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Abstract 23 

Background 24 

Discrete classification of SARS-CoV-2 viral genotypes can identify emerging strains and 25 

detect geographic spread, viral diversity, and transmission events.  26 

Methods 27 

We developed a tool (GNUVID) that integrates whole genome multilocus sequence 28 

typing and a supervised machine learning random forest-based classifier. We used 29 

GNUVID to assign sequence type (ST) profiles to each of 69,686 SARS-CoV-2 30 

complete, high-quality genomes available from GISAID as of October 20th 2020. STs 31 

were then clustered into clonal complexes (CCs), and then used to train a machine 32 

learning classifier. We used this tool to detect potential introduction and exportation 33 

events, and to estimate effective viral diversity across locations and over time in 16 US 34 

states. 35 

Results 36 

GNUVID is a scalable tool for viral genotype classification (available at 37 

https://github.com/ahmedmagds/GNUVID) that can be used to quickly process tens of 38 

thousands of genomes. Our genotyping ST/CC analysis uncovered dynamic local 39 

changes in ST/CC prevalence and diversity with multiple replacement events in different 40 

states. We detected an average of 20.6 putative introductions and 7.5 exportations for 41 

each state. Effective viral diversity dropped in all states as shelter-in-place travel-42 

restrictions went into effect and increased as restrictions were lifted. Interestingly, our 43 

analysis showed correlation between effective diversity and the date that state-wide 44 

mask mandates were imposed. 45 

Conclusions 46 

Our classification tool uncovered multiple introduction and exportation events, as well as 47 

waves of expansion and replacement of SARS-CoV-2 genotypes in different states. 48 

Combined with future genomic sampling the GNUVID system could be used to track 49 

circulating viral diversity and identify emerging clones and hotspots. 50 

 51 
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Introduction 54 

 Rapid sequencing of the SARS-CoV-2 pandemic virus has presented an 55 

unprecedented opportunity to track the evolution of the virus and to understand the 56 

emergence of a new pathogen in near-real time. During its explosive radiation and 57 

global spread, the virus has accumulated enough genomic diversity that we are now 58 

able to identify distinct lineages and track their spread in distinct geographic locations 59 

and over time (Bedford, et al. 2020; Chen, et al. 2020; Deng, et al. 2020; Rambaut, et 60 

al. 2020; Shen, et al. 2020; Worobey, et al. 2020). Phylogenetic analyses in 61 

combination with rapidly growing databases (Shu and McCauley 2017; Rambaut, et al. 62 

2020) have been instrumental in identifying distinct clades and tracing how they have 63 

spread across the globe, as well as estimating calendar dates for the emergence of 64 

certain clades (Bedford, et al. 2020; Deng, et al. 2020; Rambaut, et al. 2020; Worobey, 65 

et al. 2020). This information is extremely useful in assessing the impact of early 66 

measures to combat spread as well as identifying missed opportunities (Korber, et al. 67 

2020; Worobey, et al. 2020). 68 

Although reconstructing a robust phylogeny of viral variants is an intuitive 69 

approach for viral classification, traditional phylogenetic approaches suffer from 70 

problems with scalability. Building comprehensive phylogenetic trees for single 71 

nucleotide polymorphism (SNP) based analysis of SARS-CoV-2 is already extremely 72 

computationally expensive, and will become more and more difficult as hundreds of 73 

thousands of sequences are added. Dividing the dataset into subsets of genomes 74 

necessarily loses information and explanatory power. Because of this roadblock, our 75 

goal was to develop a rapid way to categorize genomes that scales readily and leads to 76 

as little information loss as possible. We saw an opportunity to combine our allele 77 

identifying tool, WhatsGNU (Moustafa and Planet 2020b), with the Multilocus Sequence 78 

Typing (MLST) approach (Maiden, et al. 1998) that has been widely used in bacterial 79 

classification, tracking the emergence of new lineages, and associating specific 80 

Sequence Types/Clonal Complexes (STs/CCs) with certain diseases. Our whole 81 

genome MLST (wgMLST) approach rapidly assigns an allele number to each gene 82 

nucleotide sequence in the virus’s genome creating a sequence type (ST), which is 83 
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codified as the sequence of allele numbers for each of the ten genes in the viral 84 

genome. 85 

 Here we show that this approach allows us to link STs into clearly defined clonal 86 

complexes (CC) that are consistent with phylogeny and other SARS-CoV-2 typing 87 

systems (Shu and McCauley 2017; Rambaut, et al. 2020). We show that assessment of 88 

STs and CCs agrees with multiple introductions of the virus in certain US states. In 89 

addition, we use temporal assessment of ST/CC diversity to uncover waves of 90 

expansion and decline, and the apparent replacement of certain CCs with emerging 91 

lineages in specific US states. 92 

 93 

Results and Discussion 94 

We developed the GNU-based Virus IDentification (GNUVID) system as a tool 95 

that automatically assigns a number to each unique allele of the ten open reading 96 

frames (ORFs) of SARS-CoV-2 (Wu, et al. 2020) (Figure 1A). GNUVID compressed the 97 

696,860 ORFs in 69,686 high quality GISAID genomes (Supplementary Table 1) to 98 

37,921 unique alleles in five minutes on a standard desktop, achieving 18-fold 99 

compression and losing no information. To create an ST for each isolate GNUVID 100 

automatically assigned 35,010 unique ST numbers based on their allelic profile 101 

(Supplementary Table 1). We then used a minimum spanning tree (MST) to group STs 102 

into larger taxonomic units, clonal complexes (CCs), which we define here as clusters of 103 

>20 STs that are single or double allele variants away from a “founder”. Using the 104 

goeBURST algorithm (Feil, et al. 2004; Francisco, et al. 2009) to build the MST and 105 

identify founders, we found 154 CCs (Figure 1A and Supplementary Table 1).  106 

A random forest classifier was then trained on 53,565 CC-labelled genomes. The 107 

overall prediction statistics of the model were accuracy: 0.955, F-score: 0.950, 108 

precision: 0.947, and recall: 0.964 (Figure 1B).  109 

For any new query genome, GNUVID attempts to classify it first by exact 110 

matching of the allelic profile to one of the other STs. If there is no exact match, the CC 111 

for the query genome is predicted using the trained model. This query process saves 112 

time and also allows each ORF to be typed and tallied individually (Figure 1C and 1D).  113 
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To show that CCs are mostly consistent with whole genome phylogenetic trees, 114 

we mapped the 10 most common CC designations onto a maximum likelihood tree. 115 

Members of the same CC usually grouped together in clades (Supplementary Figure 1). 116 

To further validate our wgMLST classification system we compared it to the proposed 117 

“dynamic lineages nomenclature” for SARS-CoV-2 (Rambaut, et al. 2020) and GISAID 118 

clades naming system (Shu and McCauley 2017). A high percentage of CCs, 95.5% 119 

(147/154) and 87.7% (135/154) of the CCs, had 90% of their genomes assigned to the 120 

same GISAID clade and pangolin lineage, respectively, showing strong agreement 121 

between these classification schemes (Supplementary Table 1). One limitation of our 122 

classification strategy, as with many schemes that operate in real time, is that 123 

paraphyletic groups can occur as a new ST arises from an older ST (e.g. CC258 and 124 

CC768 emerged from CC255 and CC258 making CC255 and CC258 paraphyletic, 125 

respectively) (Supplementary Figure 1). While this means that not all ST/CC groups will 126 

be monophyletic, this property of the nomenclature may be helpful in gauging 127 

emergence and replacement of an ancestral form. 128 

When the global region of origin for each genome sequence was mapped to 129 

each CC there was a strong association of later emerging CCs with certain 130 

geographical locations, possibly reflecting relative containment after international travel 131 

restrictions (Figure 2). To obtain an up-to-date picture of virus diversity in the US, we 132 

analyzed 107,414 high coverage genomes (isolation dates between December 2019 to 133 

October 20th 2020) from the GISAID (Supplementary table 1). There were 26,528 134 

genomes isolated in the US in this dataset that belong to 87 of 154 CCs. Strikingly, 35% 135 

of the genomes belong to CC258 (GISAID clade GH) and 75% of the genomes are 136 

represented by just 10 CCs (CC4, 255, 256, 258, 300, 498 768, 3530, 10221, 21210)). 137 

Moreover, 72% (63/87) of the CCs (representing 82% of the genomes) had the spike 138 

D614G mutation that has been associated with increased spread (Korber, et al. 2020). 139 

Interestingly, none of the US genomes were associated with any of the 12 CCs (26377, 140 

26754, 27693, 27950, 28012, 28825, 29259, 29310, 30362, 31179, 31744 and 31942) 141 

that have the spike protein A222V mutation (GISAID clade GV) that has been recently 142 

associated with increased spread in the Europe (Hodcroft, et al. 2020). Ten of the 12 143 

CCs with the A222V mutation were isolated only from Europe while the two other CCs 144 
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(27693 and 27950) had 2 genomes from Hong Kong and 6 from New Zealand, 145 

respectively. This shows a strong association of this clade with Europe. 146 

The relative proportions of STs or CCs isolated and sequenced may be a highly 147 

biased statistic that is contingent upon where the isolate comes from, the decision to 148 

sequence its genome, and the local capacity to sequence a whole genome. Certain 149 

states (Washington, Texas and California) clearly sequenced more genomes than the 150 

other states. Focusing on specific states may help to partially ameliorate this bias, and 151 

we chose to focus on 16 states (Washington (WA), Texas (TX), California (CA), 152 

Wisconsin (WI), New York (NY), Michigan (MI), Minnesota (MN), Louisiana (LA), Utah 153 

(UT), Virginia (VA), Florida (FL), Oregon (OR), Massachusetts (MA), New Mexico (NM), 154 

Maryland (MD), and Connecticut (CT)) with at least 200 genomes in the studied time 155 

period, representing 92.6% (24,565/26,528) of all viral genomes available from the US. 156 

The most common 20 CCs in these states, representing 86.5% (21261/24565) of the 157 

genomes, are shown in Figure 2. 158 

Because we included collection dates for each genomic sequence, we can use 159 

STs and CCs to better understand the emergence and replacement of certain lineages 160 

and viral diversity in geographical regions over time. Figure 3A and Supplementary 161 

Figure 2 show temporal plots of the most common 20 CCs in 16 states. In WA, the 162 

earlier introduction CC256 (GISAID clade S) was replaced by CC258 (GISAID clade 163 

GH), perhaps by introduction from the East Coast or Europe (Bedford, et al. 2020; 164 

Deng, et al. 2020). CC258 was then replaced by CC300 (GISAID clade GR) and 165 

subsequently by CC498 (GISAID clade G).  166 

In the neighboring state CA, a different pattern was seen in the early pandemic 167 

where the lineage found early on in WA, CC256, only represented 20% of sequenced 168 

genomes at its most prevalent (1st-15th March) while CC4 (GISAID clade L) was the 169 

dominant variant, and was then replaced by CC258. Interestingly, a locally emerged 170 

variant CC10221 (GISAID clade G), probably from CC498, increased in abundance 171 

over time and then was likely exported to OR and NM (Supplementary Figure 2). A 172 

similar pattern was seen in WI where a local variant CC13301 increased in abundance 173 

over time and then appeared to spread to other states (NY, MI, MA and MN). In TX, 174 

multiple diverse CCs persisted in the population until mid-July.  175 
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In NY, a different pattern is seen with CC258 being persistently dominant. 176 

However, a more granular view of STs, not CCs, in New York shows a shifting 177 

epidemiology with ST258 declining and the rise of closely related single and double 178 

locus variants of ST258 reflecting local diversification (Supplementary Figure 3).  179 

In MI, CC258 was the predominant strain until the summer when it gave way to a 180 

more diverse group of isolates. Similarly, in states like VA, CT, NM and LA mostly one 181 

predominant CC is seen over time, while in other states like UT, FL, OR, MA, MD and 182 

MN a diverse pattern of multiple CCs was noticed (Supplementary Figure 2).  183 

The expansions and contractions in the temporal plots over time could be due to 184 

locally generated diversity (mutation) and/or introductions from other states or overseas. 185 

To better understand the source of ST diversity over time, we calculated indices 186 

reflecting effective circulating diversity as well as proportions of new STs in each state, 187 

and inferred domestic or global introductions and exportations based on previous 188 

observations in other locations or subsequent observations in other geographical 189 

locations (Figure 3B, Table 1 and Supplementary Figure 4). To infer introductions, we 190 

required that exactly the same ST was seen at least 10 days prior in some other 191 

geographical location. For exportations we required an ST to be seen first in the state in 192 

question at least 10 days prior to being seen anywhere else.   193 

The results of this analysis showed distinct patterns in different states with 194 

evidence supporting introductions usually outweighing evidence supporting exportations 195 

(Table 1). Interestingly, NY has the highest number of putative exportations (n=26), 196 

which was almost equal to the number of putative importations (n=25) potentially 197 

reflecting its role as a hub driving the initial pandemic. In most states there was a high 198 

amount of diversity that had no evidence of being introduced, which may signal 199 

problems with sampling, or may signal that local mutation is a strong force in generating 200 

diversity. 201 

 To understand the diversity within and between states, we calculated Hill 202 

numbers for all genomes from each state and over time in each state (Figure 4A, Table 203 

1). Hill numbers are a diversity metric used widely in ecological studies that express 204 

effective diversity in units of sequence types, and they are less prone to biases 205 

introduced by incomplete or biased sampling (Alberdi and Gilbert 2019). Recognizing 206 
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that our sample was not drawn from a systematically or evenly sampled dataset, we 207 

chose to use a Hill number metric (q=2) that emphasizes abundant taxa in estimating 208 

the effective diversity. Several other metrics such as the Shannon Index and a 209 

normalized richness index were highly dependent on the number of sampled genomes 210 

from each state. Hill numbers based on STs varied widely by state with TX showing the 211 

highest diversity and MI showing the lowest (Figure 3B and 4 and Table 1). 212 

Interestingly, there is a correlation (R2 = 0.1625) between effective diversity and when a 213 

state-wide mask mandate was imposed (Figure 4B).  214 

Higher effective diversity may signal increased introduction of variants or 215 

increased local generation of new sequence types, which in turn may signal more open 216 

flow of virus into certain states or large circulating populations of virus able to mutate 217 

and diversify, respectively. To attempt to discriminate between these processes we 218 

calculated the effective diversity over time in each state and compared this to the 219 

proportion of novel variants that were determined to be introductions (Figure 3B and 220 

Supplementary Figure 4). In most states, initially high numbers of introductions were 221 

followed by a drop in the relative proportion of introductions as states began to impose 222 

restrictions in March. In some states the proportion of introductions also appears to 223 

increase over the summer as states eased regulations. Interestingly effective diversity 224 

also appeared to be correlated with peaks in the number of cases (Supplementary 225 

Figure 5) in several states, especially New York, but more data will be needed to be 226 

assessed to understand the connection between effective diversity and numbers of 227 

cases reported.  228 

While our wgMLST approach is rapid and robust it has several limitations. 229 

Because a change in any allele creates a new ST our method may accumulate and 230 

count “unnecessary” STs that have been seen only once or may be due to a 231 

sequencing error. This is partially ameliorated by the use of the CC definition that allows 232 

some variability amongst the members of a group, and the use of only high-quality 233 

sequences. A large number of STs also may allow more granular approaches to 234 

tracking new lineages. Another limitation is the stability of the classification system, 235 

some virus genomes may be reassigned to new CCs as clones expand 236 
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 9 

epidemiologically, but this may also reflect a dynamic strength as circulating viruses 237 

emerge and replace older lineages. 238 

Perhaps most important limitation of our classification system is that it is limited 239 

by the quality and extent of the database. This is also reflected in the major limitation 240 

associated with the epidemiological and diversity inferences reported here. Uneven or 241 

biased sampling could lead to both inaccurate statements of the direction or origin of 242 

import/export events, and the source and quantification of diversity. The use of diversity 243 

statistics that emphasize more predominant variants and address sampling bias such as 244 

Hill numbers may help ameliorate this problem, but it seems clear that well-designed 245 

sampling strategies are needed to confidently understand ecological dynamics for 246 

SARS-CoV-2.   247 

 248 

Conclusion 249 

The genomic epidemiology of the 69,686 SARS-CoV-2 isolates studied here 250 

show that 154 CCs have circulated globally and that more than half of these have been 251 

dynamically spreading through the US population with waves of changing diversity. Our 252 

tool (GNUVID) allows for fast sequence typing and clustering of whole genome 253 

sequences in a rapidly changing pandemic. As illustrated above, this can be used to 254 

temporally track emerging clones, identify the likely origin of viruses, and understand 255 

circulating diversity.  256 

 257 

Materials and Methods 258 

All SARS-CoV-2 genomes (n=110,953) that were complete and have high 259 

coverage were downloaded from GISAID (Shu and McCauley 2017) on October 20th 260 

2020. Our wgMLST scheme was composed of all ten ORFs in the SARS-CoV-2 261 

genome (Wu, et al. 2020). Genomes had to be at least 29,000 bp in length and have 262 

fewer than 1% “N”s. The ten ORFs were identified in the genomes using blastn 263 

(Altschul, et al. 1990) and any genome that had any ambiguity or degenerate bases 264 

(any base other than A,T,G and C) in the ten open reading frames (ORF) was excluded. 265 

The remaining 69,686 genomes (Supplementary table 1) were fed to the GNUVID tool 266 

in a time order queue (first-collected to last-collected), which assigned an ST profile to 267 
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each genome. The identified STs by GNUVID were fed into the PHYLOViZ tool 268 

(Nascimento, et al. 2017) to identify CCs at the double locus variant (DLV) level using 269 

the goeBURST MST (Feil, et al. 2004; Francisco, et al. 2009). CCs were mapped back 270 

to the STs using a custom script. Pie charts were plotted using a custom script. The sci-271 

kit learn implementation of Random Forest was then used to train a model. The model 272 

was trained using 53,565 SARS-CoV-2 sequences from GISAID representing the 154 273 

CCs. Briefly, the 53,565 genomes were aligned to MN908947.3(Wu, et al. 2020) to 274 

generate a multiple sequence alignment using MAFFT’s FFT-NS-2 algorithm(Katoh, et 275 

al. 2002) (options: --add --keeplength). The 5’ and 3’ untranslated regions were masked 276 

in the alignment file using a custom script. Variant positions were then called using snp-277 

sites (Page, et al. 2016) (options: -o -v). The 15,136 variant positions (features) matrix 278 

of the 53,565 CC-labelled genomes were then one-hot encoded, in which each SNP is 279 

replaced with a binary vector, and were used to train a random forest classifier in Scikit-280 

learn (Pedregosa, et al. 2011). The prediction capability of the model was evaluated 281 

according to four statistics (accuracy, precision, recall and F-score). 282 

To show the relationship between our typing scheme and phylogeny, we used a 283 

Global phylogeny of SARS-CoV-2 sequences from GISAID (last accessed 2020-11-13). 284 

The tree uses 99,160 high quality genomes(Lanfear and Mansfield. 2020). The tree and 285 

the 10 most common CCs were visualized in iTOL (Letunic and Bork 2019). We 286 

assigned a pangolin lineage (Rambaut, et al. 2020) (https://github.com/hCoV-287 

2019/pangolin) and GISAID clade to each genome of the 53,565 genomes using the 288 

metadata details available on GISAID. We then compared the composition of each CC 289 

and calculated the percentage of the predominant clade/lineage in each CC 290 

(Supplementary table 1).  291 

A total of 107,414 genomes (Supplementary table 1), that were training examples 292 

or assigned CCs and have date of isolation, were then used to analyze the number of 293 

introductions and exportations. Putative introductions were defined as an exact ST that 294 

was isolated somewhere else at least 10 days before the first date of isolation in the 295 

state in question. Exportations were defined as STs that were first isolated in the state 296 

in question and then isolated subsequently somewhere else at least 10 days later. 297 
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To compare diversity between the states and in each state over time, we 298 

calculated the Simpson index (Simpson 1949). To measure effective diversity in units of 299 

STs, we then transformed Simpson index (2H) to a Hill number (2D), which is the 300 

multiplicative inverse of the Simpson index (Alberdi and Gilbert 2019). The dates of 301 

state-wide mask mandates were the dates when face covering was required in indoor 302 

public spaces and in outdoor public spaces when social distancing is not possible 303 

(Abbott 2020; Allen 2020; Angell 2020; Baker 2020; Cuomo 2020; Edwards 2020; Evers 304 

2020; Hogan 2020; Inslee 2020; Kunkel 2020; Lamont 2020; Northam 2020; Saunders 305 

2020; Walz 2020; Whitmer 2020). The state-wide mandate dates used for WA, CA, TX, 306 

WI, NY, MI, LA, FL, MN, NM, OR, MA, MD, VA, UT and CT are 6/26/20, 6/18/20, 7/3/20, 307 

8/1/20, 4/17/20, 7/10/20, 7/11/20, no mandate, 7/25/20, 5/16/20, 7/13/20, 5/6/20, 308 

7/31/20, 12/14/20, 11/9/20, and 4/17/20,respectively. The Hill number is described as 309 

the effective number of STs (or CCs) of equally abundant STs (or CCs) that are needed 310 

to give the same diversity (Hill 1973; Jost 2006). The plots for number of confirmed 311 

cases in the 16 states were obtained from publicly available data in the Johns Hopkins 312 

University dashboard (Dong, et al. 2020). 313 

The GNUVID database will be updated regularly with new added high-quality 314 

genomes from GISAID (Shu and McCauley 2017). Commands used are in 315 

Supplementary Methods. All the scripts are available from the authors and 316 

https://github.com/ahmedmagds/GNUVID (Moustafa and Planet 2020a). GNUVID can 317 

be installed through Bioconda (Grüning, et al. 2018). 318 

 319 

Availability of data and material 320 

The compressed database and the trained model from our quality controlled genomes 321 

are available from the corresponding author and available online for download 322 

(Moustafa and Planet 2020a). The compressed database will be updated regularly on 323 

https://github.com/ahmedmagds/GNUVID. Source code for GNUVID can be found in its 324 

most up-to-date version here, https://github.com/ahmedmagds/GNUVID, under the 325 

GNU General Public License. All scripts are available from the authors. 326 
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Table 1. Number of Genomes, Sequence Types, Simpson index, Hill Number, 347 

introductions and exportations for 16 US states. 348 

  349 

State Genomes 
(STs) 

Simpson 
Index (2H) 

Hill Number 
(2D) 

Non-
introductions 

Introductions 
(US) 

Exportations 

WA 3960 

(1887) 

0.987 77 1817 44 (26) 19 

TX 2167 

(1299) 

0.997 319 1258 31 (16) 17 

CA 1984 

(1236) 

0.997 296 1173 35 (19) 7 

NY 1483 

(825) 

0.960 25 766 25 (9) 26 

MN 1107 

(522) 

0.988 81 470 29 (17) 12 

WI 954 (574) 0.993 147 529 26 (15) 8 

VA 908 (543) 0.994 165 511 18 (13) 4 

LA 850 (416) 0.988 85 397 10 (10) 1 

MI 795 (416) 0.889 9 384 16 (5) 9 

FL 750 (519) 0.995 215 474 29 (18) 6 

OR 531 (343) 0.995 190 320 19 (14) 5 

UT 350 (216) 0.992 123 204 8 (4) 2 

MA 336 (170) 0.940 17 144 17 (12) 2 

MD 196 (145) 0.987 76 134 8 (4) 2 

NM 162 (109) 0.987 80 103 3 (1) 0 

CT 154 (101) 0.964 28 84 12 (8) 0 
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Figure Legends 350 

Figure 1. Workflow for the GNUVID tool and its compression technique. A. 351 

Compression and classification. The tool starts by compressing the database of the 352 

10 ORFs of each of the SARS-CoV-2 genomes to only include a unique sequence for 353 

each allele type. The tool then uses a whole genome multilocus sequence typing 354 

(wgMLST) approach by assigning an allele number to each gene nucleotide sequence 355 

in the virus’s genome creating a sequence type (ST) which is codified as the sequence 356 

of allele numbers for each of the ten genes in the viral genome. The STs are then linked 357 

into clearly defined clonal complexes (CCs) using goeBURST . B. Training a machine 358 

learning classifier. The CC-labelled genomes are then aligned to the SARS-CoV-2 359 

reference genome (MN908947.3) and single nucleotide polymorphisms (SNPs) are 360 

called. The SNP matrix is then one-hot encoded and used to train a random forest 361 

classifier. The training followed a 5-fold cross-validation approach to assess the 362 

prediction capabilities of GNUVID according to four statistics (accuracy, precision, recall 363 

and F-score). TP, TN, FP and FN are true positives, true negatives, false positives and 364 

false negatives, respectively. C. New Genome classification by exact matching or 365 

prediction. GNUVID first tries to match each of the 10 ORFs from a query SARS-CoV-366 

2 genome to an exact match in the compressed database to define an ST, and matches 367 

that to any associated CC. If no exact match is found due to novelty or ambiguity in any 368 

of the 10 ORFs, the query genome is aligned to the reference, one-hot encoded and a 369 

CC is predicted by the trained classifier. A report is then created showing the allele 370 

number of each ORF, ST, CC and a probability of membership in the CC. D. Map of 371 

SARS-CoV-2 virus genome showing the length in base pairs (bp) of the ten ORFs and 372 

numbers of alleles in the current database 69,686 isolates. The majority of the identified 373 

37,921 unique alleles (69%) are for ORF1ab which represents 71% of the genome 374 

length. Strikingly, the two highest ratios (number of alleles/ORF length) are for the 375 

nucleocapsid protein (2.2) and ORF3a (2.1) while the spike protein had a ratio of 1.32. 376 

 377 

Figure 2. Global SARS-CoV-2 Diversity. Minimum spanning tree from goeBURST of 378 

the 35,010 Sequence Types (STs) showing the 154 Clonal Complexes (CCs) identified 379 

in the dataset. Only the most common 20 CCs in the 16 states are shown in black. The 380 
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pie charts show the percentage of genomes from the different geographic regions in 381 

each CC.  382 

 383 

Figure 3. SARS-CoV-2 diversity in 6 states over time. A. Temporal Plots of 384 

circulating Clonal Complexes and corresponding GISAID clade in parentheses in six 385 

different states (Washington (WA), California (CA), Wisconsin (WI), Texas (TX), New 386 

York (NY) and Michigan (MI)). The visualizations were limited to the 20 most common 387 

CCs. B. Diversity of Sequence Types (STs) in the six states over time are represented 388 

for each 2-week time period in the following ratios: 1. Effective diversity (Hill number 389 

equivalent (2D) of Simpson index (2H)) (red) 2. Number of STs new to a state that were 390 

previously isolated and sequenced outside a state divided by the number of STs not 391 

seen previously in a state (blue). 392 

 393 

Figure 4. Effective Diversity of Sequence Types (STs) in 16 states. A. The Hill 394 

number equivalent (2D) of Simpson index (2H), is on the y-axis. Total number of 395 

genomes sequenced on the x-axis. B. Effective diversity (Hill number 2D) plotted 396 

against the week when state-wide mask mandate was imposed. Florida (FL) has no 397 

mask mandate so it was plotted at the end of the y-axis. The 16 different states are 398 

Washington (WA), California (CA), Wisconsin (WI), Texas (TX), New York (NY), 399 

Michigan (MI), Utah (UT), Virginia (VA), Florida (FL), Oregon (OR), Massachusetts 400 

(MA), New Mexico (NM), Maryland (MD), Connecticut (CT), Minnesota (MN) and 401 

Louisiana (LA). 402 

 403 
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Figure 2 521 
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Figure 3 524 
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Figure 4 526 
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