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ABSTRACT

Objectives: The study sought to identify collaborative electronic health record (EHR) usage patterns for pediatric

trauma patients and determine how the usage patterns are related to patient outcomes.

Materials and Methods: A process mining–based network analysis was applied to EHR metadata and trauma

registry data for a cohort of pediatric trauma patients with minor injuries at a Level I pediatric trauma center.

The EHR metadata were processed into an event log that was segmented based on gaps in the temporal conti-

nuity of events. A usage pattern was constructed for each encounter by creating edges among functional roles

that were captured within the same event log segment. These patterns were classified into groups using graph

kernel and unsupervised spectral clustering methods. Demographics, clinical and network characteristics, and

emergency department (ED) length of stay (LOS) of the groups were compared.

Results: Three distinct usage patterns that differed by network density were discovered: fully connected (cli-

que), partially connected, and disconnected (isolated). Compared with the fully connected pattern, encounters

with the partially connected pattern had an adjusted median ED LOS that was significantly longer (242.6 [95%

confidence interval, 236.9–246.0] minutes vs 295.2 [95% confidence, 289.2–297.8] minutes), more frequently

seen among day shift and weekday arrivals, and involved otolaryngology, ophthalmology services, and child

life specialists.

Discussion: The clique-like usage pattern was associated with decreased ED LOS for the study cohort, suggest-

ing greater degree of collaboration resulted in shorter stay.

Conclusions: Further investigation to understand and address causal factors can lead to improvement in

multidisciplinary collaboration.
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BACKGROUND AND SIGNIFICANCE

Unintentional injury is the leading cause of morbidity and mortality

among children in the United States. In 2016, over 7.3 million cases

of nonfatal injuries and over 11 000 fatal injuries were recorded

among children less than 18 years.1,2 The annual cost of these inju-

ries to the U.S. economy is estimated to be at least $50 billion in di-

rect medical spending.3 Delivery of optimal pediatric trauma care is

important in improving clinical outcomes and containing costs.4

Pediatric trauma care is multidisciplinary involving various

healthcare professionals (HCPs) that coordinate across time and

care location.4,5 Patients arriving at the emergency departments

(ED) of trauma centers are met by multidisciplinary trauma teams

that provide life-saving resuscitation, stabilization, and definitive

treatment. The presence of a trauma team has been shown to reduce

time to diagnostic procedures (eg, computed tomography scanning),

time to operating room (OR), ED length of stay (LOS), and prevent-

able deaths in severely injured children,6 and the incidence of

delayed diagnoses of injury,7 by improving the coordination of

care.6 Nevertheless, gaps in care delivery are common, particularly

for patients with multiple injuries requiring care from multiple spe-

cialty services.8–10 Individual specialties tend to operate in silos, and

transitions between care teams are often fraught with disruptions.11

In addition, the unique needs of children, such as access to allied

HCPs (eg, social worker, chaplain), are often not met.11,12

Improving multidisciplinary collaboration is contingent on the

ability to identify opportunities for improvement. Social network

analysis is widely used to evaluate collaboration among HCPs.13–16

With the widespread adoption of electronic health record (EHR)

systems in care delivery, there have been efforts to assess collabora-

tion by exploiting routinely captured EHR data.17 This offers a scal-

able approach to evaluate multidisciplinary collaboration over

larger populations and time periods than is feasible through direct

observation.18,19 This includes efforts to identify collaborative care

teams18,20–23 and quantify patterns of collaboration that are associ-

ated with positive outcomes.19,24,25 The common goal of these

efforts is to gain new insight that may enhance collaborative work

and consequently improve patient outcomes. In this study, we ex-

tend this area of research by employing social network analysis to

investigate multidisciplinary collaboration in pediatric trauma care.

Specifically, we set out to characterize collaborative EHR usage pat-

terns,18 understand predictive factors, and determine how these us-

age patterns relate to ED LOS.

MATERIALS AND METHODS

Study setting
The Johns Hopkins Children’s Center is an accredited Level I pediat-

ric trauma center in Maryland. The Johns Hopkins Children’s Cen-

ter receives approximately 1000 pediatric trauma patients annually

from Maryland and the surrounding region. Based on prehospital in-

formation, incoming patients are triaged to a trauma activation level

that determines the composition of the trauma resuscitation team

that receives patients in the pediatric ED (PED) trauma bay. Alpha

activation occurs for children with severe and potentially life-

threatening injuries such as airway problems. It mobilizes staff,

from the pediatric intensive care unit (PICU), general pediatrics sur-

gery (GPS) service, and ancillary services (eg, chaplain, social

worker) to the ED. Bravo activation occurs for children with less

critical injuries, mobilizing clinicians from the ED and the GPS ser-

vice. Relatively stable patients activate a “Consult” for GPS service,

which includes patient transfers from other facilities, while patients

with very minor injuries that can be handled solely by ED staff

prompt an ED response. Specialty services such as neurosurgery and

orthopedic surgery are consulted as needed.

Trauma resuscitation care is standardized and follows the Amer-

ican College of Surgeons Advanced Trauma Life Support protocol.26

During resuscitation, the extent of injury is determined and injury

severity is scored. Following resuscitation, patients not requiring in-

patient care are moved from the trauma bay to the main PED area

where they are assigned a bed and a care team. The care team is re-

sponsible for coordinating care among all managing services to en-

sure timely discharge.

Study population
Pediatric trauma encounters from October 1, 2016, to December

31, 2017, that were triaged to either alpha or bravo, and ended in

direct discharge from the ED were included. This cohort typically

requires trauma team activation, but typically comprises patients

with minor injuries.27,28 Although specific injury and care needs

may differ, this cohort was linked by a common care goal of dis-

charge within 4 hours of ED arrival,29 and was considered homoge-

neous. There were no repeat encounters for any patients included in

the study sample.

Data sources
Data were independently obtained from the EHR data warehouse

(ie, the Epic Clarity database) and the pediatric trauma registry. The

pediatric trauma registry is maintained by the pediatric trauma pro-

gram and the inclusion criteria and data fields are defined in the

Maryland State Trauma Registry Dictionary Pediatric Trauma

Patients.30 From the trauma registry, we obtained demographic and

encounter data including age, sex, trauma activation level (alpha, or

bravo), patient origin (scene of injury or transfer), injury type (blunt,

penetrating or others), Glasgow Coma Scale score, injury severity

score (ISS), and ED LOS. From the EHR, we collected the metadata

of captured clinical activities including 45 different types of notes

(eg, history and physical, consult notes), procedure orders, medica-

tion orders, flowsheet entries, and medication administration

entries. Supplementary Appendix 1 provides the summary of the

metadata collected for each clinical activity type. The trauma regis-

try and EHR data were linked by a record linkage process with high

sensitivity and specificity that is detailed in Durojaiye et al.31 The

Johns Hopkins Medicine Institutional Review Board approved the

study (# IRB00076900).

Study design
This study was a retrospective cohort analysis. Figure 1 provides an

overview of the sequence of methods applied to data from the EHR

and the trauma registry for our cohort of pediatric trauma patients.

The following sections outline the implementation of the aspects of

this study.

Process mining
Process mining is a data science approach that “aims to discover,

monitor and improve real processes by extracting knowledge from

event logs.”32 Process mining supports analyses from 4 different per-

spectives: the control-flow perspective (sequence of events), organi-

zational perspective (relationships among actors), performance

perspective (frequency and timing of events), and case perspective

(exploring specific instances of a process).33 The starting point for
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process mining is an event log, which is a collection of events that is

captured when processes are executed.34 An example of an event log

is given in Supplementary Appendix 2. Each row in an event log rep-

resents an event, which is a discrete activity (eg, note writing) in a

given process (eg, clinical care) that is performed by an actor (eg,

ED resident), and relates to a particular patient encounter (eg, Case

ID 1). Each event is often timestamped (eg, medication administered

at 10/16/2010 06:52) allowing chronologic ordering.34,35 An event log

is usually imported into a process mining software,36 in which specific

techniques and algorithms can be applied to investigate the process

from various perspectives. A detailed introduction to process mining in

health care is provided by Mans,34 while a useful review of applica-

tions of process mining in health care is provided by Rojas et al.35

In this study, we investigate the organizational perspective of the

care process for the defined cohort via social network analysis. So-

cial networks can be constructed from an event log by applying 1 of

5 “metrics” to define relationships (ie, edges) between actors (ie,

nodes).37 In this study, we defined relationships between actors

based on the “working together” metric. The working together met-

ric assigns relationships among actors that are involved in a case.37

We selected the working together metric because it has been shown

to be useful in understanding relationships among a large set of

actors in unstructured processes such as in health care.38 The classic

working-together metric however ignores the temporal distance be-

tween actors. For example, Actor A could be involved with a patient

in the ED in the morning and Actor B could be involved the same

patient in the evening without ever directly working together (or

having the opportunity) because of no temporal overlap. The classic

working together metric credits both actors A and B as working

together.

In this study, we distinguish this by defining the “working closely

together” metric to account for temporal distance between actors.

In operationalizing this metric, we considered the shift rotation as

the unit of clinical work and collaboration. We assumed that actors

that were involved in the care of a patient during a shift had the op-

portunity of working together while actors that were captured in the

EHR within a similar time interval during the same shift were likely

“working closely together.” This translates to actors that were

jointly involved in completing the multirole tasks such as placing

orders or actors that were completing disparate single-role tasks at

the same time. The overview of the implementation is depicted in

Figure 2.

Functional role identification
In clinical care, collaboration among individuals is determined by

“functional roles” (eg, ED nurse, neurosurgery resident, PICU fel-

low). Multiple individuals may occupy these functional roles at the

same or different times but perform the duties of that functional

role.39 Consequently, we considered collaboration at the level of

functional roles rather than at the level of individuals. In determin-

ing functional roles, we identified the service (eg, orthopedic service,

ophthalmology service) to which each identified HCP belonged.

This service could be unit based (eg, ED, PICU) or a non–unit- or

specialty-based service that operates across various care locations

(eg, neurosurgery service, physical therapy). The service information

was prepended to the HCPs’ generic role (eg, resident, attending) to

obtain the functional role defined in our analyses.

To determine the services of HCPs, first, we identified the serv-

ices of attendings by taking the mode of the frequency distribution

Figure 1. Overview of the study design. EHR: electronic health record.
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of the service information in the notes they co-signed across all

encounters. When the service could not be identified from patient

notes, chart review and institution provider directory lookup were

conducted. Subsequently, we identified the services of fellows, physi-

cian assistants, and specialty-based nurse practitioners by taking the

mode of the frequency distribution of the service of attendings that

co-signed that notes that these generic roles authored across all

encounters. The services of medical residents, which changes fre-

quently as they rotate through various services as part of their train-

ing, were identified on an encounter basis based on the service of the

attending that co-signed the patient notes they authored during each

encounter.

Event log generation
We randomly assigned a case ID to each encounter and normalized

all timestamps by replacing them with time (in minutes) from ED ar-

rival (time 0). The different EHR metadata were processed into an

event log consisting of the randomly assigned case ID, the normal-

ized time, the activity type, the unique ID, and functional role of the

HCP. Simultaneous events (events with same data but different HCP

ID) were generated from multirole activities (eg, notes, procedure

orders). As notes were typically signed off late after they were

started, we considered the note’s creation time as the note’s comple-

tion time. Activities performed by student roles (eg, nursing student,

medical student) were excluded as student roles are not directly re-

sponsible for patient care. Activities with missing data and activities

that were initiated by the EHR system or by individuals whose serv-

ices could not be determined were excluded. Activities that were reg-

istered before ED arrival (time 0) were also excluded.

Event log segmentation
To implement “working closely together,” we obtained the normal-

ized timeline from ED arrival to ED discharge for each encounter,

divided the timeline into shift rotations (day: 7:00 a.m. to 6:59 p.m.;

night: 7:00 a.m. to 6:59 a.m.) numbered 0 (arrival shift) to N (dis-

charge shift), and labeled the events in the event log with the corre-

sponding shift number and shift type (day or night). Events within

each shift were further partitioned into segments representing

“collaborative sessions” based on “natural breaks” (significant time

gaps between consecutive events) in the temporal continuity of

events. To achieve this, we employ the Jenks natural breaks optimi-

zation algorithm,40 which is a highly regarded technique for classify-

ing interval data into groups and is extensively used in geospatial

data analysis for making choropleth maps.41 The Jenks optimization

objective is to minimize variation within groups, thus maximizing

variation across groups as measured by the goodness of variance fit.

We assume a natural break to be a minimum of 30 minutes between

consecutive events in the event log to accommodate for lag between

occurrence of activities in real-life and registration in the EHR. We

subsequently applied the Jenks optimization algorithm to determin-

istically identify the optimal break interval for each shift rotation

from between 30 to 120 minutes in 5-minute increments. The opti-

mal break interval was taken as the smallest time interval that maxi-

mizes the GVF.

Network construction
For each patient encounter, an undirected edge was created for all

pairwise combinations of identified functional roles within each

event log segment. Unique edges across all event log segments and

all shifts were obtained as a network, which represents the collabo-

rative EHR usage pattern (simply, usage pattern).

Network analysis
We used the igraph 1.1.2 package42 in R 3.4.043 to create and visu-

alize the networks. From each network, we obtained basic networks

metrics including node count (total number of functional roles in-

volved), edge count (total number of relationships between func-

tional roles), network density (proportion of present relationships

between functional roles relative to maximum number of relation-

ships possible), and average degree (the average number of relation-

ship per functional role). We also identified the services that were

involved in each encounter.

Figure 2. Summary of the methodological approach to network representation. Each colored circle represents a unique functional role. ED: emergency

department.
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Network classification
We compared networks using the connected graphlet algorithm de-

scribed by Shervashidze et al44 that is provided in the graphkernels

1.4 R package45 and obtained a similarity matrix of the networks.

The connected graphlet algorithm measures similarity between 2

graphs (networks) by comparing the distribution of graphlets (sub-

networks) within 2 networks rather than node and edge labels, and

has been shown to give competitive performance on unlabeled net-

works.44 Using the kernlab 0.9.25 R package,46 we applied unsuper-

vised spectral clustering47 on the similarity matrix and classified the

networks into clusters representing usage patterns. Spectral cluster-

ing performs dimensionality reduction on the eigenvalues of a simi-

larity matrix before clustering using k-means clustering. Spectral

clustering was selected because it has been shown to generally out-

perform older clustering algorithms.47 Spectral clustering requires

the specification of the optimal number of clusters and the Eigengap

heuristic47 and the elbow method48 were used to determine the opti-

mal number of clusters.

Statistical analysis
We obtained descriptive statistics of the demographic, encounter,

network, and service composition characteristics of each usage pat-

tern and performed pairwise comparisons between patterns using

the Wilcoxon rank sum test and Pearson’s chi-square test for inter-

val and categorical variables, respectively. Statistical significance

level was set to .05. The ED LOS was log transformed and normality

was confirmed with the Shapiro-Wilk test. Multivariate linear re-

gression of encounter group on the log-transformed ED LOS was fit-

ted with patient, encounter, and service composition variables that

exhibited variance. From the model, the predicted (adjusted) ED

LOS for each encounter and summary statistics of the predicted ED

LOS for each pattern were obtained. Analysis was conducted in

Stata 13.49

RESULTS

There were 249 encounters in the cohort, and the demographic and

encounter characteristics of the cohort are summarized in Table 1.

Only 2 ISS values were missing. Only 2 encounters were alpha trau-

mas and the ISS for these encounters was 1. Of the 11 patients with

nonblunt injuries, 9 were bravo traumas.

The initial event log contained 67 889 events. A snapshot of the

structure of the event log is given in Figure 3. Exclusions included

1518 (2.2%) pre-ED arrival events, of which 1509 (99.4%) were

flowsheet events and 1507 (99.3%) were executed by ED staff.

Thirty-nine events were excluded because of inability to determine

the HCP functional role. There were 66 332 events in the final event

log with flowsheet entries accounting for 59 077 (89.1%), procedure

orders 2688 (4.1%), notes 2632 (4.0%), medication orders 1379

(2.1%), and medication administration entries 556 (0.8%). A total

of 494 unique individuals occupying 36 functional roles were identi-

fied. The most commonly captured functional roles are shown in

Figure 4.

Usage patterns
Spectral clustering (Eigengap heuristics and elbow method) sug-

gested the presence of 3 clusters, as seen in Figure 5. Consequently,

3 usage patterns were described according to their group sizes and

network density, and iconic examples are visualized in Figure 6

using the Kamada-Kawai network layout algorithm.50 The “fully

connected” pattern where edges existed among all nodes, known as

a clique, comprised 137 (55.0%) encounters. The “partially con-

nected” pattern demonstrated varying degree of edges among con-

stituent nodes and accounted for 106 encounters (42.6%). Last, the

“disconnected pattern” that was a collection of isolated node pairs

consisted of 6 encounters (2.4%).

The differences in pairwise comparison of the network, demo-

graphic, and encounter characteristics of the full-connected and par-

tially connected usage patterns are characterized in Table 2. There

were no significant differences among the 2 usage pattern types in

terms of age, sex, number of shifts patient received care, trauma ac-

tivation, injury type, ISS, and Glasgow Coma Scale. However, com-

pared with the partially connected pattern, the fully connected

pattern was less seen among encounters that arrived during week-

days (65.0% vs 77.4%; P¼.036) and during the day shift (67.2% vs

81.1%; P¼.015), and had a shorter unadjusted (239 minutes vs

315minutes; P<.001) and adjusted (242.6minutes vs 290.5 minutes;

P<.001) median ED LOS.

Care team composition of the pattern groups
Encounters with the partially connected usage pattern were signifi-

cantly different from encounters with the fully connected pattern in

that they more frequently involved the otolaryngology service

(12.6% vs 1.4%), ophthalmology service (5.7% vs 0.7%), and child

life specialists (42.5% vs 26.3%).

DISCUSSION

We applied social network analysis to identify and correlate collabo-

rative EHR usage patterns to ED LOS at a Level I pediatric trauma

center using a novel methodology that employed metadata of clini-

cal activities captured in the EHR. The methodology is unique in us-

ing metadata of clinical activities in the EHR rather than the access

logs that are limited to capturing individuals that accessed patients’

records but did not necessarily work as part of the care team.51

Metadata of clinical activities captures HCPs that were intimately

involved in providing care to patients. We considered relationships

at the level of functional roles rather than at the level of individuals.

This was aligned with prior research that asserts that networks rep-

resented at the level of functional roles better reflect clinical practice

and produces more tractable network structures.39 Another impor-

tant contribution of this work was how temporality was treated. We

addressed the temporal nature of care and HCP involvement by

Table 1. Demographic and encounter characteristics of the cohort

(N¼ 249)

Variable Value

Age, y 9 (4–12)

Male 164 (65.9)

Weekday arrivals 180 (72.3)

Day shift arrivals 180 (72.3)

Bravo trauma activation 247 (99.2)

Blunt injury 238 (95.8)

ISS 2 (2–5)

GCS 15 (15–15)

ED LOS (mins) 265 (202–344)

Values are median (interquartile range) or n (%).

ED: emergency department; GCS: Glasgow Coma Scale; IQR: interquartile

range; ISS: Injury Severity Score; LOS: length of stay.
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Figure 3. Snapshot of the event log structure for the study showing events for encounter with ID 2301. Events for each segment in a shift have the same clus-

ter_id. ED: emergency department; GPS: general pediatric surgery service RN: nurse; AT: attending; R: resident.

Figure 4. The top 20 functional roles involved across all encounters. ED: emergency department; GPS: general pediatric surgery; PA: physician assistant.
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employing a process mining approach and reimagining the working

together metric to account for temporal distance among activities of

HCPs. This led to the use of patient-focused shift duty as the unit of

collaboration rather than the entire patient encounter. Prior research

has shown that accommodating for temporality produces clearer

and simpler networks,52 and as shown in this study, allowed us to

better triangulate collaboration and obtain simpler and clearer net-

works. Last, unlike previous studies,19,24,25 we were able to identify

simple pattern groups, as well as a pattern group that was associated

with less desirable patient outcome, and provided direction for fur-

ther investigation and process improvement efforts. Our study dem-

onstrates that meaningful insight that can be used to improve

multidisciplinary collaboration can be obtained from EHR data.

We resolved 494 unique HCPs that provided care for pediatric

trauma patients that were discharged directly from the ED to 36

functional roles, and identified 3 types of EHR usage patterns

among the functional roles. Encounters that left behind a fully con-

nected usage pattern accounted for over half (55.0%) of the cohort

and had an adjusted median ED LOS that approximately met the

target goal of 240 minutes, and was 47.9 minutes shorter than the

median ED LOS of encounters that left behind a partially connected

usage pattern. This suggested that when functional roles functioned

essentially as a clique, they were faster in providing care to patients;

better collaboration resulted in shorter ED stays.

The partially connected usage pattern was more frequently seen

among encounters that arrived during day shifts and on weekdays,

and may have involved patients with very minor injury. This suggests

that a higher workload during regular hours, and possibly having very

minor injury requiring nonurgent intervention, negatively impacted

multidisciplinary collaboration. These encounters also significantly in-

volved the child life specialists, who are trained professionals responsi-

ble for providing emotional support to patients and their family,53

particularly before and during potentially painful procedures that in-

duce anxiety such as laceration repair54,55 and orthopedic casting.53

One possible explanation for this is that multidisciplinary collabora-

tion is adversely affected when patient and or family experience

significant psychological stress requiring the services of child life

specialists, which typically leads to a longer ED stay. Encounters with

Figure 5. Determining optimal number of clusters in the similarity matrix. Left: plot of the 10 smallest eigenvalues showing an eigengap at 3. Right: elbow method

showing an elbow at 3.

Figure 6. Iconic example of each usage pattern. Left to right: fully connected (clique-like), partially connected, disconnected. AT: attending; ED: emergency depart-

ment; F: fellow; GPS: general pediatric surgery; R: resident; Rad_Tech: radiology technician; RN: registered nurse.
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the disconnected usage pattern, which suggested HCPs functioned in

silos, had the shortest ED LOS, but these were only 6 in number. This

suggested that they are exceptions rather than the norm and may bene-

fit from further examination using a larger cohort.

Our findings are similar to a study conducted by Chen et al19 at

a Level I adult trauma center; 3 “interaction patterns” were identi-

fied with the highly collaborative interaction pattern associated with

a shorter hospital stay. Our study also has several implications. We

were able to identify specific encounters that left behind the less de-

sirable usage pattern that was associated with longer ED LOS, and

potential factors that were predictive of these encounters. These

encounters could be further investigated to identify causal factors

that can be the focus of intervention. In addition, usage patterns can

be periodically audited as a proxy measure for multidisciplinary col-

laboration to identify potential cases to be reviewed at process im-

provement meetings or aspects of collaboration that needs

improvement. However, additional work (eg, implementation of dif-

ferential weighting of EHR activities, and introduction of edge

weights and node sizes in network construction) is needed to make

these patterns robust and to validate them as a proxy measure for

multidisciplinary collaboration. This will be important in represent-

ing and understanding more complex collaboration patterns.

There are several limitations to this study. First, this was a

single-site study and replication at other centers is needed, possibly

with larger sample size. Second, we depended on care activities that

were captured in the EHR and did not take into account collabora-

tion activities that were not captured in the EHRs, such as face-to-

face conversations and telephone calls. A recent study showed that

telephone conversations constitute a significant aspect of clinical

workflows.56 Ability to exploit this data source may further enhance

the ability to quantitatively discern multidisciplinary collaboration

in a robust manner. In addition, care activities captured in the EHR

may not necessarily reflect the time they occurred in real life. This

depends on both the clinical and EHR workflow and other contex-

tual factors, such as workload and the importance of an entry.57

This is particularly critical when using timestamps of EHR-extracted

clinical notes. However, timestamps of other activities such as orders

and medication administration are more likely to reflect actual times

that the events occurred as they are captured close to or in real time.

Furthermore, functional roles that less frequently enter data in the

EHR are less likely to be captured in our analysis (eg, attendings vs

residents). Third, each data clustering technique has strengths and lim-

itations. We used specific data clustering techniques, and other data

clustering techniques may result in different patterns.

CONCLUSIONS

We described a novel methodology to identify usage patterns from

metadata of clinical activities captured in EHR, correlated the pat-

terns to ED LOS, and identified factors that can be focus of future

studies and interventions to improve multidisciplinary collabora-

tion. We showed that a clique-like usage pattern is associated with a

decreased ED LOS, suggesting that greater collaboration resulted in

more timely provision of care for pediatric trauma patients with mi-

nor injuries at our institution. However, additional research is re-

quired to validate our approach at other institutions and to improve

the robustness of the methodology.
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Table 2. Comparison of the demographic and encounter characteristics of the 3 usage patterns

Variable

Fully Connected

(n¼ 137)

Partially Connected

(n¼ 106)

Fully Connected vs Partially

Connected (P Value)

Demographic and encounter characteristics

Age, y 9 (5–12) 8 (3–12) .360

Male 90 (65.7) 71 (67.0) .833

Weekday arrivalsa 89 (65.0) 82 (77.4) .036

Day shift arrivalsa 92 (67.2) 86 (81.1) .015

Shift count 2 (2–2) 2 (2–2) .504

Origin from scene of injury 136 (99.3) 105 (99.1) .855

Bravo trauma activation 136 (99.3) 105 (99.1) .855

Blunt injury 131 (95.6) 101 (95.3) .680

ISSb 2 (2–5) 2 (1–5) .055

GCS 15 (15–15) 15 (15–15) .516

Network characteristics

Node counta 6 (6–8) 8 (6–9) <.001

Edge count 15 (11–21) 17 (12–24) .807

Average degreea 5 (4–6) 4 (3–5) <.001

Densitya 1 (1–1) 0.73 (0.67–0.81) <.001

Outcome characteristics

Unadjusted ED LOS, mina 239 (187–306) 315 (252–401) <.001

Adjusted ED LOS, mina 242.6 (236.9–246.0) 290.5 (289.2–297.8) <.001

Values are median (interquartile range) except for outcome characteristics (see the footnote for superscript ‘a’).

GCS: Glasgow Coma Scale; ISS: Injury Severity Score.
aStatistically significant at <.05.
bDue to the borderline significant P value obtained, we explored the ISS values for both groups (Supplementary Appendix 3). This revealed comparable distri-

butions of ISS values for both groups but a higher density of lower ISS values in the partially connected group.
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