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Abstract: Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to
choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.). Previously two proposals for the single name nomenclature in Aspergillus were presented: one
attributes the name “Aspergillus” to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that
Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the
other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test
was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM), using 96 species of Penicillium, Aspergillus and related taxa.
Bayesian (MrBayes) and Ultrafast Maximum Likelihood (IQ-Tree) and Rapid Maximum Likelihood (RaxML) analyses gave the same conclusion highly supporting the
monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S
rRNA (D1-D2), RPB1, RPB2, CaM, BenA, Tsr1, Cct8) of 204 different species. Both Bayesian (MrBayes) and Maximum Likelihood (RAxML) trees obtained by this
second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results
obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is
monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name
Aspergillus can be used for all the species belonging to Aspergillus i.e. the clade comprising the subgenera Aspergillus, Circumdati, Fumigati, Nidulantes, section Cremei
and certain species which were formerly part of the genera Phialosimplex and Polypaecilum. Section Cremei and the clade containing Polypaecilum and Phialosimplex
are proposed as new subgenera of Aspergillus. The phylogenetic analysis also clearly shows that Aspergillus clavatoflavus and A. zonatus do not belong to the genus
Aspergillus. Aspergillus clavatoflavus is therefore transferred to a new genus Aspergillago as Aspergillago clavatoflavus and A. zonatus was transferred to Penicilliopsis
as P. zonata. The subgenera of Aspergillus share similar extrolite profiles indicating that the genus is one large genus from a chemotaxonomical point of view.
Morphological and ecophysiological characteristics of the species also strongly indicate that Aspergillus is a polythetic class in phenotypic characters.
Key words: Aspergillus, Multigene phylogeny, Monophyly, Nomenclature, Teleomorphs.
Taxonomic novelties: Aspergillus subgenus Cremei, subgen. nov., Aspergillus subgenus Polypaecilum, subgen. nov., Aspergillago Samson, Houbraken & Frisvad, gen.
nov.; New combinations: Aspergillago clavatoflava (Raper & Fennell) Samson, Houbraken & Frisvad, comb. nov., Penicilliopsis zonatus (Kwon-Chung & Fennell)
Samson, Houbraken & Frisvad, comb. nov..
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INTRODUCTION

The genus Aspergillus contains some of the most abundant and
widely distributed organisms on earth, and comprises approxi-
mately 350 accepted species (Samson et al. 2014). It is one of
the fungal genera with the highest economic importance in
biotechnology (enzymes, organic acids, bioactive metabolites),
but members of the genus are also frequently reported as
foodborne contaminants (food spoilage and mycotoxin contam-
ination), or as causal agents of human mycoses (pulmonary
aspergillosis, otomycosis, keratitis). Aspergillus is also one of the
oldest names in fungal taxonomy since it was applied by Micheli
(1729), who gave it this name because the spore-bearing
structure characteristic of the genus resembled an aspergillum
(a device used by the Catholic church to sprinkle holy water).
However this morphological characteristic resulted in a broad
generic concept because it is associated to twelve quite different
Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.
Copyright © 2017, CBS-KNAW Fungal Biodiversity Centre. Production and hosting by ELSEVIER B.V
licenses/by-nc-nd/4.0/).
teleomorphs demonstrating the variation in physiological and
morphological features (Houbraken & Samson 2011, Pitt &
Taylor 2014). Houbraken et al. (2014) have reduced the num-
ber of teleomorphic names to ten (Petromyces, Neopetromyces,
Saitoa, Fennellia, Emericella, Hemisartorya, Neosartorya, Neo-
carpenteles, Cristaspora, and Eurotium) and showed that the
teleomorphs Warcupiella and Sclerocleista do not belong to the
Aspergillus monophyletic clade.

The most important change in recent fungal nomenclature is
the abandonment of dual nomenclature for pleomorphic fungi,
following the decision taken at the International Botanical
Congress in Melbourne (24–30 July, 2011). In the latest Inter-
national Code of Nomenclature for algae, fungi and plants (ICN,
McNeill et al. 2012), the single name nomenclature was adopted.
This has forced mycologists to choose one name for each fungal
genus (i.e Aspergillus, Fusarium, Penicillium, etc.). The ICN
recommended that either the sexual or asexual name can be
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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chosen, in contrast to the earlier recommendation that the name
of the sexual state should always be preferred. Several sexual
names have priority over the asexual ones, but the final choice
among the names should also be strongly supported by the
(mycological) community. In general, the nomenclatural decision
has been easily assigned for most fungal genera, but it some-
times became complicated for economically and socially
important fungi having a well-established sexual and asexual
name (Zhang et al. 2013). Even though taxonomy contains the
rather independent disciplines such as classification, nomen-
clature and identification, decisions concerning nomenclature
should take into account both the other two. In recent years
cladonomy has having a more and more important impact on
taxonomy, to a degree where monophyly is the overruling factor
in deciding which taxa (clada) should be accepted and which
names to give to them, rather than classificatory principles.

Phylogenetic approaches have helped to solve taxonomical
and nomenclatural problems. A clear example is evident in the
paper of Kepler et al. (2014) in which the robust monophyly of the
genus Metharrizum included the majority of species recognized
in Metacordyceps as well as the green-spored Nomuraea spe-
cies and those in the more recently described genus Chamae-
leomyces. In the same analysis Pochonia was shown to be
polyphyletic and the description of Metapochonia gen. nov. was
done to accommodate these species forming a separate clade.
In this regard, a dispute on the asexual genus Aspergillus and its
sexual generic names, started after the International Commis-
sion of Penicillium and Aspergillus (ICPA) discussed the single
nomenclature and made a decision on April 12 2012 (www.
aspergilluspenicillium.org).

Two proposals for the single name nomenclature in Asper-
gillus have been presented: one attributes the name “Aspergillus”
to clades comprising ten different teleomorphic names, by sup-
porting the monophyly of this genus (Houbraken & Samson
2011, Samson et al. 2014). In the second proposal Aspergillus
is considered to be a non-monophyletic genus, and it recom-
mends the preservation of the name Aspergillus only to species
belonging to subgenus Circumdati while maintaining the sexual
names in the other clades (Pitt & Taylor 2014, 2016, Taylor et al.
2016).

The first proposal considers the use of Aspergillus in a wide
sense and preserves this large important genus, with the
exclusion of some minor species with the anamorph of Asper-
gillus (i.e. A. clavatoflavus, A. zonatus and the Sclerocleista and
Warcupiella teleomorphs) and the inclusion of some taxa lacking
Aspergillus anamorph (Polypaecilum and Phialosimplex). As
alternative to the “wide” Aspergillus, the second proposal sug-
gests the non–monophyletic feature of Aspergillus and maintains
existing teleomorph names (i.e. Eurotium, Emericella, Neo-
sartorya, etc.) reducing Aspergillus mainly to species important
for food fermentation, spoilage and mycotoxin contaminations. In
this second proposal, as the type of Aspergillus belongs to the
Eurotium clade, it was also proposed to move the type of
Aspergillus to the subgenus Circumdati. In this respect, Taylor
et al. (2016) provided data to suggest that if the genus Asper-
gillus should be considered monophyletic the Penicillium clade
will belong within Aspergillus and the new nomenclatorial rules
would lead, e.g., to Aspergillus subgenus Penicillium. Therefore,
they propose to keep the sexual name Eurotium for subgenus
Aspergillus, Neosartorya for subgenus Fumigati, Emericella for
subgenus Nidulantes and Chaetosartorya for sect. Cremei.
Additionally, they propose the retypification of Aspergillus with
200
A. niger and to maintain Aspergillus names for some economi-
cally relevant species in the subgenus Circumdati. However, this
proposal is based on phylogenetic studies using the data set of
Houbraken & Samson (2011), that was set up to resolve the
phylogeny of the family Trichocomaceae and not specifically for
the genus Aspergillus. In fact, their analysis did not show enough
phylogenetic signals to unambiguously show the monophyly or
paraphyly of the wide Aspergillus genus.

To resolve the discussion of the two proposals it is important
re-examining the phylogenetic analysis to assess the monophyly
or paraphyly of this group of taxa with the “aspergillum” as the
main spore-bearing structure. Therefore, the aim of our study
was to test the monophyly of Aspergilli by a multilocus phylo-
genetic approach and this was achieved by two independent
analyses. The phylogenetic analysis using six loci were per-
formed by GP and DM at Bari, Italy whereas the nine loci
analysis was carried out by SK, JV and GS at Szeged, Hungary.
MATERIALS AND METHODS

Phylogenetic analysis using six loci

Ninety six strains belonging to species of Penicillium, Aspergillus
and related taxa were studied for their phylogenetic relationship
by using their publicly available sequences of the following six
loci: RPB1 and RPB2 genes coding for subunits of RNA poly-
merase II; Tsr1, coding for a putative ribosome biogenesis pro-
tein; Cct8, coding for the theta subunit of the TCP-1 chaperonin
complex; BenA coding for the beta-tubulin protein, and CaM
coding for the calcium binding protein calmodulin. The list of
strains and the relevant sequences accession number used is
reported in Supplementary Table 1.

DNA sequences of the six loci were singularly aligned with
Muscle (for RPB1, RPB2, CaM, BenA, and Cct8) and ClustalW
(for Tsr1) algorithms using the software MEGA7 (Kumar et al.
2016), manually optimized and trimmed to make sequences of
equal length, and then concatenated. The alignment is deposited
at TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:
S20285). Successively, the Multiple Sequence Alignment
(MSA) was evaluated for quality using Transitive Consistence
Score (TCS) offered by the T-Coffee web server (Chang et al.
2015). The presence of rogue taxa in the set of data was
evaluated through the RogueNaRok web server analysis,
because the presence of these taxa can frequently have a
negative impact on the results of a bootstrap analysis (e.g., the
overall support in consensus trees, Aberer et al. 2013). Then the
sequences were manually controlled and substituted if neces-
sary to settle the MSA. JModelTest2 (v2.1.6) (Darriba et al. 2012)
was used to find the preferred model of evolution for the
concatenated dataset, PartitionFinder (v1.1.1) (Lanfear et al.
2012) was used to investigate the best-fit partitioning schemes
and models of molecular evolution to be adopted in RaxML
analysis of the partitioned dataset, models were selected ac-
cording to Bayesian Information Criterion (BIC) for both tools.
The different tools performed to infer the phylogenetic tree were
as follows: a) MrBayes v3.2.6 (Ronquist et al. 2012) for posterior
probabilities (Bpp) using models of evolution on concatenated
dataset from JmodelTest; b) RAxML-HPC2 (v8.2.8) (Stamatakis
2014) for rapid bootstrap support (Rbs) using models of evolution
defined by JmodelTest and PartitionFinder on concatenated and
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partitioned dataset, respectively; c) IQ-Tree-omp (v1.4.1) (Minh
et al. 2013, Nguyen et al. 2015, Chernomor et al. 2016) for
UFML (Ultra Fast Maximul Likelihood) support (Ibs).

The CIPRES Science Gateway V 3.3 (Miller et al. 2010) was
used to perform MrBayes analysis, setting GTR + invgamma,
107 generations, sampling every 1 000 generations with a
burnin fraction of 0.25; and RaxML analyses, setting
GTR + GAMMA + P-Invar, executing 1 000 rapid bootstrap in-
ferences and thereafter a thorough ML search, for the concat-
enated and partitioned dataset respectively.

IQ-Tree analysis were done locally, setting GTR + I + G4 for
the concatenated dataset and the calculated charpartition BIC
(GTR + I + G4: RPB1, RPB2, CaM, BenA, and Cct8,
TPM2 + I + G4: Tsr1) for the partitioned dataset, both analyses
were run with 104 ultrafast bootstrap replicates.
Phylogenetic analysis using nine loci

Phylogenetic analyses were conducted using nine loci (18S
rDNA, 5.8S rDNA, 28S rDNA (D1-D2), RPB1, RPB2, CaM, BenA,
Tsr1, Cct8) with intron regions excluded from CaM and BenA
sequences. The dataset primarily consisted of publicly available
sequences which are listed in Supplementary Table 2. Additional
Cct8, RPB1, RPB2 and Tsr1 loci of Aspergillus species were
amplified and sequenced using the methods described previously
by Houbraken & Samson (2011). Sequences were deposited into
GenBank under the accession numbers KY006730-KY006827.
All sequences were aligned by PRANK v.140603 (Löytynoja
2014) with default settings. Individual alignments were concate-
nated by using SequenceMatrix 1.8 (Vaidya et al. 2011) and the
dataset was partitioned by the nine loci. An initial maximum
likelihood (ML) tree was generated from the dataset by raxmlGUI
1.5b1 (Silvestro & Michalak 2012) using the executables of
RAxML 8.2.7 (Stamatakis 2014) under the GTR model with
gamma-distributed rate heterogeneity with 500 rapid bootstrap
replicates. Sequences encoding Tsr1 are containing large num-
ber of indels therefore this initial tree was used to refine the
alignment of the Tsr1 sequences by PRANK with the -F option. In
the case of SSU, RPB2 and Tsr1 alignments FastGap 1.2
(Borchsenius 2009) was used to code the phylogenetic infor-
mation of gaps as binary characters implementing the “simple
indel coding” algorithm. The refined alignment of partial Tsr1
sequences and the indel matrix was incorporated in the
concatenated dataset. The final ML trees and branch supports
were estimated by 1 000 thorough bootstrap replicates under the
GTR + Γ model with ten partitions. Bootstrap support was map-
ped on the ML tree using the SumTrees script of the Dendropy
v4.2.0 package (Sukumaran & Holder 2010). The resulted best
tree and the bootstrap replicates were submitted for rogue
taxon identification by the RogueNaRok (http://rnr.h-its.org/,
Aberer et al. 2013) web service. Bayesian analyses were
performed on the partitioned dataset using MrBayes 3.2.6
(Ronquist et al. 2012) with GTR substitution model with gamma-
distributed rate variation across sites for 107 generations with
four chains and two replicates sampling every 1 000th genera-
tions. The burnin proportion was set to 0.25. Convergence and
ESS values of the runs were examined by Tracer 1.6 (Rambaut
et al. 2014).

To test the phylogenetic hypotheses of the monophyly of
Aspergilli, a constraint tree was generated by Mesquite v3.04
(Maddison & Maddison 2016). Per-site log likelihoods were
www.studiesinmycology.org
calculated for 20 unconstrained and 20 constrained ML searches
by using RAxML. To measure the support of the two hypotheses
Approximately Unbiased (AU) test was conducted by CONSEL
0.1j (Shimodaira & Hasegawa 2001) with 105 replicates.

Tree space visualization of ML and Bayesian analyses was
carried out by using the TreeSetVis v3.01 (Hillis et al. 2005)
package for Mesquite and the RWTY v1.0.1 package for R
v3.3.1 (R Core Team 2016). Sorting of the bootstrap replicates
was conducted by PhySortR v1.0.7 (Stephens et al. 2016)
package in R.
Branch support analysis

To verify the robustness of the six and nine-genes phylogeny the
branch supports of the principal nodes depicting the Aspergillus
and Penicillium monophyletic topology were evaluated. Three
categories of branch support (Anisimova et al. 2011, Minh et al.
2013) were considered: parametric (Bpp, aLRT-Chi2, aBayes),
nonparametric (Rbs, SH-aLRT) and hybrid (Ibs).

To compute, aLRT-Chi2, SH-aLRT and aBayes branches
support of the six-genes phylogeny, PhyML (v20130805)
(Guindon & Gascuel 2003) and IQ-Tree-omp (v1.4.1) analyses
were performed locally (Guindon et al. 2010, Anisimova et al.
2011). The single branch tests (SH-aLRT, aBayes) and ultra-
fast bootstrap approximation of the nine-genes phylogeny were
also conducted by using IQ-Tree v1.4.2 in 50.000 replicates
under the GTR + Γ model.
Analysis of extrolites

Strains of species expected to be outside Aspergillus were
analysed by HPLC-DAD (high performance liquid chromatog-
raphy with diode array detection as described by Frisvad &
Thrane (1987), using the agar plug method of Smedsgaard
(1997), as updated by Nielsen et al. (2011).
RESULTS

Phylogenetic analysis using six loci

The results of the six-gene phylogenetic analysis of the 96
strains belonging to species of Penicillium, Aspergillus and
related taxa highly supported the monophyly of Aspergillus and
its sister genus Penicillium in terms of Bayesian, UFML (IQ-Tree)
and RAxML analyses. In particular, the six genes MSA consisted
of 3 395 bps containing only the exons of each gene with the
respective length of RPB1 (767 bps), RPB2 (963 bps), Tsr1
(640 bps), CaM (150 bps), BenA (164 bps), and Cct8 (711 bps).
The number of conserved sites was 1 368, the number of vari-
able sites was 2 008, with 1 755 parsimony informative sites. The
Transitive Consistence Score (TCS) evaluate the robustness of
the six-gene MSA with the high score of 996. No rogue taxa have
been identified among the sequences of the strains used, con-
firming the absence of taxa that could have a negative impact on
the bootstrap analysis. The best model of evolution calculated
with the JModelTest2 tool was the GTR + I + G (General Time
Reversible + Invariant Site and Gamma Distribution) used for
non-partitioned analysis in RAxML and MrBayes analysis. The
best model of evolution for the RAxML partitioned analysis
201
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Fig. 1. Tree based on six genes. The tree shown is a rooted consensus tree inferred by maximum likelihood with partitioned dataset (IQ-TREE) and 10 000 bootstrap replicates,
branch support values are given for two maximum-likelihood implementations and one Bayesian inference method (from left to right: RaxML bootstrap support; MrBayes
posterior probabilities; IQ-TREE bootstrap support; respectively).
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calculated from Partition Finder was confirmed as GTR + I + G
for each partition of the six-gene MSA. The phylogenetic tree
comprehensive of the ML analysis (RAxML and IQ-TREE) and
the posterior probabilities Bayesian analysis with the same to-
pology is represented in Fig. 1. All five phylogenetic trees sup-
ported the monophyly of the genus Aspergillus respectively with
the higher bootstrap support of 94 % for the partitioned IQ-TREE,
1.0 for MrBayes and 63 % for RAxML not partitioned (see
Fig. S1). Interestingly all the resolved trees highly supported
(98 % IQ-TREE, 77 % RAxML and 1.0 MrBayes) the principal
node clustering genera Penicillium and Aspergillus together. In
addition, the five subgenera of Aspergillus are conserved in all
the phylogenetic analysis with the same topology (Fig. 1).

The phylogenetic analysis clearly showed that Aspergillus
clavatoflavus, A. zonatus, Penicillium megasporum, and
P. arenicola, do not belong to their respective sister genera,
being outside of the two lineages. In addition, the teleomorphic
genera Warcupiella and Sclerocleista, formerly assigned with an
202
Aspergillus anamorph, were found to be outside the Aspergillus
monophyletic clade.

Phylogenetic analysis using nine loci

The 204 species analysed in the concatenated alignment
included 86 Aspergillus, 66 Penicillium and 52 species from other
genera with 6 603 nucleic sites (18S rDNA: 1 792 sites, 5,8S
rDNA: 161, 28S rDNA: 647 sites, BenA: 241 sites, CaM: 402
sites, Cct8: 718 sites, RPB1: 768 sites, RPB2: 983 sites, Tsr1:
891 sites) and 201 binary sites of indels. Phylogenetic trees
obtained from both ML and Bayesian analyses (Figs 2 and S2,
Fig 5B) were highly congruent and both analyses have shown
that the genus Aspergillus is monophyletic with high support
values. The results have evidenced that the genus Aspergillus
can be divided into six subgenera comprising 22 sections.
Maximum likelihood and Bayesian inference strategies recov-
ered subgenus Aspergillus (100/1), Polypaecili (100/1), Cremei
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THE GENUS ASPERGILLUS IS MONOPHYLETIC
(90/1), Fumigati (100/1) and Nidulantes (100/1) as strongly
supported clades with the exception of subgenus Circumdati (47/
1), which was strongly supported by Bayesian analysis but had
low support by the ML method.

The hypothesis of monophyly was tested using the con-
strained tree that is likely to be multifurcating to indicate uncer-
tainty between the two competing hypotheses and let the
algorithm find the most realistic ML solution for a given
constraint. Our constrained tree was drawn in Mesquite 3.04
forcing the two genera, Aspergillus and Penicillium to be para-
phyletic. Branches encompassing the members of genus
www.studiesinmycology.org
Penicillium were collapsed into polytomy as well as the members
of sections Terrei, Flavipedes, Jani, Nigri, Candidi, Flavi and
Circumdati in the Aspergillus clade. Altogether 20 constrained
and 20 unconstrained topologies were compared using the
approximately unbiased test with CONSEL. The test resulted in
the complete rejection of the hypothesis of Taylor et al. (2016).
The monophyly of the genus Aspergillus was accepted with p
values ranging from 0.323 to 0.706, with mean of 0.45815. The
hypothesis that genus Aspergillus is paraphyletic and Penicillium
is a sister clade of subgenus Nidulantes was rejected with low p
values in the range of 0.005–0.023, with mean of 0.0134.
203
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THE GENUS ASPERGILLUS IS MONOPHYLETIC
Tree space of the bootstrap replicates

To investigate the background of the high dissimilarity between
the results of Taylor et al. (2016) and our results we analysed the
tree space of the bootstrap replicates and the trees obtained
from Bayesian MCMC analysis by multi-dimensional scaling.

We reduced our dataset to Cct8, RPB1, RPB2 and Tsr1
genes without removing taxa to have only those genes that had
been used in the analysis of Taylor et al. (2016). The dataset was
un-partitioned without a binary matrix of indels. Both ML and
www.studiesinmycology.org
Bayesian analysis were conducted with the same settings as
applied on the nine-gene dataset. Our results with the four-gene
dataset differed from those of Taylor et al. (Fig. S3). Briefly, the
genus Aspergillus was a sister group and paraphyletic to the
genus Penicillium and subgenus Circumdati was not recovered
as a monophyletic clade. The most closely related group to
Penicillia was section Candidi. Subgenus Nidulantes formed a
well-defined monophyletic clade with a sister clade of the
members of section Nigri. Other sections from the subgenus
Circumdati were clustered together with high support except
205
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Fig. 4. Post-burnin tree space plots of 1 000 trees of Bayesian analysis with four (A) and nine (B) loci. Lines represent the connections between the subsequent generations
while dots represent the two-dimensional place of the trees in the space. The colour of the lines and dots represents the generations. On the heat map green coloured areas
represent the space occupied by larger number of trees.

KOCSUB�E ET AL.
sect. Circumdati however, the deeper branching was not statis-
tically supported. Members of subgenera Fumigati, Cremei and
Aspergillus formed monophyletic clades with moderate to high
support, but deeper nodes were poorly supported.

The results of the Bayesian analysis were similar to the re-
sults of the ML analysis. The relationship between Aspergilli and
Penicillia was the same as in the ML analysis. Five subgenera
formed well-defined clades with high statistical support, while
sections in subgenus Circumdati were not monophyletic
(Fig. S3). We re-analysed the dataset of Taylor et al. (2016)
without any modification, and the resulting trees were highly
congruent to the ones obtained with our reduced dataset. We
were not able to obtain a tree with a monophyletic clade con-
taining all sections from subgenus Circumdati regardless the use
of Bayesian or ML approaches. However, this difference from the
tree shown in the article of Taylor et al. (2016) can be the result of
the different parsimony starting tree between the two analyses,
206
as different seeds will generate different starting trees, which can
have an impact on the final ML tree.

We used the TreeSetViz package for Mesquite to investi-
gate the distribution of the bootstrap replicates in the tree
space of our and the reduced dataset. To visualize the tree
space 1 000 bootstrap replicates were used from both runs.
The topological distances between all replicates were
measured by the calculation of pairwise unweighted Robinson-
Foulds (Robinson & Foulds 1979, 1981) distances. The dis-
tribution of the replicates was visualized in two dimensions by
multidimensional scaling (MDS) (Lingoes et al. 1979, Young &
Hamer 1987, Borg & Groenen 1997). The MDS search was run
until no major changes were observed in the value of the stress
function to minimize the distortion between the true distance
and the two-dimensional distance. The analysis showed that
the bootstrap replicates of the nine-gene dataset were grouped
together in a well-defined island, while the replicates of the
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Fig. 5. Collapsed phylograms showing the support values of the principal nodes involved in the monophyly of Aspergillus based on six (A) and nine (B) genes. The tables are
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four-gene dataset were much more widely distributed in the
tree space (Fig. 3C). This indicates that the variation between
the bootstrap samples in the reduced dataset is higher, sug-
gesting that the alignment used in the analysis has substan-
tially lower phylogenetic signal, which is not strong enough to
resolve all clades with high confidence and by the addition of
more genes and partitioning the dataset the signal became
more balanced.

Replicates which support the monophyly of Aspergilli were
sorted out from both analyses by PhySortR and mapped on the
tree space of all bootstrap samples. The bootstrap samples
supporting the monophyly of Aspergilli from the dataset
encompassing nine genes were distributed uniformly suggesting
that there is no high variability in the branching patterns between
the replicates (Fig. 3D). Samples sorted out by the same criterion
from the four genes analysis were more distinct to each other
suggesting that the uncertainty of the dataset is not exclusive to
those clades that contains Aspergilli.

The results of Bayesian analysis were examined by using
Tracer and the RWTYpackage. The ESS values were above 200
for all parameters in all runs. The topological convergence for
each run was assessed using the cumulative split frequency
plots of RWTY package (Fig. S4) examining the split frequencies
of the worst 40 clades. With minor movements all split fre-
quencies reached stationarity during the run indicating that all
chains reached convergence. Tree space visualisation of the
MCMC analysis showed high similarity to those obtained from
the bootstrap samples. Altogether 1 000 trees were visualized
after removing 25 % of the generations as burnin. In the case of
the four-gene analysis the posterior distribution of tree topologies
were not concentrated into one region. It is common that during
the MCMC analysis the trees are moving through the tree-space
from regions with low optimum to regions with high likelihood
scores, but in an analysis with stable data this region should form
a single, well-defined island in the tree space. Our data (Fig. 4A)
show that the dataset with four genes has four almost equally
optimal solutions and these are present in the later generations.
These observations suggest that the phylogenetic signal in the
dataset is not strong enough to have a well-defined set of trees
and therefore, this dataset is not suitable to draw conclusions
regarding the phylogenetic relationship of Aspergilli and Peni-
cillia. The MCMC analysis of the dataset with nine genes resulted
in a more compact set of trees occupying the tree space
(Fig. 4B). The earlier generations showed relatively high
movements in the space, but after the initial search the trees
settled down in a more compact region with optimal solutions
close to each other, suggesting that the phylogeny obtained with
this dataset is more reliable than the results of the four-gene
dataset.
Branch support analysis

The test of branch support for the six-genes phylogeny, by SH-
aLRT, aLRT-Chi2 and aBayes values, give additional strength to
the principal nodes depicting Penicillium and Aspergillus
monophyletic topology (Fig. 5A, nodes P, A and PA). The lower
bootstrap support observed in some nodes is generally balanced
by high branch supports, except for the A2 node where the
monophyly of subgenus Circumdati is not supported strongly.
The A5 node resulted not supported due to the variable position
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of the Polypaecilum clade, clustering with subgenus Aspergillus
or with section Cremei, as it is clearly visible when comparing
partitioned to non-partitioned trees (Fig. S1). Single branch tests
conducted with the nine-gene dataset support the monophyly of
Aspergillus, confirming the subdivision of the genus into six
subgenera with high values except subgenus Circumdati
(Fig. 5B).
Phenotypic data supporting taxonomy and
cladonomy

Species in Aspergillus subgenus Circumdati have most extrolites
in common with the other subgenera/sections in Aspergillus,
indicating that Aspergillus is one large genus. Subgenus Nidu-
lantes is closely related to Circumdati, but even subgenus
Fumigati and subgenus Aspergillus have several extrolites or
heteroisoextrolites (Frisvad & Larsen 2016) in common. Data
listed in Table 1 shows that at least xanthocillins, terphenyllins
and emodin are in common within all the subgenera of the genus
Aspergillus. Heveadrides are common also in section Aspergillus
(Slack et al. 2009).

An important example of chemical and morphological re-
lationships in Aspergillus is A. cejpii (subgenus Fumigati). This
species has a polypaecilum-like asexual morph, but it is phylo-
genetically placed “between” section Clavati and Fumigati, two
sections in which all species have uniseriate aspergilla. Asper-
gillus cejpii is phylogenetically placed into an intermediate
position between Fumigati and Clavati (Varga et al. 2007,
Houbraken & Samson 2011), and thus had to be transferred
from Dichotomomyces (anamorphs had been named both Po-
lypaecilum and Talaromyces) to Aspergillus (Samson et al.
2014). In subgenus Aspergillus, A. pisci (formerly Poly-
paecilum pisci) is placed in a sister-clade to Aspergillus section
Aspergillus, containing species with phialosimplex-like and
polypaecilum-like morphs, while in the clade based on A. wentii,
a species with a penicillium-like morph is placed as A. inflatus
(Samson et al. 2014). Most, if not all species in the subgenus
Aspergillus are species able to grow well at very low water ac-
tivities, while species in subgenus Fumigati are adapted to higher
water activities. Yet species with polypaecilum-like morphs are
placed in both subgenera. Aspergillus cejpii has heat resistant
ascospores in common with species in section Fumigati with
neosartorya-like morphs (Jesenska et al. 1992, 1993), while
A. pisci has salt tolerance in common with most species in
subgenus Aspergillus. Thus one can predict that if a fungus in
subgenus Fumigati produces ascospores, those ascospores are
heat-resistant, while if a new species is found to belong to
subgenus Aspergillus, one can predict that it can grow under
conditions with very low water activity, despite the differences in
micro-morphology.

Regarding extrolites, A. cejpii also has an intermediate po-
sition between sections Fumigati and Clavati, while the species
also show some chemical similarities with subgenus Aspergillus,
and even with subgenus Circumdati. A. cejpii has been shown to
produce gliotoxins and fiscalin B in common with A. fumigatus
and A. fischeri (Varga et al. 2007, Frisvad & Larsen 2015, Harms
et al. 2015a, Rodrigues et al. 2015, Fan et al. 2016), xanthocillins
(Kitahara & Endo 1981, Harms et al. 2015b) in common with
A. fumigatus (Zuck et al. 2011), showing several chemical sim-
ilarities between A. cejpii with its phylogenetic sister group



Table 1. Isoextrolites and heteroisoextrolites in Aspergillus subgenera (see Frisvad & Samson 2004; Samson et al. 2004; Nielsen et al.
2009; Frisvad & Larsen 2015, 2016; Ma et al. 20161).

Aspergillus and
Cremei

Fumigati Nidulantes Circumdati

Pseurotins − + − +

Kojic acid − − + +

Terrein − − + +

Asperphenamate + − − +

Sterigmatocystin + − + +

Cyclopiazonic acid − + − +

Malformins − + − +

Fumitremorgins − + + +

Emodin (as precursor) + + + +

6-Methylsalicylic acid (as precursor) − + − +

Itaconic acid + − − +

Viridicatins − + + +

Penicillins − + + +

Notoamides − − + +

Aflavinins − + + +

Echinulins + +2 − +2

Diketopiperazines + − − +

Polythiodiketopiperazines − + + +

Kotanins/desertorins + − + +

Falconensin type azaphilones − + + +

Xanthocillins and terphenyllins + + + +

Mycophenolic acid + + − −

Heveadrides + + − −

Patulin + + − −
1 Even though Ma et al. (2016) identified their strain as Aspergillus tamarii, their strain was clearly an A. fumigatus.
2 While Aspergillus subgenus Aspergillus species produce echinulins and neoechinulins, species from Fumigati and Circumdati produce the related cycloechinulin.
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section Fumigati. Furthermore, indoloterpenes, such as JBIR-03,
emeniveol, emindol SB, emindole SB mannoside, asporyzin A-C,
27-O-methylasporyzin C (Ogata et al. 2007, Qiao et al. 2010a, b,
Harms et al. 2014) can be also found in common with species in
subgenus Circumdati and Nidulantes (Nozawa et al.1988,
Kimura et al. 1992). Finally, tryptoquivalones in common with
species of section Clavati and Fumigati (Varga et al. 2007,
Frisvad & Larsen 2016), while asporyergosterols and similar
bioactive sterols (Qiao et al. 2010a, Harms et al. 2015b) in
common with several Aspergilli, and heveadrides in common
with Aspergillus section Aspergillus (Slack et al. 2009, Harms
et al. 2015a) have also been found. Aspergillus arxii (formerly
Cristaspora arxii) was found to produce heveadrides, in common
with Aspergillus cejpii (new data provided here) and Aspergillus
species in section Aspergillus (Table 1). Thus, A. cejpii has
several physiological, chemical and phylogenetic similarities with
other species of Aspergillus.
DISCUSSION

In our study we compared 96 and 204 species using six and nine
genes phylogenies, respectively. The involved species covered
all sections from genus Aspergillus, except sections Tanneri and
Petersonii (Samson et al. 2014, Hubka et al. 2014, Jurjevic et al.
www.studiesinmycology.org
2015), all accepted sections from the genus Penicillium except
section Turbata (Visagie et al. 2014, Houbraken et al. 2015) and
species from other genera of the family Aspergillaceae, Ther-
moascaceae and Trichocomaceae (Peterson et al. 2010,
Houbraken & Samson 2011, Yilmaz et al. 2014). Both phyloge-
netic studies supported the monophyly of the genus Aspergillus
using Bayesian and ML approaches. These findings are con-
tradictory to those of Pitt & Taylor (2014), as well as Taylor et al.
(2016), while they are in agreement with the previous studies of
Houbraken & Samson (2011), and Houbraken et al. (2014).

Both results are in accordance regarding the subgenus Cir-
cumdati as this clade was resolved with low support values in all
analyses except the Bayesian approaches. In the ML analysis all
sections formed monophyletic groups with moderate to high
support except for species previously assigned to section Usti
and Restricti. Both the ML and Bayesian approach divided
section Usti into two separate groups in which A. amylovorus,
A. subsessilis and A. egyptiacus formed a well-defined clade with
high posterior probabilities and ML bootstrap values (1/92).
Members of section Restricti did not form a separate clade
however; this can be due to the inadequate taxon sampling as a
recent phylogenetic analysis across species diversity in the
subgenus Aspergillus strongly supported monophyly of both,
sect. Aspergillus and sect. Restricti (unpublished data). Both
analyses rendered the genus Penicillium as a monophyletic
209
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sister group to Aspergilli with high support (100/1). The genus
can be divided into two subgenera: Aspergilloides and Penicil-
lium comprising 25 sections with high statistical support obtained
by Bayesian analysis. The results of the ML analysis were largely
congruent with those of Bayesian approach except for the
moderate support (66) for the subgenus Aspergilloides.
Regarding the basal genera the topology of the tree was mainly
in agreement with previous studies (Peterson 2008, Houbraken
& Samson 2011).

Taylor et al. (2016) tested several hypotheses regarding the
monophyly of Aspergilli, however most of these tests did not
reflect the current knowledge on Aspergilli. Their tests rejected
the inclusion of A. penicilliformis, A. zonatus, Sclerocleista ornata
and S. thaxteri in the genus Aspergillus. Previous studies
(Peterson 2008, Houbraken & Samson 2011, Samson et al.
2014) have proven that these species are phylogenetically
distinct from the Aspergilli and therefore the rejection of these
hypotheses is in agreement with recent phylogenies. The in-
clusion of A. clavatoflavus was not rejected but the p value of the
hypothesis did not indicate strong support for the inclusion of this
species to the Aspergilli. However, the taxonomic position of this
species remained unclear. Several studies have demonstrated
that A. clavatoflavus is not a member of the genus Aspergillus
(Peterson 2008, Peterson et al. 2010, Houbraken & Samson
2011, Samson et al. 2014). The reason of this contradictory
result can be that the dataset used in their study had low
resolving power restricting the estimation of a well-established
phylogeny. On the tree obtained by Taylor et al. (2016), the
deeper clades were poorly supported; therefore the inclusion of
A. clavatoflavus may not have altered the overall likelihood value
of the constrained tree substantially.

Our main concern about the tests conducted by Taylor et al.
(2016) is that it is not clear whether they had used multifurcating
or fully resolved constraints for estimating ML trees before the
calculation of the site-wise likelihoods. Using fully resolved trees
as constraints can lead to the underestimation of the probabilities
of hypotheses, which can explain the unexpectedly low p values
in some of their analyses. In our experiments the hypothesis of
Taylor et al. (2016) was rejected with a mean p value of 0.0134,
when a constrained tree containing polytomies was used. When
the ML likelihood search was conducted with the completely
resolved best tree obtained by RAxML the approximately unbi-
ased test in CONSEL also rejected the hypothesis but with
values very close to zero.

The exclusion of subgenus Polypaecilum from a mono-
phyletic Aspergillus clade was also rejected indicating that the
species of this section are members of the genus Aspergillus.
Moreover, when this section was included in a monophyletic
Aspergillus clade, the hypothesis was accepted. This finding is in
agreement with the previous results of Houbraken & Samson
(2011), Samson et al. (2014) and our recent findings.

Additional evidences of the robustness of our analysis with
respect to that of Taylor et al. (2016) could be retrieved from the
recently guidelines published on IMA Fungus for introducing new
genera of fungi (Vellinga et al. 2015). The authors proposed six
criteria; our analysis is in accordance with all the criteria but in
particular two of these criteria are fully in accordance with our
results and not with those of Taylor et al. (2016). They have
assessed that: 1) all genera that are recognized should be
monophyletic, not only the one that is the focus of the study, but
also the group from which it is separated and the group to which
it is added (the reciprocal monophyly criterion), 2) the branching
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of the phylogenetic trees should have sufficient and strong sta-
tistical support. Finally, also the extrolite data support the clus-
tering of the wide Aspergillus genus evidencing that at least
xanthocillins, terphenyllins and emodin are in common within all
the subgenera of the genus (Table 1). In particular, some species
that have been shown to be outside Aspergillus, despite having
an Aspergillus conidiophore, appear to be unique chemically:
Aspergillus clavatoflavus has been analysed chemically and
produced a series of unique secondary metabolites never found
in any species of Aspergillus and does not produce kojic acid,
produced by all species in Aspergillus section Flavi except
A. avenaceus and A. togoensis (Varga et al. 2011). Aspergillus
zonatus was reported to produce aszonalenin and aszonapyrone
(Kimura et al. 1982a, b, Katsube et al. 1985, Bhat et al. 1993),
but several chemical analysis of the ex-type strain of this fungus
showed that it only produces some few unique extrolites, and
that aszonalenin and aszonapyrone was not among them
(Frisvad, unpublished). Aszonalenin and aszonapyrone was
found in several species in Aspergillus section Fumigati (Larsen
et al. 2007, Frisvad et al. 2009, Frisvad & Larsen 2016) however,
indicating that the culture of A. zonatus was contaminated with
an isolate from section Fumigati. Also Throckmorton et al. (2015)
did not find biosynthetic gene clusters coding for aszonapyrone
when examining the genome sequenced isolate of A. zonatus,
but they did find a PKS Aspzol_2112764 coding for an unknown
non-reduced polyketide. Aflatoxin B1 was also reported from a
strain of A. zonatus (El Kady et al. 1994), but this was obviously a
mistake.

Sclerocleista ornata and S. thaxteri produce viriditoxin in
common with both Paecilomyces variotii and Aspergillus section
Fumigati species such as A. viridinutans, and citrinin in common
with Monascus spp. and Aspergillus sections Flavipedes and
Terrei. Apart from this, they produce at least two types of
secondary metabolites not yet found in any Aspergillus section.
Given that at least S. thaxteri occupies a dung habitat; it is
interesting to note that the two Sclerocleista species grow very
poorly on media containing sucrose, thus making them pretty
unique. It is recommended to use the genus name Sclerocleista
for those two closely related species. Thus, the phenotyping data
confirm the grouping of the wide Aspergillus genus with the
exclusion of A. clavatoflavus and A. zonatus species, and of the
Warcupiella and Sclerocleista clades, previously treated as
Aspergillus subgenera.
TAXONOMIC DISCUSSION AND CONCLUSIONS

The phylogenetic analyses show that the Polypaecilum clade
and section Cremei are strongly supported therefore should be
treated as subgenera:

Aspergillus subgenus Cremei Samson, Houbraken & Frisvad,
subgen. nov. MycoBank MB819182.

Etymology: named after the epithet of the type species.

Diagnosis: Conidia en masse grey-green to yellow brown,
globose to subglobose, biseriate or uniseriate conidial heads,
metulae and phialides produced synchronously, except in
A. inflatus, where they are produced successively. Species are
moderately osmophilic and halophilic (Wheeler & Hocking 1993).
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Type species: Aspergillus cremeus Kwon-Chung & Fennell

Aspergillus subgenus Polypaecilum Samson, Houbraken &
Frisvad, subgen. nov. MycoBank MB819184.

Etymology: named after the genus Polypaecilum.

Diagnosis: Conidia formed on reduced phialides (as in Phialo-
simplex salinarum, Greiner et al. 2014, appearing as phialide
collula only), small phialides with long collula often with a
thickened centre part (like in Phialosimplex caninus, Sigler et al.
2010) or on polyphialides (as in Polypaecilum insolitum, Smith
1961), with the common theme of a thin, long collulum produc-
ing chains of conidia that are large compared to the diameter of
the collulum. Aspergilla are not produced. The species are
halophilic or osmophilic (Wheeler et al. 1988, Wheeler & Hocking
1993, Greiner et al. 2014, Pi~nar et al. 2015, 2016). The subgenus
Polypaecilum contains species of the previously known genera
Polypaecilum and Phialosimplex.

Type species: Polypaecilum insolitum G. Sm. = Aspergillus
insolitus (G. Smith) Houbraken, Visagie & Samson

Our analysis shows that A. zonatus does not belong to Asper-
gillus, which was already demonstrated by Peterson (2008), and
Houbraken & Samson (2011). Together with Penicilliopsis clav-
ariiformis the taxon forms a strongly supported clade. Pen-
icilliopsis is typified by P. clavariiformis and characterized by
seed-borne, stipitate stromata often occurring in tropical forests.
The anamorph genera Pseudocordyceps, Sarophorum and
Stilbodendron are phenotypically related (Samson & Seifert
1985, Hsieh & Ju 2002). The former two genera have con-
idiogenous structures similar to those of Penicillium and the latter
has Aspergillus-like conidiogenous structures. Therefore it is
possible that A. zonatus belongs to Penicilliopsis. The type
culture of A. zonatus was found a sample of forest soil in Costa
Rica and Penicilliopsis occurs in a similar habitat. Since
A. zonatus is known only from this type culture the accommo-
dation in a new genus might be premature until more material is
collected. For the time being the species is recombined in
Penicilliopsis.

Penicilliopsis zonata (Kwon-Chung & Fennell) Samson, Hou-
braken & Frisvad, comb. nov. Mycobank MB819185.

Basionym: Aspergillus zonatus Kwon-Chung & Fennell, The
Genus Aspergillus: 377 (1965) [MB#326666]

A detailed description of the species is provided by Raper &
Fennel (1965: 377).

Aspergillus clavatoflavus described from rain forest soil,
collected in Australia, is also not related to Aspergillus. Our
analyses confirm its position outside Aspergillus as it was
already demonstrated by Peterson (2008), and Houbraken &
Samson (2011) without any closely related taxon. Although the
species is only known from its ex-type culture the erection of a
new genus is proposed herein:

Aspergillago Samson, Houbraken & Frisvad, gen. nov. Myco-
Bank MB819186.
www.studiesinmycology.org
Etymology: Resembling Aspergillus

Diagnosis: Morphologically resembles Aspergillus by its typical
aspergillum, but phylogenetically distant.

Type species: Aspergillus clavatoflavus Raper & Fennell, Gen
Aspergillus: p. 378 (1965).

Aspergillago clavatoflava (Raper & Fennell) Samson, Hou-
braken & Frisvad, comb. nov. MycoBank MB819187.

Basionym: Aspergillus clavatoflavus Raper & Fennell, Gen
Aspergillus: p. 378 (1965)

For a full description, see Raper & Fennell (1965: 378–381).

Raper & Fennell (1965) proposed A. clavatoflavus as a new
taxon because it resembled the morphology of A. clavatus and
A. flavus. However, the conidiophores were produced in loose
synnemata, a feature not observed in Aspergillus. In that respect
the synnematous conidiophores of A. clavatoflavus resembles
those of Stilbothamnium which is considered to be a synonym of
Aspergillus (Varga et al. 2011, Samson et al. 2014).
CONCLUSION

From our extensive and independent phylogenetic multilocus
analyses of 96 and 204 species respectively, it can be concluded
that there is no phylogenetic evidence to split Aspergillus into
several genera and the name Aspergillus can be used for all the
species which have been proven taxonomically to belong to
Aspergillus. The monophyly of the genus Aspergillus supports
the use of Aspergillus in a wide sense.
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