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Abstract
Protein interaction in cells can be described at different levels. At a low interaction level, pro-

teins function together in small, stable complexes and at a higher level, in sets of interacting

complexes. All interaction levels are crucial for the living organism, and one of the chal-

lenges in proteomics is to measure the proteins at their different interaction levels. One

common method for such measurements is immunoprecipitation followed by mass spec-

trometry (IP/MS), which has the potential to probe the different protein interaction forms.

However, IP/MS data are complex because proteins, in their diverse interaction forms, man-

ifest themselves in different ways in the data. Numerous bioinformatic tools for finding pro-

tein complexes in IP/MS data are currently available, but most tools do not provide

information about the interaction level of the discovered complexes, and no tool is geared

specifically to unraveling and visualizing these different levels. We present a new bioinfor-

matic tool to explore IP/MS datasets for protein complexes at different interaction levels and

show its performance on several real–life datasets. Our tool creates clusters that represent

protein complexes, but unlike previous methods, it arranges them in a tree–shaped struc-

ture, reporting why specific proteins are predicted to build a complex and where it can be

divided into smaller complexes. In every data analysis method, parameters have to be cho-

sen. Our method can suggest values for its parameters and comes with adapted visualiza-

tion tools that display the effect of the parameters on the result. The tools provide fast

graphical feedback and allow the user to interact with the data by changing the parameters

and examining the result. The tools also allow for exploring the different organizational lev-

els of the protein complexes in a given dataset. Our method is available as GNU-R source

code and includes examples at www.bdagroup.nl.

Introduction
Proteins in a living cell interact and build functional units to play their role in the cellular
machinery [1–4]. These units, called protein complexes, carry out many functions in the cell,
and comprehending their composition is the key to understanding the cellular machinery in
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greater detail. Protein complex formation takes place at different levels of interaction [5, 6]. At
a low interaction level, individual proteins bind together to build complex cores, stable modules
that are the building blocks of protein complexes. A protein complex itself represents the next
higher interaction level and is assembled from one or more cores. Different protein complexes
that use the same core are possible. At still higher interaction levels, proteins build larger func-
tional units that can consist of physically bound complexes or complexes that interact tran-
siently [7].

Characterizing protein complexes in a cell sample is still a delicate task, although the
research field has progressed considerably and proteins can now be identified and quantified
using high–throughput methods, such as immunoprecipitation followed by mass spectrometry
(IP/MS) [3, 8, 9]. In one IP experiment, a specifically designed antibody molecule (bait) is used
to isolate its target protein (prey) from the sample, together with the proteins that are bound to
the target. The proteins are quantified and identified with mass spectrometry (MS) [3, 10]. IP/
MS experiments for different target proteins in the same sample result in different sets of
detected proteins. Combined results from such different IP experiments contain two types of
information, namely the occurrence and the abundance of each protein in each experiment.

In the context of IP/MS data, proteins are considered “similar to each other” when they
occur together across experiments and have similar abundance values. This often holds for pro-
teins that build a complex together; however, the different characteristics of protein complexes
lead to different similarity levels of their proteins in the data. This phenomenon is shown in
Fig 1A. Firmly bound proteins within a complex core are very similar to each other because
they occur together in similar abundance throughout large parts of the IP/MS data. A complex
that consists of this core and different attachments appears as one set of proteins that are less
similar than the core proteins. Interacting complexes can give rise to a single large set of pro-
teins with relatively low similarity.

The similarity of interacting proteins in IP/MS data makes it possible to detect protein inter-
action and complexes with clustering tools [3], which create clusters (sets of proteins) that rep-
resent the complexes. Gavin et al. and Krogan et al. presented large–scale IP/MS datasets from
yeast and introduced methods to detect pairwise protein–protein interactions in their datasets
[11–13]. Their datasets have been widely used for comparing further methods that find pro-
tein–protein interactions or protein complexes [14–20], but there is no consensus on which
method works best, and most publications do not distinguish between the different complex
types. Malovannaya et al. showed in their large scale human IP study that protein complex
cores can be found using an intuitive method that is based on searching for protein sets with
high co-occurrence and reciprocal similarity [21, 22]. The ideas from these publications were
generalized in Kutzera et al. [23] and it was shown that the method works on datasets of differ-
ent size and structure.

Different protein complexes at a specific interaction level, such as complex cores, do not
always appear at the same similarity level in IP/MS data (Fig 1B). Most complex detection tools
analyze the data at a specific (and often unknown) similarity level, and thus, their clusters may
represent different types of complexes. To our knowledge, there is no clustering method that
provides information about the interaction level or the similarity level of the found complexes.
This complicates tuning the parameters of such methods to find a specific complex type and
furthermore, hampers the interpretation of the results considerably.

We overcome these limitations with a new strategy that takes into account that protein com-
plexes exist at different interaction and similarity levels. Our strategy is a hierarchical version
of the 4N algorithm from [23] that we name HC4N (Hierarchical clustering using 4N). Unlike
other complex finding tools, HC4N captures complexes at different similarity levels from low
to high and creates hierarchical tree structures of clusters that reveal the interaction levels of
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the complexes. Moreover, unlike classical hierarchical clustering, HC4N allows for cluster over-
lap at each level of the hierarchy.

Like previous methods, HC4N assigns proteins that are similar to each other to clusters. In
addition, our method provides information about why proteins were clustered together and
where these clusters can be split into smaller clusters of more similar proteins that represent
complexes at a lower interaction level. This divide-and-conquer strategy makes it possible to
capture different interaction levels from large sets of complexes down to the stable cores each
complex is built of. New graphical result representation methods are part of HC4N. They visu-
alize at which similarity level complexes are found in the data and make predictions about
their interaction level possible. They also help in adjusting the method’s parameters to fit dif-
ferent IP/MS datasets and finding different types of complexes.

Materials and Methods

Datasets
Several IP/MS datasets from yeast and humans are used to study the properties of our method
and for comparison with other methods. Together with the IP/MS data, species–specific refer-
ence protein complexes are needed for the evaluation. Table 1 gives an overview of all IP/MS
datasets and their types.

We used the large–scale yeast IP/MS dataset that was presented by Gavin et al. [11] and two
IP/MS datasets from Krogan et al. [12, 13]. We refer to these datasets as “Gavin2006,” “Kro-
gan2004” and “Krogan2006.” A subset from Gavin2006 (called “Gavin2006-SOI”) is created
using HC4N (see the detailed analysis in the results section). As a complex reference for the
yeast datasets, we used the well-established cyc2008 [7] catalog. This database contains an up–
to–date reference set of 400 annotated yeast protein complexes and was previously used in
other publications to evaluate complex prediction methods [17–19].

Fig 1. A: Proteins interact at different levels, from the low level of stable complex cores to the high level of temporarily interacting complexes. The different
interaction types lead to different protein similarity levels in the context of the IP/MS data. Proteins of complex cores have a high similarity, while proteins of
higher interaction levels have a lower similarity to each other. B: Two independent protein assemblies (depicted as green and yellow) and how they split in
lower interaction levels. Protein complexes at different interaction levels can have the same similarity level. The clusters from a clustering method at one level
(left) can represent complexes of different types for this reason, and it is unclear what each cluster represents. Our strategy (right) captures complexes at
different similarity levels for this reason and creates trees that allow for predicting the interaction level.

doi:10.1371/journal.pone.0139704.g001
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The human IP/MS dataset of Malovannaya et al. [22] is the largest dataset in our analysis,
and we refer to it as “Malovannaya.” From this dataset, we also derived a subset of certain pro-
teins for which very precise information about complex–complex interactions is available.
These proteins belong to the interaction complexes of “Mediator” (MED, [24]), “Integrator”
(INT, [25]) and “RNA-Polymerase” (POL), which are described in two Malovannaya publica-
tions [21, 22]. We created an IP/MS subset (”Malovannaya-SOI”) that contains all these pro-
teins and all corresponding IPs.

A satisfying reference for human protein complexes is still difficult to obtain. The best–
known database for human interactions is CORUM [26]. However, complexes from CORUM
are mainly functionally annotated, and unlike the complexes in cyc2008, they overlap highly
due to redundancy in existing annotations [27]. Therefore, not every complex configuration
from CORUM appears in the IP/MS data, which makes it difficult to use the database as a pro-
tein complex reference. For the Malovannaya dataset, we used several sets of complexes from
the Malovannaya publications as reference for this reason. A detailed list can be found in S1
Table. Information about the complex–complex interactions were obtained from the same
publications.

The HC4Nmethod
HC4N is based on the 4N method [23], which we will explain briefly here and in detail in S1
Text. 4N finds clusters called “near neighbor networks” in the IP/MS data. They are sets of sim-
ilar proteins in terms of high pairwise co-occurrence, high set–wise completeness (all proteins
in a near neighbor network co-occur highly with each other) and similar abundance. Each pro-
tein is assigned to many near neighbor networks by the 4N method.

Three global threshold parameters, one for each of the three above–mentioned similarity
types, are used to set the strictness for calculating the near neighbor networks. The co-occur-
rence threshold parameter denotes in how many IPs two proteins need to co-occur relative to
the number of IPs where any of them occur. The set–wise completeness parameter denotes
how exclusive a near neighbor network needs to be. A low threshold allows for overlapping
near neighbor networks, while a high threshold produces near neighbor networks that occur
exclusively in this configuration. The abundance similarity is defined by the cosine similarity
between two proteins.

The 4N method can set the thresholds for co-occurrence and set–wise completeness auto-
matically to the strictest setting at which no proteins are lost, and it also returns the values as
user feedback. The abundance similarity parameter is of minor importance (and not applicable
for 0/1 data) and set by hand to 40 in all experiments. At low strictness settings, proteins with
at least low similarity are assigned to large clusters that then represent a high protein interac-
tion level. Proteins with high similarity are assigned to clusters when 4N is applied with high

Table 1. IP/MS datasets used for the analyses.

Dataset # IPs # proteins Type of data Availability

Krogan2004 153 483 0/1 bioconductor

Krogan2006 2264 5323 0/1 bioconductor

Gavin2006 1752 2551 0/1 bioconductor

Gavin2006-SOI 63 39 0/1 G.2006 subset

Malovannaya 3290 11485 abundance by authors

Malovannaya-SOI 1167 74 abundance Malov. subset

doi:10.1371/journal.pone.0139704.t001
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strictness settings, and they represent a low interaction level. Clusters that overlap by a certain
percentage (usually 50%) are joined to larger clusters, creating the final result of 4N.

The HC4N strategy uses the ability of 4N to capture clusters at different similarity levels.
It starts by applying 4N with low strictness to the IP/MS dataset. The resulting clusters are at
level 1 in the result hierarchy tree; see Fig 2. They represent remotely interacting proteins at a
high interaction level. For each of the (possibly overlapping) protein clusters, HC4N creates
an IP/MS subset of its proteins by extracting the proteins and all IP experiments where they
occur. Next, these subsets are analyzed using 4N with higher strictness. This second set of
clusters represents level two in the result tree: a higher protein similarity level and a lower
protein interaction level. The clusters are used again to create smaller IP/MS subsets, and
again, they are analyzed with a stricter setup of 4N. This continues until the clusters cannot
be split further.

The parameters of HC4N are set manually for the first level (see the result section for
details). A manual setting of the parameters for all levels would be impossible as the total num-
ber of parameters can get very large. Therefore, the parameters for the higher levels are set
automatically to the highest values where all proteins from the current subset are assigned to at
least one cluster. As each subset is divided into smaller subsets of more similar proteins in a
step, the HC4N strategy automatically captures a higher protein similarity level than before.
Clusters of one step can have proteins in common. This facilitates, for example, that a core
with different attachments can appear as a different cluster for each combination of core and
attachments.

The result of HC4N is a tree–structured graph where the root node (level 0) contains all
proteins in the IP/MS dataset. The root node has a child node for each level–1 cluster. Each
node contains a cluster that is calculated from the subset of the previous node in the hierar-
chy. A node is a leaf when its cluster is not split further or an inner node with child nodes
when its cluster is split into smaller clusters. The protein similarity of each cluster is judged
using the minimum co-occurrence of its proteins. A cluster with a low co-occurrence repre-
sents proteins with low similarity at a high interaction level. Clusters with a high co-occur-
rence represent a low interaction level. Child nodes of an inner node have a higher co-
occurrence than their parent node, as they were built by splitting the parent node into pro-
teins of higher similarity.

Visualization of the HC4N result is crucial for interpreting the results and can be done in
different ways. One way is the “hierarchical cluster plot” (HC-plot, see Fig 3), a heatmap–type
diagram showing all proteins vs. each other. The HC-plot visualizes clusters at different co-
occurrence levels. It shows which proteins are in a cluster together with a certain co-occurrence
and whether this cluster is split into smaller clusters of higher co-occurrence. A cluster at a low
protein similarity level occurs as a large square with a deep blue color in the HC plot. When the
cluster has child clusters at a higher similarity level, they appear within that square as brighter
colored, smaller squares. The plot also shows at which similarity level the clusters cannot be
split further. Details about creating the HC-plot can be found in S1 Text. The HC-plot does not
visualize every detail of the HC4N result; however, it gives insight into the different similarity
levels, especially for large datasets, which are hard to visualize. It also helps in selecting the
strictness for the first level of HC4N.

For a more comprehensive analysis, the tree–shaped graph can be directly visualized with
the graph tool cytoscape [28], as shown in Fig 4. Each node in the cytoscape representation
contains the proteins of one cluster, and the node color represents its co-occurrence value. The
graph shows directly at which similarity level certain clusters exist and where they are split into
smaller clusters. This visualization is especially suitable for small datasets.
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Fig 2. General overview of the HC4N strategy. The IP/MS dataset is analyzed with 4N to create the clusters of level 1. The dataset is split up into subsets
where each subset contains all proteins from a level–1 cluster. 4N is applied to each of the subsets to create level 2. The procedure is repeated to create
levels 3 and above, until no further splits are possible.

doi:10.1371/journal.pone.0139704.g002
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Clusters with a low co-occurrence and with many child clusters of higher co-occurrence
represent sets of overlapping or interacting protein complexes and should receive special atten-
tion. We call such clusters subsets of interest (SOIs). They appear in the HC-plot as large
squares with complex inner structures as shown in Fig 5. HC4N, with parameters optimized
for the large–scale dataset, might not reveal the correct inner composition of each SOI. For this
reason, the dataset derived from a SOI should be treated as a new (small) dataset and analyzed
again with HC4N.

Fig 3. Example hierarchical cluster plots for different co-occurrence thresholds at HC4N level 1. The plots are small cutouts from the analysis of the
Krogan2004 dataset. Left: The threshold is set too low with 0.125. Randomly co-occurring proteins lead to large, highly overlapping clusters, which do not
represent protein complexes. At a higher threshold of 0.35, the clusters overlap less, and possible complexes and cores are visible. At a too–high threshold of
0.6, the clusters represent mostly complex cores, and their relation to each other is not visible. HC4N sets the set–wise completeness threshold automatically
to 0.64 in all three examples.

doi:10.1371/journal.pone.0139704.g003

Fig 4. Example HC4N result tree. For clarity, the co-occurrence is displayed in each node. Clusters with many proteins of low co-occurrence and with large
child nodes indicate interacting complexes at the highest interaction level. Complexes built of several cores have a higher co-occurrence and leafs as child
nodes. Leaf nodes with a high co-occurrence symbolize complex cores. Leaf nodes with low co-occurrence mostly do not represent complex cores, and their
interpretation is not always univocal.

doi:10.1371/journal.pone.0139704.g004
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Fig 5. Extract from the HC–plot of Gavin2006 showing subsets of interest (SOIs). The green square frames the SOI of the three POL complexes. Black
represents that two proteins are never in the same cluster, dark blue colors represent clusters with a low co-occurrence and bright colors represent clusters
with a high co-occurrence.

doi:10.1371/journal.pone.0139704.g005
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Other IP/MS analysis methods
SOIs are small, which makes it possible to analyze them with other methods for which the full
dataset would be too large. We will discuss the SOI analysis with the methods Biclust [29],
HICLAS [30] and apComplex [31] in this publication. Biclust [29] is used for inducing highly
overlapping protein complexes from dense small–scale IP/MS datasets. The method is probabi-
listic, and as it needs many iterations to give reliable results, it is very computationally inten-
sive. Biclust can process both occurrence and abundance data.

The HICLAS (HIerarchical CLASses analysis) [30, 32] algorithm has not yet been used for
IP/MS analysis, but its underlying model fits the expected effects of overlapping clusters on
pure 0/1 data and it was tested for that reason. An HICLAS model with K clusters creates K
protein clusters and K IP clusters. In the model, an I × J protein by IP dataset D is approxi-
mated by a model matrixM of the same size.M is composed asM = A� B, where A is a I × K
binary matrix with Ai, k denoting whether protein i is in protein cluster k, B is a J × K binary
matrix with Bj, k denoting whether IP j is in IP cluster k and� is a binary matrix multiplication
operator where each result> 0 is set to 1, for example, 1+1 = 1. HICLAS minimizes the residu-
als function f over the matrices A and B, where f denotes the sum of squared differences
between the model matrixM and data matrix D as

f ðA;BÞ ¼
XI

i¼1

XJ

j¼1

ðDi;j �Mi;jÞ2: ð1Þ

We applied HICLAS in our tests with different numbers of clusters and examined the resid-
uals of each analysis to find the optimal number of clusters. We used the possibility to weight
negative residuals differently than positive residuals [33].

The method apComplex [14, 31] uses a local modeling algorithm on the bait-prey interac-
tion graph to reconstruct possible complexes in pure occurrence data and was previously used
for analyzing the yeast datasets.

Cluster quality assessment
The tree–shaped graphs from our HC4N method contain more information than just the clus-
ters themselves; however, no comparison method that takes this additional information into
account is available. To make the comparison possible, we removed the tree information from
the result and joined clusters that were overlapping by more than 60%. The same joining step
was applied to the results of the other methods for a fairer comparison. This joining step
increased the quality of all methods because they often produce numerous, very similar small
clusters that, when joined, represent the reference complexes better.

We used the method by Brohée and van Helden [34] to evaluate our results. The method is
capable of measuring how accurately a set of reference complexes is predicted by a set of clus-
ters, and it has already been used to assess complex predictions in other studies [17, 18]. Three
quality measures are provided by the method: sensitivity, positive predictive value (PPV) and
accuracy. The sensitivity is the fraction of proteins from the reference complexes that are
found in the predicted clusters; the PPV is the fraction of proteins from the predicted clusters
that belong to the reference complexes. From sensitivity and PPV, the accuracy is calculated as
the square root of their product. For a set of predicted clusters and a reference complex set, an
accuracy of 1 is reached when each reference complex perfectly matches one of the clusters.

One shortcoming of this method is that the accuracy does not decrease when a prediction
method produces too many clusters that contain proteins from the reference complexes, as just
the best matching cluster for each reference complex is taken into account. Hence, a score

Hierarchical Strategy to Explore IP/MS Data for Protein Complexes

PLOS ONE | DOI:10.1371/journal.pone.0139704 October 8, 2015 9 / 17



called separation is provided by the method in addition, denoting how many predicted com-
plexes represent one reference complex. The separation score is 1 when each predicted complex
covers exactly one reference complex.

In our comparison, not all analysis methods could be applied to all datasets. For apComplex,
the large datasets do not produce results due to memory problems when running on a PC with
12 gigabytes of memory. Both Biclust and HICLAS did not produce results on the large sets
within a reasonable amount of time.

Results
The HC4N performance depends on optimal parameters for level 1. To find these parameters,
we initially allowed HC4N to create the level–1 clusters with automatic setup where the thresh-
olds for co-occurrence and set–wise completeness are set as high as possible so that each pro-
tein is still assigned to at least one cluster.

We examined the HC-plot for the result to determine at which protein co-occurrence level
the first clusters appear. When the clusters were too large, we set the co-occurrence threshold
slightly higher than before, and when they were overlapping too much, we set the set-complete-
ness parameter higher. For the SOI analyses, we have set the co-occurrence threshold and set-
completeness parameter slightly lower than in the automatic setup to detect the interaction
level of complex–complex interactions (see below). A scheme for how to use HC4N is located
in S2 Text and details for each large–scale analysis, including Figures, are in S3 Text.

The results are summarized in Table 2. HC4N gains good sensitivity and PPV for most data-
sets. The separation values are between 0.2 and 0.42, which is acceptable but shows that HC4N,
like most methods, tends to create slightly too many clusters. A better separation value would
be achieved by joining the clusters with a lower threshold at the cost of a lower specificity.

Table 3 compares our accuracy with other methods. We obtained the scores for Biclust,
HICLAS and apComplex by applying the methods ourselves; the results for Wu et al. [17] and
Cai et al. [18] were taken from the original publications. The table shows that our method has
better accuracy in most cases. The dataset Krogan2004 is of low complexity, and previous
methods already gained an accuracy of 0.72, which was still increased to 0.75 by HC4N. A
more substantial improvement was reached for Gavin2006 (0.73 compared to 0.57). Kro-
gan2006 is difficult to analyze, which is why previous methods scored below 0.5 and also why
HC4N only achieves 0.6.

When compared to other methods, HC4N does not always yield a larger separation score
(see S2 Table). In these cases, however, HC4N and the other methods give separation scores
that are in the same range. The two SOIs deserve a more detailed analysis as they contain over-
lapping and interacting complexes. They are discussed below.

Table 2. Summarized results of HC4N on all tested datasets.

Dataset Sensitivity PPV Accuracy Separation Runtime

Krogan2004 0.8 0.70 0.75 0.42 2 minutes

Krogan2006 0.5 0.72 0.6 0.22 8 hours

Gavin2006 0.78 0.68 0.73 0.36 30 minutes

Malovannaya 0.84 0.90 0.87 0.21 1 day

Gavin2006-SOI 0.88 0.58 0.72 0.27 2 minutes

Malovannaya SOI 0.99 0.78 0.88 0.21 2 minutes

doi:10.1371/journal.pone.0139704.t002
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Analysis of the Gavin2006-SOI dataset
The HC-plot from the Gavin2006 analysis shows subsets of interest, and we analyzed the
green–framed SOI (see Fig 5) as an example. We assume for this demonstration that we do not
know what type of complexes the cluster of the SOI contains. The subset Gavin2006-SOI con-
tains all proteins from the cluster and all IPs in which any of the proteins occur.

Analyzing the dataset starts by running HC4N with automatic setup and inspecting the
HC-plot. The plot shows complexes but only a few connections between them, as shown in
Fig 6, left side. We already know that all proteins have a certain degree of similarity because
they were assigned to one cluster in the large–scale analysis. We conclude that the automatic
parameters are too strict and not optimal for finding clusters with shared proteins. Therefore,
the parameters are lowered until the new HC-plot (Fig 6, right) shows a characteristic pattern
that denotes shared proteins. This pattern features proteins (which are the shared proteins)
with a very high co-occurrence to each other and a high co-occurrence to many other proteins
from different clusters. In the figure, the pattern contains YOR224C and YBR154C, which
have a high co-occurrence to almost all proteins in the plot. Two other proteins (YOR210W,
YPR187W) have a high co-occurrence to these two proteins. Three large clusters are shown in
the HC-plot, and the two proteins appear in all of them. We can assume that the SOI contains
(at least) three clusters that share the proteins from the pattern. The two other proteins that are
similar to the shared proteins are likely to be shared as well.

A comparison with the cyc2008 reference shows that the three clusters represent the three
POL complexes and that the four mentioned proteins are shared by them. The cluster result
does not show that two additional proteins are shared between POLI and POLII, as they are
exclusively assigned to POLII. Twelve SOI proteins are not in the cyc2008 reference. They were
searched on string-DB (www.string-db.org) [35], a graph–based on–line protein interaction
database. We included the interaction types “Co-occurrence” and “Experiments” into the
string-DB result, but no genetic information. We found that ten proteins interact with the POL
complexes to which they were assigned by HC4N. A network from string-DB showing all POL
proteins and the additional proteins can be found in S1 Fig.

The cytoscape visualization of the result graph (Fig 7) confirms the findings. It shows four
clusters, of which the three largest clusters represent the three POL-complexes. The two pro-
teins (YOR224C and YBR154C) appear in all clusters, and therefore we can assume that
YOR224C and YBR154C interact with all complexes. The two proteins also appear together

Table 3. Accuracy of HC4N in comparison to competingmethods.

Dataset Cai et al. CACHET apComplex Biclust HICLAS HC4N

Krogan2004 NA NA 0.72 0.6 NP 0.75

Krogan2006 0.4 NA NP NP NP 0.6

Gavin2006 0.57 0.52 NP NP NP 0.73

Gavin2006-SOI NA NA 0.72 0.72 0.72 0.72

Malov. SOI NA NA 0.69 NA 0.75 0.88

The values for CACHET [17] and Cai et al. [18] were taken from the respective publications. We applied

the other methods on all datasets. “NA” means that no value for this dataset was available in the

corresponding original publication. “NP” means that we tried the method on the dataset but it was not

possible to produce a result.

doi:10.1371/journal.pone.0139704.t003
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multiple times with YOR210W and YPR187W, which denotes that all four proteins play an
important role in all three POL complexes.

The SOI was also analyzed with apComplex, BICLUST and HICLAS. ApComplex creates
more than 200 clusters, leading to an accuracy of 0.76 but very poor separation of 0.05. After
joining the clusters, a still–good accuracy of 0.72 at a now–good separation of 0.34 is reached.
In all cases, apComplex misclassifies several proteins.

Too many and too–small clusters are built by BICLUST, which represent the POL com-
plexes only partly and did not show the special role of the shared proteins. HICLAS was better
able to capture POL but requires the cluster number as prior knowledge. None of the methods
provides information about the interaction level of the clusters. A graphical comparison of the
results between HC4N, BICLUST and HICLAS can be found in S4 Text.

Analysis of the Malovannaya-SOI dataset
HC4N is applied with automatic settings, and the HC-plot is examined (Fig 8, left). Several
clusters are visible but only a few connections between them. We know based on the protein
selection that their clusters interact, and now we want to explore these interactions in detail.
We set the strictness for level 1 low enough such that the HC-plot shows the characteristic pat-
terns indicating complex interactions. The new plot (Fig 8, right) shows two large and two
small clusters of different structure. While one large cluster is dense and with high co-

Fig 6. Hierarchical cluster plots for two different HC4N parameter settings on the Gavin2006-SOI dataset. The numbers at the labels (_1,_2,_3,_12,
_123) show the POL-cluster assignments according to cyc2008. Left: Too–strict parameter settings (co-occurrence threshold 0.25, completeness threshold
0.4): The clusters are scattered and show low overlap. It is not clear which proteins are shared by how many complexes. Right: Lower parameters (0.2 and
0.5). The green frames show the three POL complexes as the HC4N result. The red square shows a characteristic pattern of four highly co-occurring proteins
that in addition, partly co-occur with most other proteins (yellow frames). They are the shared proteins of the three complexes.

doi:10.1371/journal.pone.0139704.g006
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occurrence, the other has a lower co-occurrence and two dense subclusters of more similar pro-
teins are visible within it. Two of the characteristic patterns, one with two and one with four
proteins, occur across several but not all clusters.

We conclude from the plot that the large cluster of lower co-occurrence is built from two
closely interacting subcomplexes, one containing the proteins of the four-protein pattern that
facilitates the interaction between the two subcomplexes. One subcomplex also interacts sepa-
rately with the large dense complex but less closely. The two-protein pattern indicates interac-
tion of the large dense complex with the two other small complexes.

The comparison with the reference shows that the MED complex is represented by the large
dense cluster and that the complexes POL and INT are the two subcomplexes of the other clus-
ter. The proteins POLR2A/B/C/G build the four-protein pattern, and it is known that they
facilitate the interaction between POL and INT as well as between POL and MED. It is also
known that POL and INT build a complex together, while POL and MED interact more tran-
siently. The two-protein pattern includes ELL and SPEN, which connect the small complex
around MLLT and ZNF to MED but not to INT.

All conclusions agree with the information from [22] and [36]. We also created the network
representation, see S5 Text. It allows the same conclusions and shows in a clearer manner
which protein interaction level is represented by which similarity level. MED and INT are indi-
vidually assigned to POL (but not to each other) in higher interaction levels, and the complexes
separate in the lower levels. The same holds for the small complexes that interact with MED. In

Fig 7. Network representation of the Gavin2006-SOI HC4N result. The green ovals indicate the three POL complexes as found by HC4N. The forth oval
(gray) contains proteins that are known to interact with POL but were not in the cyc2008 reference. The protein name suffixes (_1,_2,_3,_12,_123) indicate
the assignment to POLI-POLIII from the reference. The four shared proteins from the characteristic pattern (framed in dark gray) occur in all complexes and
together multiple times.

doi:10.1371/journal.pone.0139704.g007
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this specific dataset, the protein co-occurrence is relatively low, even within POL, MED and
INT, but still higher relative to the complex–complex interaction forms POLR-MED and
POL-INT.

The dataset was also analyzed with apComplex and HICLAS (see S4 Text). We were not
able to run Biclust because the dataset is too large. As with the other SOI analysis, the methods
were not able to capture the complexes correctly and created too many too–small clusters.
None of the methods is designed to uncover the different levels of interaction between the com-
plexes, and from their results, it is not clear which interaction level their clusters represent.

Discussion and Conclusions
Finding protein complexes in IP/MS data is a difficult task. Protein complexes can be found at
different organizational levels in IP/MS data, and these levels must be explored together. The
task is twofold: i) finding the complexes at different levels and ii) visualizing the result in a way
that makes the different levels visible. In essence, this is a data exploration and visualization
problem, and we designed our method, HC4N, to address that problem.

Exploratory data analysis is a partly subjective task, e.g., by selecting parameters during
analysis. While most software tools come with default parameters, understanding their effect
on the result remains a problem. Our method not only supports automatic and manual param-
eter settings but also allows the user to retrace the effect of parameter changes with visual

Fig 8. Hierarchical cluster plots for the Malovannaya SOI. Left: With too–strict automatic thresholds (co-occurrence 0.09, completeness 0.6), correct
clusters are visible but not the connections between them.Right: Lower parameters (0.05 and 0.5) create patterns indicating shared proteins. Two large and
two small clusters are visible, framed by the thick green squares. MED appears as a separate cluster, while INT and POL appear together as dense subsets
of one cluster. POL and INT can build a more stable complex together than POL and MED. One pattern (framed in yellow) contains POLR2 A/B/C/G, which
are important interactors within both the POL-INT and the POL-MED complex. ELL2 and SPEN (framed in cyan) comprise another pattern and are important
for the interaction between MLLT and the MED complex.

doi:10.1371/journal.pone.0139704.g008
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feedback. The change of parameters is very insightful because it enables exploring the different
levels of organization of the protein complexes in a given dataset.

A major problem for all complex finding tools is noise in the IP/MS data, leading to many
false positives. While HC4N cannot actively remove noise, its built–in visualization tools help
in detecting noise. In noisy data, HC4N will find many small, possibly false-positive clusters at
low co-occurrence levels when applied with automatic parameters. Detected true-positive clus-
ters may not have a fundamentally higher co-occurrence than the false positives. This leads to
characteristic HC-plots without the typical clusters of high co-occurrence that appear when
analyzing low-noise datasets. The behavior is demonstrated with examples in S3 Text.

We have shown in this manuscript that protein complexes occur at different interaction and
similarity levels, even in the same IP/MS dataset. Our new method, HC4N, is able to find com-
plexes of different types and has been validated thoroughly using several datasets and compari-
sons with existing methods. The philosophy behind HC4N is to provide an interactive
exploratory tool for analyzing IP/MS data that can be used (and tuned) by the biologists.
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et al..
(PDF)

S2 Table. HC4N separation scores. Separation scores of HC4N in comparison with the other
methods.
(PDF)
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(PDF)
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S3 Text. HC4N analyses.HC4N analyses on the large–scale datasets.
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