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Abstract
In this work, a synthetic approach to prepare an example of new class of the derivatives of the closo-decaborate anion 
with amino acids detached from the boron cluster by pendant group has been proposed and implemented. Compound 
 Na2[B10H9–O(CH2)4C(O)–His–OMe] was isolated and characterized. This compound has an inorganic hydrophobic core 
which is the 10-vertex boron cage and the –O(CH2)4C(O)–His–OMe organic substituent. It has been shown to possess 
strong antiviral activity in vitro against modern strains of A/H1N1 virus at 10 and 5 µg/mL. The compound has been found 
to be non-cytotoxic up to 160 µg/mL. At the same time, the compound has been found to be inactive against SARS-CoV-2, 
indicating specific activity against RNA virus replication. Molecular docking of the target derivative of the closo-decaborate 
anion with a model of the transmembrane region of the M2 protein has been performed and the mechanism of its antiviral 
action is discussed.
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Introduction

One of the most important tasks facing modern science in 
the twenty-first century is socially significant viral infec-
tions that worsen the quality of human life. These diseases 
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include viral hepatitis (primarily B and C), HIV infection, 
influenza A, etc. Vaccination as a method of combating 
socially significant infections is not always effective; there-
fore, the development of antiviral drugs remains an urgent 
task. The search and creation of chemical compounds capa-
ble of effectively interacting directly with a viral particle 
and thereby inhibit its replication process seems to be the 
most promising method for the treatment and prevention of 
socially significant viral infections.

Despite worldwide efforts to develop chemotherapy and 
vaccines, the 2009/2010 pandemic caused by the influenza 
A(H1N1)pdm2009 virus showed their extreme limitation 
and lack of effectiveness. New strains of the highly viru-
lent influenza virus may appear unexpectedly and cause 
worldwide pandemics with high morbidity and mortality. 
Moreover, the danger of the appearance of A/H5N1 mutants, 
which can be transmitted from person to person, remains 
acute [1–4].

Rimantadine and its derivatives are active against a num-
ber of human viruses, including those that are part of the 
FDA-approved drugs against the influenza virus [5]. The 
mechanism of action of derivatives of adamantane, spiro-
adamantyl amine, and other framework compounds is asso-
ciated with blocking the M2 ion channel of the virus [6–8]. 
Viroporin M2 is essential for the influenza virus to infect 
cells. This is an ion channel built into the viral envelope that 
selectively conducts protons from the cell into the virus. The 
virus enters the host cell enclosed in endosomes (membrane 
structures), which are a kind of vesicle. At a certain value of 
the acidity of the medium, the M2 protein is activated and 
begins to pump protons, lowering the pH inside the viral 
particle and thereby causing its decay. Thus, the genetic 
material of the virus is released into the cytoplasm of the 
host cell [9].

Recently, using the methods of real-time nuclear mag-
netic resonance (NMR), a detailed structure of the M2 pro-
tein has been determined which allows one to understand 
the molecular mechanism that ensures the functioning of 
Viroporin M2 in the transfer of hydrogen ions. As a result, 
it was possible to confirm the previously proposed model. 
The driving force of this proton pump is concentrated in the 

transmembrane region of the protein and is an imidazole 
conjugation of histidine residues at position 37 (His37). The 
source of protons is hydroxonium ions  H3O+ [10].

The residues of tryptophan at the 41st position in the 
transmembrane region close the channel pore from the 
inside. When three or all four imidazoles are protonated, 
electrostatic repulsion arises between the imidazoles. This 
in turn violates the helical packing of the chains of the tetra-
meric channel M2 and opens a portal of Trp41 indoles for 
the passage of protons inside the viral particle. Violation 
of this mechanism should allow the creation of an effective 
drug against influenza, even for strains that have become 
resistant to the effects of existing drugs [11].

Recent studies of adamantane and norbornene deriva-
tives containing amino acid and peptide esters have shown 
that these compounds have antiviral activity against influ-
enza strains A/H1N1pdm2009, A/H3N2 and A/H5N1 [12]. 
Amino acids and other physiologically active compounds 
were condensed with rimantadine (1) (Fig. 1a) by peptide 
synthesis methods. In previous studies, the biological com-
pound L-histidyl-1-adamantyl ethylamine (2HCl · H-His-
Rim, 2) [12] (Fig. 1b) was selected as a result of biological 
screening; it was found to be an inhibitor of the M2 channel 
function of influenza A virus resistant drugs of the adaman-
tane series [13].

Here, we proposed to use the closo-decaborate anion 
 [B10H10]2− as an inorganic membranotropic carrier of the 
same functional groups instead of organic adamantane to 
create a promising antiviral drug.

Boron cluster anions  [BnHn]2− (n = 6–12) [14–17] attract 
attention of chemists because they provide wide opportuni-
ties to vary their structure and potential application. The 
chemical behavior of boron cluster anions and their deriva-
tives (kinetic stability, thermal stability, a variety of sub-
stitution reactions [18–23]) results first from their three-
dimensional aromaticity [24–27]. Modern application of 
boron clusters includes radionuclide diagnostics and therapy, 
ionic liquids, extraction of radionuclides, energetic mate-
rials, preparation of neutron-protective coatings, catalysis, 
application as pharmacophores, scaffolds in molecular con-
struction, modulators of bioactive compounds [28–40]. In 

Fig. 1  a Molecule of riman-
tadine (1) (Rim) and b 2HCl · 
H-His-Rim (2)
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addition, the boron clusters and carboranes can be used in 
biological imaging [41, 42] and highly efficient molecular 
magnets have been developed based on them [43–45].

A number of compounds containing boron clusters were 
shown to possess antiviral activity. In particular, a series 
of conjugates of para-carborane [46], ortho-carborane 
[47], and cobalt bis(1,2-dicarbollide) [48] with 5-ethynyl-
uridine were prepared by Sonogashira coupling of the cor-
responding boron cage-containing terminal alkynes and 
5-iodo-nucleoside and were studied to have activity against 
HCMV, EMCV, HPIV-3, HSV-1; the designed compounds 
demonstrated low to moderate cytotoxicity in several cell 
lines. The most potent compound is 5-[(1,12-dicarba-closo-
dodecaboran-2-yl)ethyn-1-yl]-20-deoxyuridine with an  IC50 
value of 5.5 mM and a selectivity index higher than 180; it 
exhibits antiviral activity against HCMV but is not active 
against HSV-1, HPIV-3 or EMCV [49]. In addition, car-
borane ester of oseltamivir carboxylic acid was described 
as novel neuraminidase inhibitor [50], which was found to 
be an order of magnitude less active than its precursor, the 
corresponding ethyl ester, which is the active principle of 
pharmaceutical preparations used in influenza prophylac-
tics and therapy. Moreover, closo-dodecaborate conjugates 
based on closo-dodecaborate amines as a versatile synthons 
were prepared, including bis-(closo-dodecaborates), closo-
dodecaborate conjugates with lipids, and with a non-natural 
nucleoside, 8-aza-7-deaza-2’-deoxyadenosine. No antiviral 
activity was detected for the tested compounds (HSV-1, 
HPIV-3 or EMCV, VSV, HMCV) [50].

Recently, we discussed the idea to create the peptide 
bond in derivatives of the closo-decaborate anion by using 
a multi-step synthesis based on the nucleophilic addition of 
amino acid derivatives to the [2-B10H9NCCH3]– anion to 
form N-borylated dipeptide R-GlyPheOEt [51]. The amino 
acid residue was introduced into the boron cage through the 
amidine fragment. However, these compounds have not been 
studied for antiviral or antimicrobial activity.

In the present work, the derivative of the closo-decaborate 
anion  [B10H10]2− with histidine methyl ester (H-His-OMe) 
detached from the boron cluster by the alkoxy spacer was 
synthesized and its antiviral activity against A/H1N1 and 
SARS-CoV-2 was studied.

Experimental

Materials

Solvents (HPLC grade) and solids  (Bu4N)CN (95%), L-his-
tidine methyl ester dihydrochloride (97%), 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (97%), 1-hydroxyben-
zotriazole (97%), 4-dimethylaminopyridine (99%), sodium 
tetraphenylborate (99%) were purchased from Sigma-Aldrich 

and used without additional purification. [Et3NH]2[B10H10] 
was prepared from decaborane-14 using the known synthetic 
procedure [52]. (Bu4N)[B10H11] was prepared by protona-
tion of the  [B10H10]2− anion in the  CH3CN/CF3COOH sys-
tem according to the method reported [53]. (Bu4N)[2-B10H
9O(C4H8)] was synthesized from  (Bu4N)[B10H11] and THF 
according to the known procedure [54]. The substitute was 
opened to give (Bu4N)2[2-B10H9OC4H8CN] when react-
ing with  (Bu4N)CN in dichloromethane [55]; (Bu4N)2[2-
B10H9OC4H8COOH] was obtained [55] by hydrolysis in 
boiled methanol with KOH.

Racemic rimantadine hydrochloride purchased from 
Zhejiang Kangyu Pharmaceutical Co (China) and hydroxy-
chloroquine sulfate purchased from Promochem (Finland) 
were used as reference drugs.

Synthesis

(Bu4N)2[2‑B10H9OC4H8CONHCH(COOMe)
CH2(4‑1H‑Imidazole)],  (Bu4N)2An

(Bu4N)2[2-B10H9OC4H8COOH] (2.00 g; 2.8 mmol) was dis-
solved in 30 ml of 1,2-dichloroethane. The obtained solution 
was cooled to 0 °C, then HOBT (1-hydroxybenzotriazole) 
(80 wt%, 0.71 g; 4.2 mmol), EDC HCl (1-ethyl-3-(3-dimeth-
ylaminopropyl)carbodiimide) (0.65 g; 4.2 mmol) and DMAP 
(4-dimethylaminopyridine) (1.22 g; 10.0 mmol) were added. 
The resulting reaction mixture was stirred for 30 min in a 
dry argon atmosphere. Then L-histidine methyl ester dihy-
drochloride (1.02 g; 4.2 mmol) was added to the mixture. 
The reaction mixture was warmed to room temperature and 
stirred 12 h. The formed precipitate of dimethylaminopyri-
dine hydrochloride was filtered off; the mother liquor was 
concentrated on a rotary evaporator. The dry residue was 
treated with water and extracted with dichloromethane. The 
organic fractions were washed sequentially with 0.1 M HCl 
and water, then dried over sodium sulfate and concentrated 
on a rotary evaporator. The product was dried under oil 
pump vacuum. Yield, 2.25 g (92%).

MS (ESI) m/z: 384.3 ({A–H}− refers to the molecular 
weight of  [C12H27B10N3O4]2−, calculated for {[A]−} 384.5). 
Anal. Calcd. for  C44H93B10N5O4, (444.7): C, 60.98; H, 
10.83; N, 8.09; B, 12.7. Found: C, 60.96; H, 10.86; N, 8.12; 
B, 12.6. IR (KBr,  cm−1, selected bands): ν(NH) 3239, ν(BH) 
2481, ν(C = N amide) 1635, ν(C = N imidazole) 1562, ν(BO) 
1383.

Na2[2‑B10H9OC4H8CONHCH(COOMe)CH2(4‑1H‑Imidazole)], 
 Na2An

Sodium salt  Na2An was prepared by treating  (Bu4N)2An 
with aqueous sodium tetraphenylborate (TPB), filtration of 
precipitated  (Bu4N)TPB, and evaporation of water from the 
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resulting filtrate resulting in the target compound as white 
powder. Yield, 85%. 11B[1H]-NMR  (D2O/CD3OD) δ (ppm): 
− 2.1 (s, 1B, B(2)), − 3.9, − 4.6 (s, 2B, B(1) + B(10)), 
− 24.3 (s, 4B, B(3,5,6,9)), − 30.0 (s., 2B, B(7,8)), − 35.2 (s., 
1B, B(4)).

Physicochemical methods

Infrared spectra of compounds were recorded on an Lumex 
InfraLum FT-02 FT-IR spectrometer (St.-Petersburg, Russia) 
in the range 4000–400  cm−1 (Nujol, KBr pellets).

The elemental analysis of compounds was carried out on 
a Carlo Erba Instruments EA1108 automatic CHN analyzer; 
the samples were preliminary heated to constant weight. 
Determination of boron was performed by electrothermal 
atomic absorption on a Perkin-Elmer 2100 spectrophotom-
eter with an HGA-700 furnace.

Mass spectra of the reaction solutions in  CH3CN were 
recorded on an API 3200 Qtrap spectrometer (Applied Bio-
system, USA). Ionization conditions: turbo ion sputtering, 
ion sputtering, voltage ± 4500 V, declustering ± 12 V, flow 
rate 2–20 μL/min. The average analytical concentration of 
samples was 0.5–1.0 mg/L.

1H, 13C and 11B[1H] NMR spectra of solutions of 
the studied substances in  CD3CN and  D2O/CD3OD were 
recorded on a Bruker MSL-300 pulsed Fourier spectrometer 
(Germany) at frequencies of 300.3, 75.49 and 96.32 MHz, 
respectively, with internal deuterium stabilization. Tetra-
methylsilane or boron trifluoride ether was used as the exter-
nal standard, respectively. The NMR spectroscopy data for 
 Na2An are described in Supplementary Information (see 
Figs. S1–S3).

Calculation details

Methodology for conducting quantum chemical 
calculations

The full geometry optimization of the ligand An2− has been 
carried out at the ωB97X-D3/6–31 +  + G(d,p) level of the-
ory with the help of the ORCA 4.2.1 program package [56]. 
The quantum–mechanical model of the ligand An2− was 
generated in HyperChem 8.0.8 software product by Hyper-
cube [57].

Molecular docking

The structure of the transmembrane domain M2 S31N from 
RCSB Protein Data Bank (structure code 2KIH) was taken 
as a target for docking to be performed. The transmembrane 
domain M2 S31N contained the S31N mutation, which is a 
marker of strain resistance to rimantadine and amantadine. 
Molecular docking was carried out using the online service 
PatchDock (Molecular Docking Algorithm Based on Shape 
Complementarity Principles) [58].

Procedures of biological experiments and determi-
nation of antiviral activity are described in Supporting 
Information.

Results and discussion

The target compound  (Bu4N)2An was synthesized from 
 (Bu4N)[B10H11] according to Scheme 1. The process control 
at each stage was carried out using 11B NMR spectroscopy 
and TLC.
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The structure of the substituted closo-decaborate 
 (Bu4N)2An with a peptide functional group was determined 
using multinuclear NMR spectroscopy (see Supplementary 
Information) and IR spectroscopy. The introduction of a pep-
tide group into the cluster cage has no effect on the shape of 
the 11B NMR spectrum; it is a spectrum of “classical” mono-
substituted derivative of the closo-decaborate anion. In the 
IR spectrum of compound  (Bu4N)2An, a broad band of the 
BH groups ν(BH) is observed at 2481  cm–1, whereas a band 
of stretching vibrations of the B–O group ν(BO) appears 
at 1383  cm–1. The ν(C = N amide) and ν(C = N imidazole) 
stretching vibrations are observed at 1635 and 1562  cm–1, 
respectively. A band with maximum at 3239  cm–1 corre-
sponds to ν(NH) stretching vibrations.

Sodium salt  Na2An was prepared by treating  (Bu4N)2An 
with aqueous sodium tetraphenylborate (TPB), filtration of 
 (Bu4N)TPB precipitated, and evaporation of water from the 
resulting filtrate resulting in the target compound as white 
powder. The 11B NMR and IR spectra of  Na2An are similar 
to those of  (Bu4N)2An; in 1H and 13C NMR spectra, all the 
peaks corresponding to the boron cluster derivative An2– are 
present, while no signals corresponding to the  (Bu4N)+ cati-
ons are observed (Figs. S1–S3).

The antiviral activity of  Na2An against virus IIV-A/
Moscow/01/2009(H1N1)pdm09 was studied by ELISA 
according to standard methods [58, 59].

As it was indicated, L-histidyl-1-adamantylethylamine 
(HCl*H–His–Rim) (Fig.  1b) showed the best antiviral 
activity among a number of adamantane and norbornene 
derivatives containing amino acid and peptide esters [12, 
13]. Therefore, we believe that the antiviral activity of 
novel drug  Na2An should be studied in comparison with 
HCl*H–His–Rim (1).

Table  1 presents the antiviral activity of compound 
 Na2An in comparison with 1 and the reference drug riman-
tadine hydrochloride (2).

Na2An was shown the highest antiviral activity, at 
both 10.0 and 5.0 μg/mL. The compound has a cytotoxic 
dose > 160 μg/ml as established by the MTT method, which 
undoubtedly opens the possibility of obtaining a drug with 
a high selectivity index. The lack of antiviral properties of 

rimantadine (2) proves that a resistant strain of influenza A 
virus was used in the experiment.

We believe that the mechanism of action of the derivative 
An2− on influenza A virus should be similar to the effect of 
rimantadine/amantadine on the M2 channel of influenza A 
virus [9–11, 60]. In those studies, viroporins were assumed 
the target of the antiviral activity. Viroporins are widely 
involved in the interaction of viruses with the cell at various 
stages. The function of several viroporins in vitro is inhibited 
by the non-specific antiviral drug amantadine (1-aminoada-
mantane) [61], which indicates the direction of the develop-
ment of new broad-spectrum antiviral drugs.

The molecular model of the inhibitor of the viroporin 
transport function assumed the presence of a hydrophobic 
core of carbocyclic alkanes (adamantane, norbornene) [12, 
13] or other condensed and mixed aromatic systems. The 
carbocyclic component of the molecule acts as a membrano-
tropic carrier for the functional group capable of forming 
a non-covalent interaction with the protein surface of the 
viropore channel pore. The molecular mechanism showing 
the functioning of Viroporin M2 in the transfer of hydro-
gen ions is present in Fig. S4. The functional group of the 
molecule can be represented by amino acids, peptides and 
a number of other physiologically active compounds that 
can act as a source of such groups. In this case we used 
the closo-decaborate anion as a carrier and His-OMe as a 
functional group.

In silico studies have been conducted to propose the 
mechanism of the action of anion An2–. According to our 
concept of the molecular design of a molecule that should 
inhibit the M2 channel function of the influenza A virus, the 
boron cluster as a membranotropic carrier should “drag” the 
functional group (in our case, the His residue) into the pore 
of the M2 channel. This model was built using the PM3 
semi-empirical quantum mechanical calculation method. 
The calculation was carried out only for valence electrons; 
integrals of certain interactions were neglected; standard 
non-optimized basis functions of electron orbitals were 
used, and the main parameters used for PM3 were obtained 
by comparing a large number and type of experiments with 
the results of calculations. The resulting model is shown in 

Table 1  Percentage of inhibition of reproduction of the pandemic strain of the influenza virus IIV-A/Moscow/01/2009(H1N1)pdm09 by com-
pounds 1, 2, and  Na2An in the MDCK cell culture: 1 is HCl*H–His–Rim, 2 is Rim*HCl, and  Na2An is  Na2[B10H9–O(CH2)4HisOMe]

Percentage of inhibition of viral reproduction, %

Virus dilution Drugs, µ/mL

Na2An 1 2

5.0 10.0 5.0 10.0 5.0 10.0

10−2 91.0 88.0 47.0 62.0 0 0
10−3 91.0 96.0 40.0 58.0 0 0
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Fig. 2a. The result of docking is the binding energy of the 
ligand with the active site in the conformation providing 
the best interaction of the ligand with the protein binding 
site. The location of An2− in the pore of the M2 channel is 
shown in Fig. 2b.

In general, all molecular docking solutions can be divided 
into two groups in which the boron cluster is directed deep 
into the channel and vice versa towards the outside of the M2 
channel of the influenza A virus (Table S1). The orientation 
of the ligand molecule with the boron cluster directed into 
the M2 channel seems to be the most promising solution. In 
this case, the boron cluster An2− acts as a membranotropic 
carrier for the histidine residue.

Nevertheless, it should be noted that for the inward orien-
tation of the drug, i.e. with the boron cage directed towards 
the channel input (Solution 1 from Table S1, Fig. S5), the 
energetic and spatial characteristics are slightly higher than 
for the arrangement of the compound with the boron cluster 
for the downward orientation (Solution 2 from Table S1, Fig. 
S6). Probably, a small size of the anion An2−, as well as 
the flexibility of the hydrocarbon chain of the side groups, 
allow the ligand to turn round in the pore of the M2 chan-
nel. Therefore, the introduction of the ligand into the pore 
still occurs through the carrier (the closo-decaborate anion) 
followed by the turning of the molecule under the action of 
the internal forces of the proton pump. These assumptions 
have to be tested in terms of the calculation of Molecular 
Dynamics, which allow visualizing the process of interaction 
between the drug and the target protein [62].

On the other hand, the new human coronavirus SARS-
CoV-2, as well as the MERS and SARS viruses, contains 
an ion-selective channels (viroporins of protein E and pro-
tein 3C). Pentameric structure of the E protein also has an 
alpha helix in the transmembrane domain (TM) [63]. The 

viroporin E of the coronavirus, in contrast to the M2 protein, 
is post-translational, i.e. is not contained in the envelope 
of the virus, but acts at the stage of assembly of virions 
[64]. Protein E is localized in the intermediate compartment 
between the endoplasmic reticulum and the Golgi complex 
(ER-Golgi), where coronavirus virions gather and mature to 
exit the infected cell. Moreover, the E protein is involved in 
blocking cell apoptosis [65, 66]. Thus, blocking the action of 
this viroporin could possibly significantly impair the repro-
duction of SARS-CoV-2, as compared to the antimalarial 
drug hydroxychloroquine [67]. As a result of the study of the 
antiviral activity of  Na2An in in vitro experiments against 
SARS-CoV-2, no statistically significant antiviral effect was 
found in the protocols of adding the target drug 24 h before, 
simultaneously, and 24 h after infection, because a decrease 
in the infectious titer of the virus by at least 2.0 lg was not 
achieved (Table 2).

Conclusions

In this work, we proposed a method for the synthesis of the 
 [B10H9-O(CH2)4C(O)-His-OMe]2− anion, which is a sub-
stituted derivative of the closo-decaborate anion with the 
His-OMe functional group separated from the boron cluster 
by the O(CH2)4 spacer. Biological tests performed in vitro 
for the sodium salt to find antiviral properties against influ-
enza A/H1N1 and SARS-CoV-2 viruses demonstrated that 
the key compound has antiviral activity against influenza A/
H1N1 at concentrations of 10 and 5 μg/ml. The 50% cyto-
toxic concentration  (CC50) of the compound against MDCK 
cells was 160 µg/mL, and the selectivity index (SI) was over 
32. Based on the data obtained by molecular docking of the 
boron cluster anion with the model of the transmembrane 
region of the M2 protein, a mechanism for the antiviral 
action of the boron cluster was proposed.

Thus, one could expect antiviral properties for deriva-
tives of the decahydro-closo-decaborate anion with pen-
dant amino acids, peptides, and some other physiologi-
cally important compounds, because the boron cage acts as 
a membranotropic carrier. This agrees with the proposed 
inhibitor model, and the derivatives discussed can be con-
sidered as a new class of objects with promising antiviral 
activity. Moreover, it should be emphasized that the data 
obtained for the influenza A virus is fundamentally different 
from the data obtained for the inhibition of SARS-CoV-2 
replication, which indicates the selectivity of the effect of 
 Na2An on the influenza A virus.

Supporting Information contains Molecular Docking 
Algorithm solutions (Table S1), details of biological experi-
ments and determination of antiviral activity, 11B, 1H, and 
13C NMR spectra of  Na2An (Figs. S1–S3), proton channel 
of influenza virus A (Fig. S4) and that with inserted drug 

Fig. 2  a Model of anion An2− with optimized geometry involved in 
docking and b quantum–mechanical model of the complex of the M2 
protein and drug An2−
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An2− containing the boron cluster in the inward orientation 
(Fig. S5) and downward orientation (Fig. S6) with respect 
to the channel input.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00775- 022- 01937-4.
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