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Cymbidium ensifolium L. is a significant ornamental plant in Orchidaceae. Aside

from its attractive flowers, its leaf coloration is also an important ornamental trait.

However, there is an apparent lack of studies concerning the intricatemechanism

of leaf coloration in C. ensifolium. In this study, we report a systematic evaluation

of leaf coloration utilizing transcriptome and metabolome profiles of purple,

yellow, and green leaves. In total, 40 anthocyanins and 67 flavonoids were

quantified along with chlorophyll content. The tissue–transcriptome profile

identified 26,499 differentially expressed genes (DEGs). The highest

chlorophyll contents were identified in green leaves, followed by yellow and

purple leaves. We identified key anthocyanins and flavonoids associated with leaf

coloration, including cyanidin-3-O-sophoroside, naringenin-7-O-glucoside,

delphinidin, cyanidin, petunidin, and quercetin, diosmetin, sinensetin, and

naringenin chalcone. Moreover, genes encoding UDP-glucoronosyl, UDP-

glucosyl transferase, chalcone synthesis, flavodoxin, cytochrome P450, and

AMP-binding enzyme were identified as key structural genes affecting leaf

coloration in C. ensifolium. In summary, copigmentation resulting from

several key metabolites modulated by structural genes was identified as

governing leaf coloration in C. ensifolium. Further functional verification of the

identifiedDEGs and co-accumulation ofmetabolites can provide a tool tomodify

leaf color and improve the aesthetic value of C. ensifolium.
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Introduction

Cymbidium ensifolium L., also known as sword-leaf cymbidium, is a perennial

herbaceous plant belonging to Orchidaceae with its natural distribution across

tropical and subtropical areas, including China, Indochina, Borneo, New Guinea, and

the Philippines (Wang et al., 2011). C. ensifolium is an economically important

ornamental with historical use in traditional Chinese orchids (Wang et al., 2011; Ai
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et al., 2021). Owing to its widespread commercial utilization in

the horticulture industry and natural variation, several breeding

programs have bred cultivars with distinct characteristics,

including leaf blade, flower color, and morphology (Wang

et al., 2011). Over the past few decades, many studies have

focused on flower color variation in C. ensifolium (Choi et al.,

2006; Siripiyasing et al., 2012; Li et al., 2014; Ogura-Tsujita et al.,

2014; Nakatsuka et al., 2019; Ramya et al., 2020; Wei et al., 2020;

Ke et al., 2021). However, the gradual change in leaf coloration is

still not fully understood.

Although molecular mechanisms underlying leaf coloration

are not fully understood in C. ensifolium, the conserved

regulatory networks identified in other horticulture plants

can provide a fundamental framework for understanding the

molecular and genetic patterns underlying complex traits

(Albert et al., 2014). Reports that are previously published

suggested varying levels of co-accumulation of secondary

metabolites such as betalains, flavonoids, and carotenoids

responsible for plant pigmentations (Tanaka et al., 1998;

Freyre and Griesbach, 2004; Grotewold, 2006; Yamamizo

et al., 2011; Harborne, 2014). Flavonoids are involved in the

formation and development of flowers, fruits, and seeds in

plants and complement antioxidant activity, UV protection,

and protection against biotic and abiotic attacks by plant

pathogens (Dixon and Paiva, 1995; Winkel-Shirley, 2002).

Quercetin and gossypetin are known flavonoids involved in

synthesizing yellow pigments in plants (Harborne, 1965;

Harborne, 1968; Ververidis et al., 2007; Li et al., 2020; Yin

et al., 2020; Fu et al., 2021). Aside from pigmentation,

flavonoids are involved in various physiological functions

under stress conditions (Nakabayashi et al., 2014; Santos-

Buelga et al., 2014; Fan et al., 2016; Liang and He, 2018; Xu

and Rothstein, 2018). Phenylpropanoid biosynthesis, flavonoid

metabolism, and anthocyanin metabolism are three major

stages of flavonoid biosynthesis in plants. Flavonoid

biosynthesis is aided by the structural genes PAL, C4H, 4CL,

CHI, CHS, F3H, DFR, ANS, UFGT, and 3GT (Hichri et al.,

2011).

With spectra of flower color, cymbidium is an integral

part of flowering orchids in China (Xu et al., 2006; Aceto and

Gaudio, 2011). Aside from abundance variation in flower

color, leaf sheath and color are also important ornamental

traits. A single plant displays varying colored leaves (at

different developmental stages), which increases the

aesthetic value of the species. Chlorophyll is the major

pigment responsible for the green color in plants. Spatial

regulation of anthocyanin and chlorophyll degradation are

the primary sources of leaf color variation (Li et al., 2021). In

general, color variation from white to yellow is attributed to

the loss of chlorophyll, while red, purple, and blue coloration

results from complex metabolic accumulation in flavonoid

biosynthesis pathways (Wheeler and Smith, 2019). The

previous report suggested that phenotypic mutation

resulting from chlorophyll deficiency is the major reason

for leaf color variation in C. ensifolium (Ai et al., 2021).

Moreover, the study demonstrated that the lower expression

of photosynthesis–antennae caused white and yellow leaves

(Ai et al., 2021). Another study concerning C. ensifolium also

emphasized chlorophyll degradation as a major contributor

to leaf coloration (Gao et al., 2020). However, the genetic

mechanisms underlying leaf color variation of C. ensifolium

from yellow–purple–green remain unclear. Therefore, the

current study aimed at deciphering the gene expression

change during leaf color change in C. ensifolium by

utilizing a multi-omics platform with systematic analyses

concerning high-quality transcriptome and metabolome

profiles. The study will provide a theoretical basis for leaf

coloration in C. ensifolium. Moreover, further functional

validation of identified genes can establish the genetic

basis of leaf coloration in C. ensifolium.

Materials and methods

Plant material

Cymbidium ensifolium var. “Shi zhang hong” is a popular

orchid in the Chinese market. The 3-year-old plants were

obtained from the orchid germplasm nursery in the Fujian

Forestry Science and Technology Experimental Center

(China), grown in the small rotted pine woods with an

80% air humidity, a 25°C temperature, and an 80%

shading. The material was characterized by leaf color

variation during the developmental process and a single

plant displays varying colored leaves. The samples of

purple (Z; young), yellow (H; slightly mature), and green

(L; mature) were collected from a plant at the same time.

Sampling was conducted in three biological replicates (three

different plants) for further downstream analyses.

Chlorophyll profiling

A series of procedures for chlorophyll profiling and other

metabolites identification and quantification were carried out

at Wuhan Metware Biotechnology Co., Ltd (https://www.

metware.cn), following the company’s standard

procedures. The chlorophyll a and b were extracted by

hexane:acetone:ethanol = 2:1:1. The other metabolites such

as porphobilinogen, hemin, pheophorbide a, protoporphyrin

IX, 5-aminolevulinic acid, and L-glutamic acid were extracted

using 70% methanol. Extracts were analyzed using liquid

chromatography–mass spectrometry (LC-MS) analysis.

After using the Metware Database constructed from the

standards, the data detected via mass spectrometry are

qualitatively and quantitatively analyzed.
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Measurement of total anthocyanin
content

The method of extracting total anthocyanins from Camellia

sinensis by Fu et al. (2021) was used, and the extraction

conditions were optimized. C. ensifolium leaves were ground

into powder in liquid nitrogen. About 0.65 g of dry powder was

added to 20 ml of 95% (0.1 mol−1 HCL) ethanol solution and then

heated in a water bath at 60°C for 2 h. At last, the absorbance

values of the extracts at 520, 620, and 650 nm were measured

using an enzyme marker, and 95% ethanol (0.1 mol−1 HCL) was

used as A = (A530-A620)-0.1 (A650-A620), Q = A × V× 1,000/

489.72 m (mmol.g−1 FW), where V represents the volume of the

extract and m represents the weight of the dried petal powder.

Flavonoids identification and
quantification

A series of procedures for metabolite extraction,

identification, and quantification were carried out at Wuhan

Metware Biotechnology Co., Ltd (https://www.metware.cn),

following the company’s standard procedures (Cao et al.,

2019; Wang et al., 2019). Cryo-preserved samples were

weighed and extracted with 1.0 ml of 70% methanol at 4°C.

Extracts were analyzed using LC-MS/MS analysis (UPLC, Shim-

pack UFLC SHIMADZU CBM30A system; MS, Applied

Biosystems 6500 QTRAP). All metabolites were identified and

quantified using Metware’s metabolite database and public

metabolite database. Differentially accumulated flavonoids

(DAFs) between samples were identified using orthogonal

partial least squares discriminant analysis. Metabolites with |

log2Fold Change| ≥ 1 and variable importance in project ≥ 1 were

defined as differentially accumulated metabolites.

RNA extraction and sequencing
transcriptome data analysis

Total RNA was extracted from the samples with the RNA

Extraction kit (TIANGEN, Beijing, China). The RNA quality

and concentration were assessed using agarose gel

electrophoresis and NanoDrop2000 spectrophotometer.

RNA sample quality testing, library construction, and

sequencing for each sample were done at Biomarker

Biotechnology (http://www.biomarker.com.cn), following the

company’s standard procedures. Low-quality data containing

adapter and poly-N were removed for downstream analysis.

The resulting set of high-quality clean reads was used for

transcriptome analysis. Hisat2 was used to obtain unigenes

(Kim et al., 2019). Reads per kilobase mapping (FPKM) for all

genes to determine gene expression values and screen for

differentially expressed genes (DEGs). DESeq2 (Love et al.,

2014) was used for differential expression analysis between

sample groups. DESeq2 requires unsorted reads count data for

the input gene, not RPKM, FPKM, etc. After the difference

analysis, the Benjamini–Hochberg method was used to correct

the hypothesis test probability (p-value) for multiple

hypothesis testing to obtain the false discovery rate (FDR).

The filter for differential genes is |log2Fold Change| > = 1 and

the FDR < 0.05. The identified DEGs were further enriched

using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis. The Gene Ontology annotation and KEGG pathway

enrichment analysis were applied using Tbtools software

(Chen et al., 2020). Heat maps were generated using the

OmicStudio tools at https://www.omicstudio.cn/tool.

Correlation analysis between key genes in the

phenylpropanoid–flavonoid pathway and anthocyanins was

performed using the R package Hmisc (Team, 2013) to

calculate Pearson correlation coefficients.

Results

Phenotypic characterization of leaf
coloration

Cymbidium ensifolium changes leaf color over the

developmental stages. We observed the leaf color variation in

young, slightly mature, and mature leaves. Young leaves are

purple, turning yellow, and finally green (Figure 1). All three

FIGURE 1
A pictorial description of Cymbidium ensifolium leaf
coloration. (A) leaf color alteration pertaining to development. (B)
leaf color variation inmatureC. ensifolium leaves depicting yellow,
purple, and green coloration.
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colors can be observed in the mature plant, as shown in

Figure 1B. The distinct coloration pattern increases the

aesthetic appeal of C. ensifolium as an additional ornamental

characteristic aside from flowers.

To understand the molecular mechanisms underlying color

variation in leaf, we collected leaf samples at each stage in three

replicates for further downstream analysis, viz., metabolite

characterization and transcriptome profiling.

Chlorophyll accumulation

Chlorophyll accumulation was tested in three leaf tissues

using LC-MS/MS analysis. Chlorophyll b contents were

higher in green leaf tissue compared to yellow and purple

(Figure 2A). Purple leaf tissues had the lowest accumulation

of chlorophyll b contents. Both chlorophylls a and b were

tested for the respective accumulation; however, we found

that with a normal accumulation pattern of chlorophyll b,

chlorophyll a was not detected. We assumed that the

chlorophyll a standard product might be degraded. To

verify this, the samples were compared with the 500 ppm

mixed standard (YLS_500 ppm_N). The comparison results

showed normal peaks for chlorophyll b, whereas no peaks

were observed for chlorophyll a, conferring the degradation

of chlorophyll a standard product (Supplementary

Figure S1).

Moreover, we quantified several compounds, which are

usually a by-product of chlorophyll degradation, such as

porphobilinogen, hemin, pheophorbide a, protoporphyrin, 5-

aminolevulinic acid, and L-glutamic acid (Figures 2B–G). Hemin

depicted a significantly higher accumulation in yellow leaves than

in purple and green. Pheophorbide a and protoporphyrin IX

were estimated with higher accumulation in yellow leaves but

lowest in purple leaves. Moreover, porphobilinogen and

L-glutamic acid increased with the change in color from

purple to yellow to green. By contrast, 5-aminolevulinic acid

gradually decreased with the color variation from purple to

yellow to green.

Anthocyanin profiling

Leaf tissue samples were further studied using target

metabolite identification (UPLC MS/MS) for anthocyanins,

resulting in the identification of 40 anthocyanin compounds

FIGURE 2
Chlorophyll profiling of purple, yellow, and green leaves in C. ensifolium. (A) chlorophyll b, (B) hemin, (C) pheophorbide, (D) protoporphyrin IX,
(E) 5-aminolevulinic acid, (F) L-glutamic acid, and (G) porphobilinogen.
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from five different subclasses, including cyanidin, peonidin,

delphinidin, flavonoids, petunidin, pelargonidin, malvidin, and

procyanidin (Supplementary Table S1). The quality was ensured

by observing the instrument’s accuracy following quality control

measures, as previously explained by Fiehn et al. (2000),

Superimposed display analysis of mass spectrometry total ion

current (TIC) and extracted ion chromatogram of samples were

run at a different time (Supplementary Figure S2). The

overlapped TIC suggested the stability of the instrument as a

quality check.

Comparing green, yellow, and purple tissues yielded 16, 18,

and 2 differentially accumulated anthocyanins in L vs. H, L vs. Z,

and Z vs. H, respectively (Figure 3A). Delphinidin-3-O-

glucoside, cyanidin-3-O-glucoside, cyanidin-3-O-(6-O-

malonyl-beta-D-glucoside), cyanidin-3-O-xyloside, petunidin-

3-O-(6-O-malonyl-beta-D-glucoside), pelargonidin-3-O-(6-O-

malonyl-beta-D-glucoside), peonidin-3-O-galactoside,

peonidin-3-O-arabinoside, peonidin-3-O-(6-O-malonyl-beta-

D-glucoside), quercetin-3-O-glucoside, rutin, kaempferol-3-O-

rutinoside, and delphinidin-3-O-(6-O-malonyl)-glucoside-3′-
glucoside were identified with upaccumulation in yellow leaves

compared to green leaves, suggesting a significant role of in

differential coloration (Figure 3B and Supplementary Table S1).

Although petunidin-3-O-galactoside, petunidin-3-O-glucoside,

and dihydromyricetin depicted a down accumulation pattern

in yellow leaves. The above-mentioned anthocyanins depicted a

FIGURE 3
Anthocyanin profile. (A) venn diagram depicting differentially accumulated anthocyanins in each group with overlap, where L, H, and Z
correspond to green, yellow, and purple leaves, respectively. (B) heatmap depicting accumulation pattern of identified anthocyanins in green, yellow,
and purple leaf tissues. The numbers 1, 2, and 3 correspond to each replication.
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similar regulation pattern in comparison with L vs. Z, except for

pelargonidin-3-O-(6-O-malonyl-beta-D-glucoside). Moreover,

three anthocyanins, including cyanidin-3-O-sophoroside,

naringenin-7-O-glucoside, and procyanidin B3, were

upaccumulated explicitly in purple leaves compared to green

leaves (Figure 3B). The results signify the potential role of

cyanidin-3-O-sophoroside, naringenin-7-O-glucoside, and

procyanidin B3 in purple color formation in C. ensifolium. In

the Z vs. H comparison, only two differentially accumulated

anthocyanins were identified, including cyanidin-3-O-xyloside

(upaccumulated) and petunidin-3-O-(6-O-malonyl-beta-D-

glucoside) (downaccumulated).

Flavonoids associated with leaf coloration

Targeted metabolic profile identified 67 flavonoids, including

chalcones (6), flavanols (6), flavanones (7), flavone glycosides (4),

flavones (18), flavonols (15), isoflavanones (3), phenolic acids (1),

and other flavonoids (7) (Supplementary Table S2). PCA was

performed to check the repeatability of data sets. The first two

components, viz., PC1 and PC2, covered 74% variation and

clustered replicates from each colored leaf (Figure 4B). We

further compared samples from different colored leaf tissues and

identified DAFs (Figure 4A). Comparison L vs. H identified

12 DAFs, including hydroxysafflor yellow A, tangeretin, oroxin

A, syringaldehyde, nicotiflorin, rutin, genistin, astragalin,

baimaside, apigenin 7-glucoside, homoplantaginin, and

naringenin chalcone. All DAFs were upregulated in yellow leaves,

whereas only one flavonoid homoplantaginin from the flavonoes

subclass, depicted down accumulation in yellow leaves compared to

green leaves (Supplementary Table S3). Likewise, a comparison of

green leaves and purple leaves yielded 12 DAFs, including

diosmetin, hydroxysafflor yellow A, tangeretin, syringaldehyde,

nicotiflorin, rutin, schaftoside, astragalin, baimaside, sinensetin,

homoplantaginin, naringenin, and chalcone. Except for rutin and

baimaside, all DAFs depicted upaccumulation in purple leaves

compared to green leaves (Supplementary Table S3). It is of

interest that hydroxysafflor yellow A, tangeretin, syringaldehyde,

nicotiflorin, rutin, astragalin, homoplantaginin, and naringenin

FIGURE 4
Differential accumulation of flavonoids in three leaf tissues, L (green leaves), H (Yellow leaves), and Z (purple leaves). (A) accumulation pattern of
41 DAFs (at least differentially expressed in one comparison). (B) PCA plot depicting PC-based distribution of samples and their replicates. L, H, and Z
correspond to green, yellow, and purple leaves. The numbers 1, 2, and 3 correspond to each replication.
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chalcone were upaccumulated in both yellow and purple leaves

compared to green leaves. Therefore, the color variation from purple

to yellow to green can be attributed to the variable levels of these

flavonoids.

Moreover, a comparison of purple and yellow tissues

identified six DAFs (two upaccumulated and four

downaccumulated). Tangeretin and schaftoside depicted

upaccumulation in yellow leaves, whereas diosmetin,

eriodictyol, sinensetin, and naringenin chalcone were

downaccumulated in yellow leaves. Diosmetin, sinensetin, and

naringenin chalcone were identified with upaccumulation in

purple leaves compared to yellow and green leaves

(Supplementary Table S3). The results emphasized that a

gradual decrease in diosmetin, sinensetin, and naringenin

chalcone accumulation might be the reason for differential

coloration.

FIGURE 5
Transcriptome profiling of three different colored leaves of C. ensifolium. (A) PCA plot based on FPKM values of all the quantified genes. (B)
correlation plot of quantified genes. (C) venn diagram representing differentially expressed genes and their overlap in comparison between green,
yellow, and purple leaves, viz., L vs. H, L vs. Z, and Z vs. H. (D) heatmap representing FPKM values of all the quantified genes through transcriptome
profiling.
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Transcription control of leaf color
variation

The metabolome is referred to as the end product in

biological pathways. Therefore, to identify the genes

responsible for differential accumulation of anthocyanins,

flavonoids, and chlorophyll, we sequenced the transcriptome

of different colored leaf tissues. A total of nine cDNA libraries

were constructed with three replicates for each color group. The

transcriptomic sequencing yielded 0.44 billion raw reads, and

after filtering low-quality reads, we obtained 0.43 billion clean

reads with 64.71 Gb of data (Supplementary Table S4). After

mapping, the FPKM values were calculated based on read counts

and used for further downstream analysis. The quantified genes

were subjected to PCA and PCC. The results signify the

credibility and repeatability of transcriptomic datasets. The

first two PCs covered 40.96% variation, and replicates from

each colored group were clustered together (Figure 5A). PCC

results also emphasized a strong correlation among the replicates

from each colored group (Figure 5B).

The transcriptome datasets were further analyzed to identify

DEGs related to color variation. Overall FPKM values for the

genes differentiated the identified genes into three groups

consistent with the leaf color (Figure 5D). Thus, we compared

each group and further categorized DEGs from each group. A

total of 26,499 DEGs (at least differentially expressed in one

comparison) were identified (Supplementary Table S5).

Comparison L vs. H depicted 17,259 DEGs with

9,236 downregulated and 8,023 upregulated genes in yellow

leaves compared to green leaves. Likewise, comparisons L vs.

Z and Z vs. H identified 19,031 DEGs (9,320 downregulated and

9,711 upregulated) and 5,376 DEGs (2,586 downregulated and

2,790 upregulated), respectively. The annotation information of

identified DEGs in each group suggested enrichment of pathways

related to photosynthesis, phenylpropanoid biosynthesis,

flavonoid biosynthesis, and circadian rhythm (Supplementary

Figures S3–S5). We further identified 910 conserved DEGs

between the three groups (Figure 5C). A comparison of DEGs

from each group suggested that more changes in gene expression

are required for green coloration than yellow and purple.

Moreover, we identified 151 DEGs (at least expressed in one

comparison) related to flavonoid biosynthesis, isoflavonoid

biosynthesis, phenylpropanoid biosynthesis, flavone, and

flavonol biosynthesis.

Based on annotation information, we further characterized

the identified DEGs related to differential coloration. A total of

151 DEGs (at least differentially expressed in one comparison)

were identified as color regulators. Differential statistics for these

DEGs have been presented in Figure 6. In three comparisons, viz.,

L vs. H, L vs. Z, and Z vs. H, 103, 120, and 34 DEGs were

identified, respectively (Figure 6A). It is interesting that leaf color

variation from purple to yellow (Z vs. H) depicted the lowest

number of overall DEGs and color-related DEGs, further

emphasizing our assumption of minimal changes in gene

expression from purple to yellow while requiring extensive

changes in color variation from purple to yellow to green. We

further characterized the expression of each gene in three tissues.

Moreover, based on PCC calculated using corresponding FPKM

values, the identified DEGs can be classified into five groups

(Figure 6B).

Forty genes encoding cytochrome P450, UDP-glucoronosyl,

and UDP-glucosyl transferase, PDDEXK-like, non-haem

dioxygenase in morphine synthesis N-terminal,

O-methyltransferase domain, glycosyltransferase 4-like domain,

NAD-dependent epimerase/dehydratase family, 2OG-Fe (II)

oxygenase superfamily, Kelch motif, heam oxygenase, and Myb-

like DNA-binding domain depicted significant upregulation in

green leaves compared to yellow and purple leaves, suggesting a

significant role of these DEGs in regulating pigmentation in C.

ensifolium leaves. On the other hand, 11 genes, viz., Cluster-

12991.59020, Cluster-12991.60709, Cluster-12991.120400, Cluster-

12991.121138, Cluster-12991.121355, Cluster-12991.116930,

Cluster-12991.92049, Cluster-12991.108016, Cluster-12991.110524,

Cluster-12991.106370, and Cluster-12991.108125, depicted

conserved differential expression in all three comparisons. These

genes encode cytochrome P450, NmrA-like family,

O-methyltransferase domain, UDP-glucoronosyl, UDP-glucosyl

transferase, chalcone and stilbene synthases, N-terminal domain,

and AMP-binding enzyme. It is interesting that only cytochrome

was upregulated in green leaves compared to yellow and purple

leaves, whereas genes encoding NmrA-like family,

O-methyltransferase domain, UDP-glucoronosyl, UDP-glucosyl

transferase, chalcone, stilbene synthases N-terminal domain, and

AMP-binding enzyme displayed the highest expression in purple

leaves. Therefore, we assume that differential expression of these

genes might be the key reason for leaf color variation in C.

ensifolium, and a gradual decrease in expression leads to the

color variation from purple to yellow to green leaves.

Moreover, 31 DEGs were upregulated in green leaves

compared to yellow and purple leaves. These genes include

cytochrome P450 CYP2 subfamily, iron/ascorbate family

oxidoreductases, UDP-glucuronosyl and UDP-glucosyl

transferase, flavonol reductase/cinnamoyl-CoA reductase, iron/

ascorbate family oxidoreductases, FOG: Kelch repeat, heam

oxygenase, Myb superfamily, and their homologs. On the

other hand, only two genes, viz., Cluster-12991.164172 and

Cluster-12991.59020 (cytochrome P450 homologs), Genes in

green leaves are compared with yellow and purple leaves

(Supplementary Table S5).

Genes and pathways regulating leaf
coloration in C. ensifolium

Together, chlorophyll contents, anthocyanins and

flavonoid profiling, and transcriptomic characterization
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improve our understanding of leaf color variation in C.

ensifolium. Chlorophyll contents are major pigmentation

for green color variation in plants. Therefore, we

characterized the genes associated with chlorophyll

contents and identified 101 DEGs associated with

chlorophyll contents. These DEGs encoding chlorophyll

A–B binding protein, coenzyme F420 hydrogenase/

dehydrogenase, photosystem II protein, Myb-like

DNA-binding domain, NAD(P)H-binding, photosystem I

psaA/psaB protein, ABC1, Rieske (2Fe-2S) domain, PPR,

NUBPL iron transfer P-loop NTPase, and PCRF were

identified (Figure 7 and Supplementary Table S5). It is

interesting that the number of DEGs increased from

purple to yellow to green leaves, which is consistent with a

gradual increase in chlorophyll contents. Comparison Z vs. H

depicted upregulation of 25 genes, whereas 65 and 58 DEGs

FIGURE 6
Characterization of color-related DEGs identified based on the annotation information. (A) statistics for color-related DEGs in three
comparisons between green, yellow, and purple leaves, viz., L vs. H, L vs. Z, and Z vs. H. (B) correlation plot representing PCC between color-related
DEGs (151), where down = downregulated, up = upregulated, false = log2Fold Change is between −1 and 1.
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depicted upregulation in green leaves compared to purple and

yellow leaves, respectively (Figures 7A,B). The results provide

a molecular basis to further manipulate the chlorophyll

accumulation pattern in C. ensifolium.

Anthocyanins accumulation pattern in three colored

leaves suggested the absence of cyanidin-3,5-O-diglucoside,

pelargonidin-3-O-glucoside, peonidin-3,5-O-diglucoside,

cyanidin-3-O-rutinoside, malvidin-3-O-(6-O-malonyl-beta-

D-glucoside), peonidin-3-O-glucoside, peonidin-3-O-

rutinoside, petunidin-3-O-arabinoside, cyanidin-3-

rutinoside-5-glucoside, delphinidin-3-O-(6-O-malonyl-

beta-D-glucoside), and pelargonidin-3-O-rutinoside in

green leaves. Based on annotation information, we

screened 22 DEGs from four gene families: transferase

family, cytochrome P450, ABC1 family, and UDP-glucosyl

transferase (Supplementary Table S5). It is interesting that

most of the DEGs associated with anthocyanin accumulation

were downregulated in green leaves, except for four genes,

viz., Cluster-12991.114567, Cluster-12991.113887, Cluster-

12991.201069, and Cluster-12991.153858. Moreover,

dihydroflavonol 4-reductase (DFR), a major gene in the

anthocyanin biosynthesis pathway, was identified with

downregulation in green leaves compared to yellow and purple

leaves. Seven genes, viz., Cluster-12991.119374, Cluster-

12991.119375, Cluster-12991.119368, Cluster-12991.119369,

Cluster-12991.119371, Cluster-12991.119372, and Cluster-

12991.119373 were identified encoding DFR protein

(Supplementary Table S5). Anthocyanin accumulation pattern

and differential regulation of genes encoding DFR suggested the

key role of DFR genes in regulating leaf color in C. ensifolium

(Figure 8). Together, the differential regulation of genes associated

with anthocyanin accumulation regulates leaf coloration in C.

ensifolium.

qRT-PCR-based validation of selected
genes

We selected 20 genes based on their corresponding

annotation information and differential expression in green,

yellow, and purple leaves to further verify their expression

pattern through qRT-PCR (Supplementary Table S6). Similar

FIGURE 7
Characterization of DEGs associated with the chlorophyll contents. (A) statistics for chlorophyll-related DEGs in three comparisons between
green, yellow, and purple leaves, viz., L vs. H, L vs. Z, and Z vs. H. (B) heatmap of 151 chlorophyll-related DEGs based on corresponding FPKM values.
(C) correlation plot representing PCC between 101 chlorophyll-related DEGs.
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to expression patterns in transcriptome data, qRT_PCR results

depicted significant variation in the regulation pattern of the

20 selected genes (Figure 9). Among the 20 genes, 9, 7, and 4 were

related to flavonoid biosynthesis, chlorophyll accumulation, and

anthocyanin biosynthesis, respectively. Comparisons L vs. H and

L vs. Z identified the most significant variation in gene

expression. Cluster-12991.59020, Cluster-12991.60709, Cluster-

12991.174940, Cluster-12991.165439, and Cluster-12991.201069

were identified with higher expression in purple tissues

compared to yellow and green tissues. It is interesting that all

the genes except Cluster-12991.125725 showed similar expression

patterns in yellow and purple leaves, whereas Cluster-

12991.125725 showed a lower expression level in yellow leaves

than in purple leaves.

FIGURE 8
Differential regulation of flavonoid biosynthesis inC. ensifolium leaves. Differentially accumulated flavonoids and anthocyanins are presented in
red text. The upward and downward arrows in green, yellow, and purple color indicated the accumulation pattern in green, yellow, and purple leaves,
respectively. The pathway was reconstructed by following the layout and nomenclature available on https://www.genome.jp/kegg/kegg2.html.
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Discussion

The leaf sheath color in C. ensifolium ranges from purple to

yellow to green. Aside from flower coloration, leaf color variation

is an important additional ornamental characteristic. Flavonoids

are involved in the formation and development of flowers, fruits,

and seeds in plants and other functions such as antioxidant

activity, UV protection, and protection against biotic and abiotic

stresses (Samanta et al., 2011; Baskar et al., 2018; Chin et al., 2018;

Agati et al., 2020). Most studies concerning ornamentals

generally focus on flower color variation and leaf shape (de

Souza et al., 2012; Zhao and Tao, 2015; Manzoor et al., 2019).

However, the molecular basis of C. ensifolium leaf color variation

has not been studied. In this study, we systematically used

metabolomics and transcriptomics approaches to identify the

major contributors to leaf coloration and screened key genes

associated with coloration, providing critical information for the

enrichment of C. ensifolium germplasm.

Chlorophyll, flavonoids, and anthocyanins are the primary

factors influencing the coloration of different plant organs (Guo

et al., 2009; Li et al., 2019). Chlorophyll is the primary pigment

developing green color while varying concentration of carotenoids

and anthocyanins is necessary for plants’ yellow to purple

pigmentation (Wilkinson et al., 2002; Croft et al., 2017). Our

results suggested significant differences in chlorophyll

accumulation in purple, yellow, and green leaves. In general,

chlorophyll degradation coupled with anthocyanins and

carotenoids leads to leaf color variation from green to yellow to

reddish. However, in C. ensifolium, leaf color changes from purple

to yellow to green during developmental phases. Therefore, an

increase in chlorophyll contents with successive development

provides a strong basis for color variation in C. ensifolium.

Moreover, the chlorophyll-related DEGs also depicted

significantly higher expression in green leaves, signifying the

role of chlorophyll accumulation in green pigmentation.

Several studies have demonstrated the essential role of

anthocyanins in color formation. For instance, Xue et al. (2021)

depicted the association of anthocyanins with red-colored seed coats

in peanuts. A study by Qiu et al. (2020) concerning passion fruit

found that the total anthocyanin contents of purple fruit were

significantly higher than that of yellow fruit. White, yellow, blue,

and pink Primula vulgaris (Li et al., 2020) showed a gradual increase

in total anthocyanin content as the color deepened. We identified

several anthocyanins with differential expressions in purple, yellow

and green leaves. It is interesting that cyanidin-3-O-sophoroside,

naringenin-7-O-glucoside, and procyanidin B3 were identified as

upaccumulated in purple leaves. Several studies have reported that

variable concentrations of cyanidin-3-O-sophoroside result in the

development of purple pigmentations in plants (Terahara et al.,

2004; Morita et al., 2005; Oliveira et al., 2006). Moreover, Yin et al.

(2019) identified naringenin-7-O-glucoside as a potential

contributor to the reddish petal color in Brassica napus.

Moreover, copigmentation resulting from the differential

accumulation of delphinidin, cyanidin, petunidin, and quercetin

contributed to yellow leaves, and these results are in line with the

findings of several studies (Nielsen et al., 2005; Lambert et al., 2011;

Benmeziane et al., 2016; Fu et al., 2018). Several key genes encoding

NmrA-like family, O-methyltransferase domain, UDP-

glucoronosyl, UDP-glucosyl transferase, chalcone synthesis

(CHS), and stilbene synthases N-terminal domain and AMP-

binding enzyme were identified as color regulators. CHS is a key

regulator in anthocyanin accumulation pathways (Yang et al., 2002).

Yang et al. (2002) characterized the CHS gene family as a

contributor to the petal color variation in Dendranthema.

Further functional verification of these identified genes can unveil

regulatory mechanisms underlying pigmentation in C. ensifolium.

Likewise, differential accumulation patterns of flavonoids, such

as diosmetin, sinensetin, and naringenin chalcone, depicted a gradual

decrease from purple to yellow to green leaves. We considered these

flavonoids to be key leaf coloration regulators based on annotation

information and previously published statistics. Diosmetin has been

previously identified as amajor contributor to indigo pigmentation in

woad (Pauk et al., 2022). By contrast, sinensetin, along with

rosmarinic acid and eupatorine, were identified in Orthosiphon

FIGURE 9
qRT-PCR-based verification for 20 selected genes related to
flavonoid biosynthesis, chlorophyll accumulation, and
anthocyanin synthesis. Green, yellow, and red boxes indicate
unchanged, moderately upregulated, and highly upregulated
genes, respectively.
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aristatus, regulating color variation from purple to white

(Faramayuda et al., 2020). Several DEGs were identified related to

phenylpropanoid pathways, including UDP-glucoronosyl and UDP-

glucosyl transferase, flavodoxin, cytochrome P450, AMP-binding

enzyme, multicopper oxidase, Kelch motif, aldehyde

dehydrogenase family, and Myb-like DNA-binding domain.

Several metabolites and key genes were identified through

transcriptome and metabolome analysis. Transcriptome analysis is

an important tool for identifying genes responsible for a stage-specific

trait. The analysis of different comparison groups revealed that only a

few genes showed an upregulation trend in expression as leaf color

deepened, suggesting that the process of color deepening requires

only a few key involvements. Moreover, the functional enrichment of

DEGs indicated that changes in differential gene expression caused

significant changes in metabolic activities. The results suggested that

copigmentation of several anthocyanins and flavonoids governed by

structural genes resulted in the color change of C. ensifolium leaves.

The study provides a molecular basis for leaf coloration in C.

ensifolium. However, further functional verification of identified

genes can provide insights into regulatory pathways underlying

pigmentation in C. ensifolium. Moreover, C. ensifolium leaves can

be used as a source of natural pigmentation.
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