcal/mol with inhibition constant 
(Ki) of 10.59 nmol/L. These studies revealed structural 
conformation changes in 150 loop, secondary sialic 
acid binding site residues of neuraminidase. The 
guanidine group of Arg152 have binding affinities to 
the hydrophilic nature of the inhibitors (-OH and =O 
groups), as identified by docking, more interestingly, 
andrographolide was found to be most fitted ligand 
with ACZ97474 into active site residues than approved 
drugs for Swine flu such as Zanamivir (CID: 60855) and 
Oseltamivir (CID: 65028). Zanamivir was found interacting 
with Glu278, Glu228, Glu119, and Trp179 but have 
low binging affininty of -7.73 Kcal/mol compared to 
Andrographolide. Additionally, Oseltamivir also fails to 
fight with andrographolide in our study which proves 
that this information might be useful in designing future 
neuraminidase inhibitors for the rapidly mutating H1N1 
strains.
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