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Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin
disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both
immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is
the major cellular target of mycolactone explains much of the disease pathology, including
the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines
from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation
pathway proteins and costimulatory molecules. However, there has long been evidence
that the immune system is not completely incapable of responding to M. ulcerans
infection. In particular, IL-1b was recently shown to be present in BU lesions, and to be
induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner.
This has important implications for our understanding of BU, showing that mycolactone
can act as the “second signal” for IL-1b production without inhibiting the pathways of
unconventional secretion it uses for cellular release. In this Perspective article, we validate
and discuss this recent advance, which is entirely in-line with our understanding of
mycolactone’s inhibition of the Sec61 translocon. However, we also show that the IL-1
receptor, which uses the conventional secretory pathway, is sensitive to mycolactone
blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating
IL-1b function in skin tissue, including the transient intra-macrophage stage ofM. ulcerans
infection, is urgently needed to uncover the double-edged sword of IL-1b in BU
pathogenesis, treatment and wound healing.
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INTRODUCTION

Buruli ulcer (BU) is a neglected tropical disease resulting from subcutaneous infection by
Mycobacterium ulcerans. It typically presents as painless, ulcerative skin lesions or as pre-
ulcerative nodules, plaques and in oedematous forms (1). This environmentally acquired
infection is reported in 33 countries world-wide, but is most common in West Africa and
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Australia (2, 3). The disease has a high morbidity, causing both
disfigurement and disability (1). Untreated, the infection can
become chronic and extend up to 15% of body surface-area.
When diagnosed early, treatment with antibiotics alone can be
effective (4). More severe cases may also require surgery,
including debridement, skin grafts or, in extreme cases,
amputation. Physiotherapy and long-term rehabilitation are
frequently required where the disease has affected joints and
even in high resource settings wound healing can take over a
year (5).

M. ulcerans and Mycolactone
In contrast to the granulomatous immune responses typical of
mycobacterial infections such as TB and leprosy, BU lesions
usually display clusters of extracellular bacilli within the necrotic
tissue with a relative paucity of infiltrating leukocytes. This
immunosuppression, affecting both innate and acquired
immune responses, is due to mycolactone, the exotoxin
virulence factor unique to M. ulcerans (6).

Mycolactone production is encoded by a large plasmid,
acquired by M. ulcerans and the other mycolactone-producing
mycobacteria during their evolutionary emergence from a
common ancestor highly similar to M. marinum (7, 8). The
chromosomal genome ofM. ulcerans is ~98% identical to that of
M. marinum (9), sharing more than 4,000 orthologous genes
(10). However, extensive gene rearrangements, expansion of
pseudogenes and frequent insertions of IS2404 and IS2606
have led to loss of several virulence factors. For example, M.
ulcerans has lost two out of the five ESX secretion systems,
including the ESX-1 and its substrate, ESAT-6, which facilitate
mycobacterial phagosomal escape into the cytoplasm (9). It
seems likely that these losses are compensated by the gain of
mycolactone, since this diffusible, lipid-like molecule has wide
ranging effects on host cells and tissues that replicate the
pathological features of BU (6).

Mycolactone mimics the effects of M. ulcerans infection upon
injection into tissue (6) inducing immunosuppression, analgaesia
and endothelial cell dysfunction (11, 12). Mycolactone suppresses
both innate and adaptive immune responses, ablating production
of cytokines and chemokines by monocytes, macrophages,
dendritic cells and T cells (13–19), preventing the induction of
immune receptors and co-stimulatory proteins (13, 17), and
restricting antigen presentation (13–16, 20). This wide-reaching
immunosuppression is thought to be central to the lack of systemic
inflammation seen in BU patients and explains the dearth of
inflammatory cells close to the bacteria within lesions.

Furthermore, mycolactone is both cytopathic and cytotoxic,
causing cytoskeletal rearrangements, rounding up and
detachment of cells (6, 21), cell cycle arrest (6), disturbance of
Ca2+ flux (17, 22), oxidative stress (23–25), activation of the
integrated stress response (26, 27), autophagy (28, 29) and,
eventually, apoptosis (26, 30). Importantly, in most cell types,
apoptosis occurs at least several days after exposure in vitro (11,
26). In BU lesions there is strong evidence of mycolactone-
induced apoptosis (31) and tissue necrosis, with debris from
neutrophils and macrophages in close proximity to the bacteria
(32–34). There is also cytotoxicity to neurons that may underpin
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the analgaesia (35, 36), although alternative explanations have
also been proposed (37).

Sec61 Inhibition by Mycolactone
We discovered that mycolactone inhibits co-translational
translocation of proteins into the endoplasmic reticulum (ER) by
the Sec61 translocon (16) (Figure 1), and it is now clear that this
mechanism underlies most of the biological actions of mycolactone
laid out above. Crucially, this is the first mechanistic explanation
for the biological effects of mycolactone that has been corroborated
by multiple labs worldwide (16, 18, 38, 39), and is now accepted by
the WHO as the mechanism that substantially explains the
immunosuppression and cytotoxicity in BU (40).

It is useful to understand the details of Sec61 inhibition by
mycolactone, as it applies across the nucleated cells of higher
eukaryotic species that harbor M. ulcerans infections (41, 42).
The Sec61 translocon consists of 3 subunits, Sec61a, Sec61b and
Sec61g, with Sec61a being the dynamic major pore forming
subunit. It can open in two directions – via a central pore
between the cytosol and ER, and sideways via a “lateral gate”.
When the majority of secretory or membrane proteins are
synthesized, they undergo a process of co-translational
translocation. Here, their signal peptide or signal anchor
engages with a specific site on Sec61a, which then opens both
the lateral gate and the pore (Figure 1A). Mycolactone acts by
binding to Sec61a (18, 43) and blocking the transit of proteins
through the pore (38, 44). We recently resolved the structure of
Sec61 bound to mycolactone using cryo-electron microscopy
(43), which revealed that mycolactone occupies the entrance to
the signal peptide binding site and, although the lateral gate is
open, the channel remains closed (Figure 1B). Importantly,
Sec61a is no longer able to move dynamically, and is instead
trapped in this unproductive conformation.

This model fits well with the biochemical data, where
mycolactone inhibits translocation of signal peptide-bearing
proteins that use Sec61 to access the secretory pathway, i.e. co-
translationally translocated secretory proteins, type I and type II
transmembrane proteins, and a subset of polytopic proteins (18,
27, 44) (Hall, Hsieh, Simmonds et al., unpublished)
(Figures 1C, D). Based on these features, and the high
conservancy of Sec61-dependent translocation (45), the pattern
of proteins affected by mycolactone in any given cell type is
highly predictable. However, since constitutively expressed
proteins are depleted at the turnover rate (11), which is highly
variable, some proteins are lost more rapidly than others (27).
On the other hand, induced (e.g. immune) responses are
extremely sensitive to mycolactone’s effect on new protein
production. Hence we and others (46) believe that many, if not
all, of the cellular effects of mycolactone can be explained by
Sec61 inhibition. Indeed, some observations previously ascribed
to other mechanisms can retrospectively be ascribed to Sec61
inhibition, such as depletion of the type I transmembrane
proteins e-Cadherin (21), L-selectin (20) and CD3 (17). Formal
links have now been proven between Sec61 inhibition and many
different aspects of mycolactone’s functions. These include loss
of macrophage inflammatory mediators (16), T cell responses
(18) and antigen presentation (47).
January 2022 | Volume 12 | Article 788146
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Translocation blockade is also intrinsically linked to
mycolactone’s cytotoxicity, as forward genetic screening
identified mutations in the gene for Sec61a, that reduce its
ability to bind mycolactone (43). Cells carrying these resistance
mutations survive and replicate in the presence of mycolactone
(18, 26, 39, 43). Our working model is that the translocation
blockade results in protein translation in the wrong cellular
compartment (i.e. the cytoplasm), where they are degraded by
the proteasome (16) or later removed by selective autophagy (28)
(Figure 1D). Eventually these systems become overwhelmed,
resulting in proteotoxic stress. Inhibition of Sec61 has been
shown to be directly responsible for Ca2+ flux disturbance,
induction of an integrated stress response and autophagy (22,
26, 28).
Frontiers in Immunology | www.frontiersin.org 3
EVIDENCE FOR AN IMMUNE RESPONSE
TO M. ULCERANS

Despite the fundamental process that mycolactone inhibits, and
the critical role that secreted proteins and membrane receptors
play in the immune response, there is significant evidence for an
immune response to infection with M. ulcerans. For instance,
despite reports of T cell anergy in BU patients, T lymphocyte
responses to M. ulcerans antigens can be found in the blood of
most BU patients (48–51). Notably, these responses can also be
detected in uninfected people living in endemic areas (52, 53),
even if they bear no sign of clinical disease, suggesting previous
subclinical exposure to M. ulcerans. Furthermore, granulomas
may develop in BU patients with late-stage disease (54) and
A

B

C

D

FIGURE 1 | The mechanism of action of mycolactone at the Sec61 translocon and its influence over conventional and unconventional secretion. (A) Sec61-dependent co-
translational translocation of proteins into the ER involves recognition of a signal peptide (SP) or signal anchor by the signal recognition particle and its receptor (not shown),
which transfer it to Sec61. This results in reorganization of the translocon and movement the Sec61a plug domain, opening the central pore and allowing transit of the
translating protein into the ER. Mycolactone binds Sec61a, preventing the SP from accessing its binding site at the lateral gate. Although the lateral gate is open, the plug
remains closed and the translocon is locked in an inactive state. (B) The structure of inhibited Sec61, with mycolactone bound inside the lateral gate of Sec61a. Dark purple;
Sec61a, light purple; Sec61b, pink; Sec61g, yellow/red = mycolactone (from PDB:6Z3T). Two views are shown, looking down from the cytosol towards the ER and from the
side, as in (A). (C) Mycolactone-dependent inhibition of Sec61 affects a wide range of proteins, including secretory proteins with SP, type I transmembrane proteins
(N-terminal ‘out’, with SP), type II transmembrane proteins (N-terminal ‘in’, with signal anchor), and a subset of polytopic proteins (particularly those with an SP).
(D) Conventional and unconventional secretion of cytokines and inflammatory mediators. Stimulation of macrophage pattern recognition receptors (PRRs) promotes
activation of signalling pathways (Signal 1) e.g., NF-kB, leading to transcriptional induction of many genes, including conventionally secreted proteins (eg IL-6), type I
transmembrane proteins (eg CD68), type II transmembrane proteins (eg TNF, cleaved from the cell surface by ADAM17, not shown), as well as unconventionally
secreted proteins (eg IL-1b). Here, the pathways diverge, with conventionally exported inflammatory mediators entering the ER via Sec61 while pro-IL-1b translation
occurs in the cytosol. Activation of the NLRP3 inflammasome (Signal 2) activates pro-caspase 1, which cleaves pro-IL-1b to its mature form. Mature IL-1b is
secreted via unconventional secretion pathways involving gasdermin D (GSDMD) pore formation, and/or membrane-bound organelles such as multivesicular
bodies (MVB), autophagosomes and secretory vesicles loaded via TMED10 (not shown) at the ER-Golgi intermediate compartment (ERGIC). M. ulcerans
(Mu) was recently shown to provide Signal 1 by means of TLR2 activators on its cells surface, and Signal 2 via mycolactone (MYC), which also inhibits
Sec61 at the ER membrane. Figures generated using BioRender.com and Chimera X (https://www.rbvi.ucsf.edu/chimerax).
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spontaneous healing without antibiotics has also been reported
(55–57). Hence, it is possible that many BU cases could
eventually self-heal without medical intervention.

Control ofM. ulcerans infection is reported in both guinea pig
(58) and FVB/N mouse strain models (59). Initial evidence
suggested the latter involves innate but not acquired immune
responses (59) but recently, Foulon and colleagues demonstrated
a correlation with the emergence of plasma cells within the local
skin tissue, and mycolactone inhibitory antibodies (60), as well as
down-regulation of mycolactone synthesis (61), although the
drivers of this are unclear.

While these observations might be explained by the spatial
distribution and local concentrations of mycolactone in infected
tissue, genetic studies provide further evidence that macrophage
responses are important in M. ulcerans infection. Many of the
polymorphisms that affect either the likelihood of developing BU
or disease severity impact the innate response to intracellular
infection (62–65). For example, SNPs in the gene for the
macrophage activating cytokine IFN-g (IFNG), and iNOS, the
inducible nitric oxide synthase that generates bactericidal NO in
macrophages, both increase susceptibility to infection.
Interestingly, SNPs in three genes involved in the autophagy
Frontiers in Immunology | www.frontiersin.org 4
pathway also affect BU. Two polymorphisms have been
identified in the E3 ligase PARK2 which increase susceptibility
to BU while one inNOD2 increases the risk of severe disease (62).
By contrast, a SNP in ATG16L1 is associated with reduced risk of
ulceration (62, 65). This is particularly intriguing as we recently
uncovered a protective role for autophagy in the cellular response
to mycolactone (28).

Themost recent evidence of an ongoing innate immune response
toM.ulceransbacteria is thediscovery thatmacrophages produce IL-
1b following exposure to mycolactone (66). Given that most other
cytokines and chemokines made by macrophages are Sec61-
dependent and therefore strongly suppressed by mycolactone, this
discovery likely has especial importance for BU. We have therefore
validated this important finding in our laboratory (Figure 2), as will
be discussed in more detail below.
IL-1b

IL-1b, produced predominantly by monocytes and macrophages,
is a potent pyrogen and one of the ‘alarm’ cytokines known to
have widespread and systemic effects once induced (77). Foulon
A B

C

FIGURE 2 | Induction of macrophage IL-1b activation and secretion by M. ulcerans. (A) IL-1b production by PMA-activated THP-1 cells incubated for 24 h with 0.05%
DMSO, 10 ng/ml E.Coli-derived LPS (Enzo) with or without 1 mM ATP or 31.25 ng/ml synthetic mycolactone (MYC) or M. ulcerans Mu_1082. At this time point THP-1 cell
viability was >95%. IL-1b was measured by ELISA (eBioscience) in triplicate (mean ± SD). Results are representative of duplicate experiments. (B) Rheumatoid arthritis (RA)
synovial membrane cultures were isolated as in (67) and then cultured in medium alone or medium containing increasing concentrations of natural mycolactone (MYC) for 24
h. The concentration of IL-1b, TNF, IL-6, IL-8, IP-10 and IL-10 in the cell supernatants were measured by ELISA (68–70). This mixed cell population, including predominantly
CD45- fibroblast-like cells, CD14+CD45+ macrophages and CD3+CD4+ T lymphocytes, are highly activated, and spontaneously produce cytokines without further stimulation.
In addition to those shown, these cells also secrete other cytokines/chemokines/inflammatory mediators including CCL5, CCL2, GM-CSF, IL-23, IL-17, IL1RA,
IL-11,TNFRSF1B (TNFR2), MMP1, MMP2, MMP3, MMP13, and TIMP1, but not IFNg or lymphotoxin (67, 71–76). All RA patients gave written informed consent
and the study was approved by the Riverside Research Ethics Committee, REC number: 07/H0706/81. Violin plots showing median and quartile for n = 5-8
patients; median control values for the measured cytokines were IL-1b (103 pg/ml), TNF (433 pg/ml), IL-6 (139 pg/ml), IL-8 (229 pg/ml), IP-10 (116 pg/ml) and
IL-10 (92 pg/ml). (C) IL-1R1 surface expression in human dermal microvascular endothelial cells exposed to 0.02% DMSO, or increasing concentrations of synthetic
mycolactone (MYC) for 24 h. Cells were dissociated, stained with anti-IL-1R1 antibody (PA546930, Invitrogen) or isotype goat IgG (AB-108-C, bio-techne), donkey anti-
goat IgG FITC (A16000, Invitrogen), and subjected to flow cytometry analysis. Mean fluorescence intensity (MFI) is presented as a % of untreated control (mean ± SEM,
n = 3). For all panels ns; not significant, *P < 0.05, ***P < 0.001, ****P < 0.0001 using a one-way ANOVA and Dunnett’s multiple comparison test.
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and colleagues detected IL-1b in lesions arising fromM. ulcerans
infection in both BU patients and in animal models. In vitro,
IL-1b was induced in both murine and human primary
macrophages, by a variety of different mycolactone-containing
stimuli, including purified or synthetic mycolactone together
with LPS, M. ulcerans bacteria, and mycolactone-containing
extracellular vesicles (EVs) (66). This latter preparation,
derived from the extracellular matrix of M. ulcerans, contains
high concentrations of mycolactone, as well as a variety of
proteins, carbohydrates and lipids (78).

The induction and biosynthesis of IL-1b differs from that of
many other cytokines, chemokines and inflammatory mediators
such as TNF, IL-8 and Cox-2 (Figure 1D). In common are the
pathways that induce mRNA expression and therefore protein
synthesis, such as NF-kB signaling (often referred to as “Priming”
or “Signal 1”). FollowingM. ulcerans, or mycolactone-containing
EV exposure, it has been demonstrated that priming of
macrophages is probably via activation of TLR2, since genetic
knockout of this receptor ablated the response (66). Although
TLR production is presumably sensitive to mycolactone (47, 79),
these priming signals occur very rapidly (minutes), before any
depletion is likely (hours/days) (15, 16). Importantly, however,
IL-1b lacks a signal peptide to direct the translating protein into
the canonical secretory pathway utilizing Sec61 at the ER. Instead,
IL-1b is translated as pro-IL-1b in the cytosol. A separate
signaling pathway that culminates in the activation of a
complex known as the inflammasome (referred to “Activation”
or “Signal 2”) is responsible for cleaving pro-IL-1b into
biologically active mature IL-1b. In macrophages, activation of
the NLRP3 inflammasome (a complex formed of NLRP3, ASC
and pro-caspase-1) cleaves and activates pro-caspase-1, which is
then able to cleave pro-IL-1b, although alternative mechanisms
also exist (80). Activators of the NLRP3 inflammasome are
known to include microbial infection, particulate matter and
ATP (81). While the precise mechanism involved in the
mycolactone-dependent activation of the NLRP3 inflammasome
is not known (66), it is highly likely that the toxin is providing
“Signal 2”.

We now confirm that mycolactone induces IL-1b release by
macrophages (Figure 2A). As before (66) mycolactone alone was
not sufficient to induce IL-1b production, requiring LPS or intact
M. ulcerans bacteria. However, mycolactone alone can super-
induce IL-1b secretion in a well-defined ex vivo model of
rheumatoid arthritis (RA) (67, 71–76), consisting of cultures of
synovial membrane cells from RA patients who have undergone
elective joint replacement surgery (Figure 2B). This mixed
population of cells spontaneously releases a range of cytokines,
chemokines and other mediators (See Figure 2 legend for
details). Within these cultures, endogenous damage associated
molecular patterns (DAMPs) activate TLRs providing the
priming signal to induce pro-IL-1b [reviewed in (82)].
Consequently, low amounts of mycolactone are able to super-
activate Signal 2 and boost the level of IL-1b released
approximately 4-fold.

Once produced, several mechanisms for secretion of IL-1b
have been proposed. All of these are independent of the canonical
Frontiers in Immunology | www.frontiersin.org 5
secretory pathway and Sec61-dependent translocation of proteins
into the ER, and are known as unconventional secretory pathways
(83) (Figure 1D). The precise mechanism taking place in a
particular circumstance depends on a variety of factors. A major
exit route relies on cleavage of gasdermin D (GSDMD) by
caspase-1 following activation of the inflammasome. The N-
terminal fragment oligomerizes, forming pores in the
membrane that facilitate the release of IL-1b and that can also
induce pyroptosis (84). Recent evidence has argued that GSDMD-
mediated IL-1b release is a tightly regulated process independent
of cell death (85), and while pyroptosis is a consequence of
GSDMD pore formation, it is not a prerequisite for IL-1b
release (83). An alternative pathway, involving different types of
cellular vesicles and/or membrane-bound organelles, can also
secrete IL-1b. TMED10 was recently identified as the translocon
for IL-1b into the ER–Golgi intermediate compartment (ERGIC)
(86). The autophagy pathway is also implicated in regulation of
IL-1b production at multiple levels, controlling inflammasome
activity, promoting processing of pro-IL-1b and mediating
secretion (87).

Hence, the recent discovery of IL-1b in BU lesions, and its
induction by mycolactone in macrophages is entirely in line with
our current knowledge of the cell biology and biochemistry of
Sec61 inhibition by mycolactone.
DISCUSSION - POTENTIAL
IMPLICATIONS OF IL-1b INDUCTION FOR
BURULI ULCER PATHOGENESIS

IL-1b is well known to induce inflammatory cytokines,
chemokines and other mediators from a wide range of cell
types (80, 88). The resultant local inflammation attracts an
influx of immune cells to a site of infection, hence IL-1b
release in BU could impact the ability of the host to respond to
M. ulcerans infection, by enhancing the activation state of
surrounding cells, including innate immune macrophages and
neutrophils. In the mouse footpad model of M. ulcerans
infection, treatment with the non-specific steroid anti-
inflammatory dexamethasone reduced footpad swelling (66),
suggesting that IL-1-driven proinflammatory responses may
contribute to BU pathology. However, its potential role in
controlling the infection has not yet been reported. Pre-
existing IL-1b may also play a role in driving paradoxical
responses that are observed at the outset of antibiotic
treatment. As well as directing pathogenesis and antimicrobial
immune responses, IL-1 also plays an important role in wound
healing (89, 90), which likely becomes important during
spontaneous healing. Moreover, other IL-1 family cytokines
utilize the same strategies for protein expression and
unconventional protein secretion, including IL-18, IL-33,
IL-36, IL-37, and IL-38 (88, 91). Hence, these other cytokines
may also bypass mycolactone’s blockade of co-translational
translocation and may be present in M. ulcerans-infected
tissues, further modulating immune responses. Indeed, IL-18
January 2022 | Volume 12 | Article 788146
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production by LPS-stimulated macrophages is increased, not
blocked, by mycolactone (66).

A further downstream target of IL-1b that likely affects both
pathological and protective responses toM. ulcerans infection is the
vascular endothelium, which lines the blood vessels making up the
skin microvasculature. Endothelial cells are extremely responsive to
IL-1b, whichmodulates a range of functions, depleting junctional b-
catenin andVE-cadherin (thus increasing vascular permeability) and
down-regulating anticoagulant proteins such as thrombomodulin
and the EPCR. IL-1b also induces procoagulant PAI-1, enhances
tissue factor expression, and promotes angiogenesis via upregulation
of adhesionmolecule and vascular endothelial growth factor (VEGF)
expression (91). Importantly, we have recently shown that
mycolactone and IL-1b have an additive effect on both
thrombomodulin depletion from endothelial cells and vascular
permeability increase (12), suggesting that the local production of
IL-1bmay furtherworsen the endothelial cell dysfunction inducedby
mycolactone (11).

However, these downstream effects are all dependent on IL-1
receptor expression and are complicated by the fact that
physiological responses to IL-1 are moderated by a complex
system of receptors, co-receptors, ligands, and endogenous
antagonists. IL-1b is recognised by its cognate receptor, IL-
1R1, which then binds to a co-receptor IL-1R3/IL-1RAcP,
triggering intracellular signalling. However, some cells,
including neutrophils, express both IL-1R1 and the decoy
receptor IL-1R2 (92) which increases the amount of IL-1b
needed to activate them. On the other hand, highly sensitive
cells, such as endothelial cells, express IL-1R1 but undetectable
IL-1R2 (93, 94). A further problem in interpretation of the role of
IL-1 family proteins in BU arises because the IL-1 receptors are
all single-pass type I membrane proteins secreted through the
conventional ER-Golgi pathway and, as such, are likely to be
susceptible to mycolactone inhibition (Figures 1C, D) (27).
Indeed, flow cytometry analysis of IL-1R1 expression by
primary dermal microvascular endothelial cells shows that this
receptor is susceptible to mycolactone-dependent loss
(Figure 2C). The closer cells are to the infected tissue and the
source of mycolactone production the more likely they are to be
depleted of receptors and therefore insensitive to IL-1b.

In conclusion, IL-1b is likely to be a double-edged sword in
BU. The question of whether it is driving the pathology,
protecting against further expansion of the infection, or both,
should be urgently addressed as it offers an attractive alternative
approach to therapy. IL-1b targeting with canakinumab, or its
cell surface receptors with Anakinra, are proposed treatments for
a variety of conditions including vasculitis and diabetic foot
ulcers (95–101). Similarly, diabetic mice receiving IL-1b
Frontiers in Immunology | www.frontiersin.org 6
neutralizing antibodies display reduced inflammation and
enhanced re-epithelialization of skin wounds (99). However, in
the context of the local inflammation, abnormal vascular
phenotype and long-lasting wounds in Buruli ulcer, there are a
number of issues that need to be considered. We should
thoroughly examine whether the level of IL-1b and its receptor
in affected tissues is sufficient to activate signaling, what happens
during and after antibiotic treatment and whether its presence
promotes or hinders wound healing. Understanding the role of
IL-b in BU may allow us to develop new treatments that aid
recovery from this devastating disease.
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