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Abstract

Motivation: Network comparison is a computationally intractable problem with important applica-

tions in systems biology and other domains. A key challenge is to properly quantify similarity

between wiring patterns of two networks in an alignment-free fashion. Also, alignment-based

methods exist that aim to identify an actual node mapping between networks and as such serve a

different purpose. Various alignment-free methods that use different global network properties

(e.g. degree distribution) have been proposed. Methods based on small local subgraphs called

graphlets perform the best in the alignment-free network comparison task, due to high level of

topological detail that graphlets can capture. Among different graphlet-based methods, Graphlet

Correlation Distance (GCD) was shown to be the most accurate for comparing networks. Recently,

a new graphlet-based method called NetDis was proposed, which was claimed to be superior.

We argue against this, as the performance of NetDis was not properly evaluated to position it

correctly among the other alignment-free methods.

Results: We evaluate the performance of available alignment-free network comparison methods,

including GCD and NetDis. We do this by measuring accuracy of each method (in a systematic

precision-recall framework) in terms of how well the method can group (cluster) topologically simi-

lar networks. By testing this on both synthetic and real-world networks from different domains, we

show that GCD remains the most accurate, noise-tolerant and computationally efficient alignment-

free method. That is, we show that NetDis does not outperform the other methods, as originally

claimed, while it is also computationally more expensive. Furthermore, since NetDis is dependent

on the choice of a network null model (unlike the other graphlet-based methods), we show that its

performance is highly sensitive to the choice of this parameter. Finally, we find that its performance

is not independent on network sizes and densities, as originally claimed.

Contact: natasha@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Networks (or graphs) are widely used for representing different types

of relational data in the cell, such as protein–protein (Prasad et al.,

2009; Stark et al., 2006), genetic (Tong et al., 2004), metabolic

(Okuda et al., 2008) and gene regulatory (Hu et al., 2007; Lee et al.,

2002) interactions. The information encoded in the wiring patterns

(i.e. topology, or structure) of biological networks complements the

information obtained from protein sequence and structure (Pevzner

and Shamir, 2011). Because of this, graph-theoretic analyses of biolo-

gical networks can advance our understanding of fundamental cellular

functioning.
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When analysing biological networks, one needs to compare

them. For example, evolutionary insights can be gained by identify-

ing topological similarities between networks of different species

(Singh et al., 2008). The difficulty is that network comparison is

computationally intractable (Cook, 1971), so heuristic approaches

that produce approximate solutions are the only feasible way to

compare networks.

Depending on the purpose of the network comparison, relevant

approaches can be split into two major sub-categories: (i) alignment-

based network comparison and (ii) alignment-free network

comparison. Alignment-based methods aim to find a mapping be-

tween the nodes of two (or more) networks that preserves many edges

and a large subgraph between the networks. These methods are useful

for identifying the evolutionary conserved parts of biological net-

works, and they enable the transfer of functional annotations between

aligned network regions across species (Faisal et al., 2014; Ibragimov

et al., 2013, 2014; Kelley et al., 2003; Kuchaiev and Pržulj, 2011;

Liao et al., 2009; Neyshabur et al., 2013; Saraph and Milenković,

2014) and the identification of structural similarities between proteins

(Malod-Dognin and Pržulj, 2014; Zhang and Skolnick, 2005). On the

other hand, alignment-free network comparison methods aim to

quantify the overall topological similarity between networks,

irrespective of node mappings between the networks, and without

intending to identify any conserved edges or subgraphs.

These methods have applications in evaluating the fit of a random net-

work model to a real-world network (Hayes et al., 2013; Pržulj,

2007; Pržulj et al., 2004; Rito et al., 2010), tracking the dynamics of

time-series networks (Garlaschelli and Loffredo, 2005; Kossinets and

Watts, 2006; Yaveroğlu et al., 2014) or grouping (clustering) of

networks based on their topological similarities (Milo et al., 2004).

The clustering can be used to reconstruct phylogenetic relationships

of species based on similarities of their networks (Ali et al., 2014).

Alignment-free network comparison methods are typically

computationally less expensive than alignment-based methods,

and again, they do not produce a node mapping between the

compared networks, but a score that quantifies the overall similarity

between the two networks. As such, alignment-free and

alignment-based network comparison methods have different pur-

poses. Thus, comparing the approaches across the two groups might

be misleading.

Of alignment-free network comparison methods, earlier

approaches use network properties such as degree distribution, clus-

tering coefficient, diameter (Estrada, 2011; Newman, 2010) and

graph spectra (Thorne and Stumpf, 2012; Wilson and Zhu, 2008)

for quantifying the overall similarity between two networks.

Currently, the best alignment-free network comparison method is

based on graphlets, small subgraphs of large networks (Pržulj et al.,

2004), called Graphlet Correlation Distance (GCD; Yaveroğlu

et al., 2014). GCD was systematically compared both with graphlet-

based and non-graphlet-based alignment-free predecessors, and it

was shown to be the most accurate in clustering topologically simi-

lar networks, the most noise-tolerant and the most computationally

efficient. Subsequently, another graphlet-based alignment-free

method called NetDis was proposed (Ali et al., 2014). Although the

suggested methodology of NetDis is interesting (Section 2.1), the

claimed superior performance of NetDis over the existing state-of-

the-art network comparison methods is questionable. This is be-

cause the performance of NetDis was not systematically evaluated,

so its claimed superiority might be inaccurate. For example, NetDis

was not compared against GCD. Also, its comparison against an

alignment-based method, based on which almost all conclusions of

its superiority were drawn, is inappropriate, as argued above.

Further potential fallacies with the NetDis method itself exist, such

as its dependence on the choice of a network null model, which was

not taken into account in the original NetDis study (Ali et al.,

2014). Thus, here we systematically and fairly evaluate the perform-

ance of NetDis in comparison to other alignment-free network com-

parison methods, and address all issues present in the paper by Ali

et al. (2014).

2 Materials and Methods

2.1 Alignment-free network comparison methods
Alignment-free network comparison involves quantifying the overall

topological similarity between two networks. As the exact solution

is computationally intractable, approximate solutions have been

devised for this purpose. Such approximate solutions are conven-

tionally called network distance or network similarity measures.

2.2 Network distance measures based on global

network properties:
The overall similarity between two networks can be quantified in a

simple fashion by comparing the networks’ global properties, such

as the degree distribution, clustering coefficient or diameter

(Newman, 2010). The most sophisticated of these network proper-

ties are based on graph spectra (Thorne and Stumpf, 2012; Wilson

and Zhu, 2008). Although network comparison methods based on

global properties are computationally efficient, they usually capture

limited aspects of complex wirings of real-world networks. For this

reason, it is no surprise that they perform poorly in grouping topo-

logically similar networks together and separating dissimilar net-

works (Yaveroğlu et al., 2014). Hence, local network properties

have been proposed, which can capture the topology of complex

networks in more detail.

2.3 Network distance measures based on local

network properties
Graphlets are small, connected, non-isomorphic, induced subgraphs

of a network (Pržulj et al., 2004). Each graphlet contains ‘symmet-

rical node groups’ known as automorphism orbits (Fig. 1; Pržulj,

2007). Graphlets can be used to derive detailed descriptors of net-

work topology at network, node and edge level (Milenković and

Pržulj, 2008; Solava et al., 2012; Yaveroğlu et al., 2014). By using

graphlets in different ways, four different alignment-free network

comparison measures are defined:

Fig. 1. The thirty 2- to 5-node graphlets and their 73 automorphism orbits

(Pržulj, 2007)
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1. Relative graphlet frequency distance (RGFD): The topology of a

network can be described by the number of times that each

graphlet appears in the network. RGFD is a non-parametric

method that uses the graphlet frequency statistics of 3- to 5-node

graphlets to quantify the overall difference between two net-

works (Pržulj et al., 2004). Given the 29-dimensional graphlet

frequency vectors of two networks, RGFD first normalizes these

vectors based on the total number of graphlets that appear in the

networks, and then, it computes the sum of absolute differ-

ences between the normalized graphlet frequencies. The result-

ing score indicates the topological difference between the two

networks.

2. Graphlet degree distribution agreement (GDDA): Graphlets are

also used to define detailed descriptors of the wiring around a

node in a network. Namely, the ith graphlet degree of a node is

the number of graphlets that the node touches at orbit i.

The graphlet degree vector (GDV) of a node is the 73-

dimensional vector containing graphlet degrees for the 73

automorphism orbits shown in Figure 1 (Milenković and

Pržulj, 2008). Considering GDVs of all nodes in a given net-

work, the degree distribution can be extended into 73 graphlet

degree distributions (GDD), where each GDD corresponds to

the graphlet degrees of one of the 73 orbits. Given two net-

works, the non-parametric GDDA method compares these 73

GDDs and quantifies the overall topological similarity between

the two networks as an average over all 73 comparisons (Pržulj,

2007). GDDA scores are scaled between 0 and 1, and higher

scores indicate better topological similarity.

3. Graphlet correlation distance (GCD): Graphlets are Lego-like

pieces that assemble with each other at different orientations to

build large networks. Exploiting this observation, the complex

structure of any network can be summarized into an n�n

graphlet correlation matrix, where n is the number of considered

graphlet orbits (Yaveroğlu et al., 2014). Each cell of this matrix

quantifies the level of dependency between two graphlet orbits

in the network. For a given network, the cell values are com-

puted by Spearman’s correlation between the corresponding

graphlet degrees over all nodes in the network. Then, GCD com-

putes the Euclidean distance between graphlet correlation matri-

ces of two networks (Yaveroğlu et al., 2014). As RGFD and

GDDA, GCD is non-parametric and it does not require any net-

work null model for the computation. Different GCD versions

exist depending on the orbits that are used for constructing the

matrices: (i) GCD-73 accounts for the complete set of 73 orbits

from all 2- to 5-node graphlets and (ii) GCD-11 accounts for 11

non-redundant orbits of 2- to 4-node graphlets (i.e. orbits 0, 1,

2, 4, 5, 6, 7, 8, 9, 10, 11). In our experiments, we choose to use

GCD-11 and GCD-73 rather than other GCD versions because

GCD-11 is shown to perform the best in grouping topologically

similar networks (Yaveroğlu et al., 2014) and because GCD-73

considers all the orbits of typically used 2- to 5-node graphlets.

4. NetDis: This most recent graphlet-based alignment-free network

comparison method (Ali et al., 2014) first obtains ego-networks

of radius two (i.e. subgraphs induced on the nodes that are in

the first and second neighbourhood of a given node) for each

node in a given network and computes the number of graphlets

in each of the resulting ego-networks. Then, NetDis compares

these graphlet counts with the graphlet counts from the same

density ego-networks of a ‘gold-standard network’ (i.e. network

null model). It then represents the structure of the given network

with a vector containing the sum of the ‘centred’ graphlet counts

of all ego-networks, where the centring is performed by

computing the difference between the observed and expected

(obtained from the gold-standard network) graphlet counts of

the ego-networks. Finally, NetDis computes the distance be-

tween two given networks by comparing their vectors of centred

graphlet counts. Similar to GCD, NetDis has different versions

depending on the size of the graphlets that are used. The current

implementation considers 3- or 4-node graphlets, corresponding

to NetDis-3 and NetDis-4, respectively. Unlike the three other

graphlet-based measures described above, NetDis is parametric,

requiring a gold-standard network, which is its major disadvan-

tage, as we show below.

2.4 Method evaluation and comparison
We systematically evaluate the performance of the network distance

measures by computing how well they can cluster topologically simi-

lar networks generated from the same graph family. We do this by

mimicking the established evaluation approach from Yaveroğlu et al.

(2014). That is, we first generate networks from seven graph fami-

lies: Erdös–Renyi model (ER; Erdos and Rényi, 1961), ER degree dis-

tribution preserving model (ERDD; Newman, 2010), scale-free

preferential attachment model (SFBA; Barabási and Albert, 1999),

scale-free gene duplication and divergence model (SFGD; Vázquez

et al., 2002), geometric random graph model (GEO; Penrose, 2003),

geometric model with gene duplication (GEOGD; Pržulj et al., 2010)

and stickiness-index based model (STICKY; Pržulj and Higham,

2006). The generated networks contain 1000 and 2000 nodes, and

they have edge densities of 0.5% and 1%. We choose these specific

values because the selected sizes and densities are in stable regions of

the graph families (Hayes et al., 2013). To account for randomness

in the network generators, we create 10 networks for each network

size, edge density and graph family combination, producing a total

of 2 (network size) � 2 (edge density) � 7 (graph families) � 10 (net-

work instances) ¼ 280 networks. For graph families that require a

predefined degree distribution, we use networks generated from the

preferential attachment (SF) model.

Given the resulting set of 280 networks, we evaluate the network

clustering performance of a given network distance measure using a

systematic area under precision—recall curve (AUPR) framework.

That is, a given network pair is in the True evaluation set if the two

networks are generated from the same graph family and in the False

set otherwise. For a given distance threshold e, a network pair is

considered as a Positive sample if the distance between the two net-

works is � e and as a Negative sample otherwise. Then, given a set

of network pairs, the Precision-Recall curve is obtained by varying

the distance threshold e and computing the precision and recall for

each e value:

Precision ¼ True Positives

True Positivesþ False Positives
; (1)

Recall ¼ True Positives

True Positivesþ False Negatives
: (2)

AUPR summarizes the quality of the classification illustrated

with the precision-recall curve into a single value, with the max-

imum of 1. AUPR can be interpreted as the probability of obtaining

a True sample when it is randomly drawn from the Positive sample

set at any e threshold. In other words, AUPR represents the average

precision of the given network distance measure. Thus, measures

achieving higher AUPR scores have better performance, i.e. they

more correctly cluster similar networks generated from the same
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graph family and separate dissimilar networks generated from dif-

ferent graph families.

To test the effect of network sizes and densities on the perform-

ance of a network distance measure, we compute AUPR scores in

two different ways: (i) we only consider distances between network

pairs that are of the same sizes and densities and (ii) we consider dis-

tances between all network pairs, comparing networks of different

sizes and densities. While the first approach fairly tests how well a

network comparison method distinguishes between different graph

families without the bias of the network sizes and densities, the se-

cond approach should be taken with more caution, as any observed

difference between networks could be due not to the actual differ-

ences in network topologies but differences in network sizes and

densities. A good network distance measure should be able to easily

identify networks generated from the same graph family when the

networks with same sizes and densities are considered. An ideal net-

work distance measure should also be able to identify networks gen-

erated from the same graph family even if their sizes and densities

are different. However, this is a more challenging task for network

distance measures. In both scenarios, we expect a good network dis-

tance measure to produce high AUPR scores.

To compare noise-tolerance performance of different network

distance measures, we repeat the above experiments by rewiring the

edges of the 280 synthetic networks at different rewiring rates;

namely, we rewire 10%;20%; . . . ;90% of edges in each of the net-

works. More specifically, for a network that has jEj edges, a ‘k%

noisy network’ is generated as follows: at each step, three nodes, a,

b, c, are chosen randomly with the condition that there is an edge

(a, b), but there is no edge (a, c). Edge (a, b) is removed from the net-

work and edge (a, c) is added into the network. This process is re-

peated ðjEj � kÞ=100 times. Once all of the 280 networks are

randomly rewired as described, we compute AUPR scores of the

new set of rewired networks. To understand the effect of randomiza-

tion, we repeat the rewiring and evaluation process 30 times at each

rewiring rate k. In all these experiments, a successful network dis-

tance measure is expected to produce high average AUPR scores

over the 30 random runs at each threshold.

3 Results and Discussion

We systematically compare the performance of all network distance

measures (Section 2) to correctly position NetDis among other align-

ment-free network comparison methods. We answer the following

questions that the original NetDis study failed to address. What is

the effect of the choice of the gold-standard network (Section 3.1)

and of network sizes and densities (Section 3.2) on the performance

of NetDis? We compare the accuracy (Section 3.3) and computa-

tional running time efficiency (Section 3.4) of NetDis to those of

competing methods. Finally, we argue that the biological application

of NetDis to phylogeny reconstruction, as designed and carried out

in the original study of Ali et al. (2014), is scientifically inaccurate

(Section 3.5).

3.1 NetDis is highly sensitive to the choice of

gold-standard network
NetDis requires a gold-standard network to normalize graphlet

counts in the ego-networks of the compared networks (Section 2.1).

However, for almost all network comparison tasks, there is no prior

information on the structure of the compared networks, and conse-

quently, a well-fitting network null model for these networks is un-

known. Note that one of the purposes of network comparison is to

produce this information as its output rather than using it as input.

The fact that NetDis assumes a specific gold-standard network as its

input and that the same gold-standard network is used for normaliz-

ing the graphlet counts of both of the compared networks (which

might belong to different network null models and thus require

different gold-standard networks) raises serious concerns about the

accuracy of NetDis’s results, as using different gold-standard net-

works can lead to very different results (Artzy-Randrup et al.,

2004). For this reason, NetDis becomes impractical, as its network

clustering performance is highly dependent on the chosen gold-

standard network.

To test the effect of the gold-standard network on the results

of NetDis, we evaluate its performance by using different gold-

standard networks corresponding to different network null models.

Namely, we generate gold-standard networks with 5000 nodes and

20 000 edges [as suggested in the original NetDis paper (Ali et al.,

2014)] from each of the following seven graph families: ER, ERDD,

SFBA, SFGD, GEO, GEOGD and STICKY (Section 2.2). We find

that the AUPR scores of NetDis vary for different gold-standard net-

works with a minimum AUPR difference of 0.25 (Fig. 2A), which

means that the network clustering performance of NetDis is highly

sensitive to the chosen gold-standard network (Fig. 2). Therefore,

the choice on the gold-standard network can have a huge impact on

the quality of the network distances obtained by NetDis.

If NetDis was robust to the choice of gold-standard network, it

should yield qualitatively the same results for all tests performed

using a particular network null model as the gold-standard (Section

2.2). However, this is not the case. In particular, when NetDis uses

the same network null model as the gold-standard, the results of its

clustering of synthetic networks of the same sizes and densities are

not qualitatively the same as the results of clustering of synthetic

networks of different sizes and densities. Namely, when clustering

synthetic networks of different sizes and densities, NetDis returns

the highest AUPR scores when using SFGD network null model as

the gold-standard (Fig. 2A and C). This is true for both NetDis-3

and NetDis-4. However, when clustering synthetic networks of the

same sizes and densities, NetDis returns the highest AUPR scores

when using ERDD or ER network null model as the gold-standard,

depending on NetDis version (Fig. 2B and D). Hence, for the same

NetDis version, different network null models produce qualitatively

the same (the best) results in the two evaluation tests; the evaluation

tests differ only in whether the compared input networks are all of

the same sizes and densities or not. In other words, the same net-

work null model gives qualitatively different results in the two

evaluation tests. This demonstrates that NetDis is highly sensitive to

the choice of a gold-standard network.

3.2 NetDis is affected by network sizes and densities
We argue that Ali et al. (2014) made an incorrect statement that

‘NetDis can correctly separate different random network model

types independent of network size and density.’ Our results do not

support this. When networks of the same sizes and densities are

compared, the highest achieved AUPR score is 0.79 with NetDis-3

(Fig. 2B) and 0.9 with NetDis-4 (Fig. 2D). However, when networks

of different sizes and densities are also included into the computa-

tion, the highest achieved AUPR score is 0.52 for NetDis-3 and 0.59

for NetDis-4. Thus, the performance of NetDis is not independent

of the network sizes and densities.

3.3 GCD is more accurate than NetDis
Also, Ali et al. (2014) did not systematically evaluate the perform-

ance of NetDis to position it correctly among other network
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distance measures in terms of accuracy. NetDis was only compared

to an alignment-based network comparison algorithm called

MI-GRAAL (Kuchaiev and Pržulj, 2011) and almost all claims

about superiority of NetDis were drawn from that comparison.

However, the purpose of the alignment-based network comparison

problem is very different from the purpose of the alignment-free

methods (Section 1). Thus, it is inaccurate to assess NetDis, an

alignment-free approach, in comparison to an alignment-based

approach, due to the difference in the goals of the two approach cat-

egories. In addition, a number of newer alignment-based approaches

have been proposed since MI-GRAAL, including GHOST (Patro

and Kingsford, 2012), NETAL (Neyshabur et al., 2013) and

MAGNA (Neyshabur et al., 2013). Hence, even if we accept a com-

parison of alignment-based with non-alignment based methods as a

valid evaluation framework (which it is not), NetDis should have

also been evaluated against the newer and consequently more accur-

ate alignment-based methods. To properly evaluate NetDis, an

alignment-free method, one should compare it to the existing state-

of-the-art alignment-free methods described in Section 2.1.

GCD has been compared with all of the previous alignment-free

methods (Yaveroğlu et al., 2014) and it was shown to be superior

when clustering networks generated from the same model. Here, we

include NetDis into this existing comparison framework to properly

assess its performance against the existing approaches. Because

NetDis performs the best with SFGD network null model (Fig. 2),

we give NetDis the best-case advantage by using this network null

model as the gold-standard. We include RGFD, GDDA, GCD-11

and GCD-73 into this comparison as representatives of other meth-

ods based on graphlets (local network properties; Section 2.1). We

also include the best alignment-free method that is based on a global

network property, namely clustering coefficient and exclude the

remaining network distance measures that are already evaluated

in Yaveroğlu et al. (2014) and were shown to perform worse

than GCD.

We find that it is GCD (and in particular GCD-11) and not

NetDis that performs the best in all experimental settings (Fig. 3).

GCD-11 is followed by RGFD, GCD-73 and NetDis-4, which have

comparable performance with each other. These are then followed

by the remaining approaches. As expected, the performance of all

methods declines with the increasing levels of noise. However,

GCD-11 still performs the best even when 90% of edges in the input

networks are rewired. The above results are computed when the

best performing network null model (SFGD) is used within NetDis;

any of the other network null models would position NetDis even

further below the other network distance measures (Fig. 2).

In addition, we perform identical experiments on real-world net-

works from different domains rather than on synthetic networks from

different random graph models. Hence, we evaluate the performance

of the methods on real-world network data. We use real-world net-

works from 11 different domains (detailed in the Supplementary

Material). We find that RGFD, NetDis-SFGD-4 and GCD-73 are the

top three methods with the highest AUPR scores, all of comparable

performance (Fig. 4). While NetDis-SFGD-4 has the second highest

AUPR score, both RGFD and GCD-73 have higher precision values

than NetDis-SFGD-4 at all recall values up to �0.6. This means that,

at smaller distance thresholds, both RGFD and GCD-73 identify

more true network pairs than NetDis, which is an important property

for the early classification task. In addition, the above results are com-

puted when using the best performing network null model within

NetDis. When any alternative network null model is used on real-

world networks, NetDis never outperforms any of RGFD and

GCD-73 (see Supplementary Material).

3.4 GCD remains superior to NetDis in terms of

computational efficiency
Typically, global network properties are computationally more effi-

cient to compute than the graphlet-based local properties. However,

A B

C D

Fig. 2. Performance of different NetDis versions for clustering of networks from different graph families. The plots illustrate the AUPR scores measuring how well

NetDis clusters networks generated from the same graph family, for NetDis versions that use different network null models as gold-standard (i.e. ER, ERDD, SF,

SFGD, GEO, GEOGD and STICKY) and different graphlet sizes (3-node and 4-node graphlets) to define their network distance measures. ‘NetDis-X-Y ’ denotes the

NetDis version with network null model X and graphlet size Y. The horizontal axis represents different rewiring rates on the synthetic networks and the vertical

axis represents the resulting AUPR scores for these noisy synthetic network sets, when: (A) clustering networks of different sizes and densities with NetDis-3

(NetDis with 3-node graphlets), (B) clustering only networks of the same sizes and densities with NetDis-3, (C) clustering networks of different sizes and densities

with NetDis-4 (NetDis with 4-node graphlets) and (D) clustering only networks of the same sizes and densities with NetDis-4
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the graphlet-based methods capture the topology of complex net-

works in more detail and thus perform better than the best perform-

ing global network property, the clustering coefficient (Fig. 3). Due

to the high computational complexity of the graphlet counting

process, graphlet-based network comparison methods should be

designed carefully. Given a network with n nodes, the worst case

running time for counting all graphlets and graphlet degrees for 2-

to k-node graphlets is OðnkÞ and a tighter upper-bound is Oðndk�1Þ,
where d � n is the maximum degree over all nodes in the network

(Hočevar and Demšar, 2014). Because most real-world networks

are sparse, this computational complexity does not affect the applic-

ability of graphlet-based methods to real-world networks. However,

the dependence on the number of nodes in the network should not

be ignored; because real-world networks tend to contain thousands

to millions of nodes.

Earlier methods that use graphlet properties (i.e. RGFD, GDDA

and GCD) are computationally easier to compute after one has al-

ready obtained the graphlet counts and GDVs of all nodes in the

given networks. Once these counts are computed, the remaining

steps of RGFD, GDDA, and GCD computation require low compu-

tational times of O(1), O(n), and OðnlnðnÞÞ, respectively (Yaveroğlu

et al., 2014). Therefore, their computational bottlenecks lie in the

step of producing the graphlet counts, which takes Oðndk�1Þ (see

above). Importantly, since GCD-11 requires counting only 2- to

4-node graphlets, its computational complexity is significantly lower

than complexities of graphlet-based measures that rely on larger

graphlets, corresponding to Oðnd3Þ.

The computational complexity of NetDis is much higher than

complexities of the other graphlet-based methods, because NetDis

constructs an ego-network of radius two for each of the n nodes

and then counts the graphlets within each ego-network separately,

where different ego-networks overlap. Due to the overlap, graphlet

counting is redundantly done in the same network parts, whereas

the other graphlet-based methods simply account for them only

once. The complexity of obtaining graphlet counts in all ego-

networks is Oðn2dk�1Þ. Once these counts are all obtained, the nor-

malization of the subgraph counts and the computation of

distances are negligible because their complexities are much lower

than the graphlet counting step. Therefore, the computational

complexity of NetDis-3 and NetDis-4 is Oðn2d2Þ and Oðn2d3Þ, re-

spectively, which makes these measures more expensive than GCD

by an order of O(n).

In addition to the above discussion of theoretical running times

of different methods, we measure empirical running times for

NetDis and GCD. Because the implementation of NetDis computes

NetDis-3 and NetDis-4 distances in the same run, we represent their

running times with a single NetDis measurement. First, we measure

the running times by increasing the number of compared networks

from 10 to 100 to 1000, where the networks are generated by the

preferential attachment model to have 100 nodes and 0.05 edge

density. While, as expected, the required running time increases ex-

ponentially for all measures with the increase in the number of com-

pared networks, GCD is on average 10 times faster than NetDis

(Fig. 5A). Second, we test the effect of the network size on running

times. Here, we generate 10 networks from the preferential attach-

ment model of different sizes, containing 100, 500, 1000, 5000 and

10 000 nodes; for each network size, we use the attachment factor

of 10, which is the number of nodes that an added node is at-

tached to during network construction. While the running time

for GCD is not affected much by the increase in network size, the

running time of NetDis increases exponentially with the increase in

network size. This is because NetDis needs to compute graphlet

counts in each node’s ego-network, so it over-counts graphlets

(Fig. 5B). Finally, to test the effect of network density on running

times, we generate 10 networks from the preferential attachment

model, all containing 1000 nodes, but we vary their density by using

different attachment factors, namely 1, 5, 10, 20, 50 and 100.

Again, while GCD is only slightly affected by network density

changes, the running time of NetDis increases exponentially

(Fig. 5C). Thus, GCD is computationally more efficient than

NetDis, and GCD-11 is the most efficient graphlet-based network

distance measure to date.

A B

Fig. 3. Performance of different alignment-free network distance measures for clustering networks from different graph families. The plots illustrate the AUPR

scores measuring how well different alignment-free network distance measures (i.e. GCD-11, GCD-73, NetDis-SFGD-3, NetDis-SFGD-4, Clustering Coefficient,

RGFD and GDDA) cluster networks from the same graph family. The horizontal axis represents different rewiring rates on the networks and the vertical axis repre-

sents the resulting AUPR scores for these noisy network sets, when: (A) clustering networks of different sizes and densities and (B) clustering only networks of

the same sizes and densities

Fig. 4. Performance of different alignment-free network distance measures

for clustering of real-world networks. The plot illustrates precision-recall

curves of each alignment-free network distance measure (i.e. GCD-11,

GCD-73, NetDis-SFGD-3, NetDis-SFGD-4, clustering coefficient, RGFD and

GDDA) obtained by clustering real-world networks from different domains.

The corresponding Area Under Precision-Recall curve (AUPR) scores of the

distance measures are provided in the panel to the right
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3.5 Application of NetDis to phylogeny reconstruction is

inaccurate
As a potential application of NetDis, Ali et al. (2014) compare the

protein–protein interaction networks of five species (Helicobacter

pylori, Escherichia coli, fly, human and yeast). Then, they recon-

struct the phylogenetic tree of these species by applying average link-

age hierarchical clustering on the resulting NetDis distances. We

show that this is not a valid evaluation strategy for NetDis (see

Supplementary Material for details) because: (i) protein–protein

interaction networks are incomplete, which makes the alignment-

free comparisons extremely biased, (ii) NetDis produces different

hierarchical trees for different parameters (i.e. the number of used

graphlets and the gold-standard network) and the reconstructed

phylogenetic tree in Ali et al. (2014) is a cherry-picked case out of

many possible outcomes, (iii) the same phylogenetic tree cannot be

reproduced with protein–protein interaction networks that are ob-

tained from different data sources (e.g. BioGRID), (iv) similar phylo-

genetic trees can be partially reproduced by using very simple

network properties such as network density and (v) using five net-

works only for this purpose might not give enough statistical power

to properly evaluate significance of the resulting tree.

4 Conclusion

We systematically, comprehensively and fairly compare available

alignment-free network comparison methods, positioning NetDis

correctly among other existing approaches. We observe that NetDis,

the newest graphlet-based approach for comparing networks, does

not perform as well as GCD in clustering networks with similar top-

ologies and it is also computationally more expensive than previous

graphlet-based approaches. Furthermore, NetDis is highly sensitive

to the choice on the gold-standard network that it uses and this

makes it impractical. This is because a well-fitting network null

model is hard to determine and differs for most real-world networks

and therefore, it is not possible to choose a theoretically well-

founded gold-standard network for NetDis comparison of real-

world networks, especially because each of the compared networks

might require a different gold-standard network. Hence, GCD is still

the best performing alignment-free network comparison method to

date, which is also highly efficient and not dependent on any net-

work null models. These make GCD a natural choice in alignment-

free network comparison.
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