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Abstract
The small abalone Haliotis diversicolor is an economically important mollusk that is widely

cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone.

Polyamines, which are small cationic molecules essential for cellular proliferation, may

affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essen-

tial elements of a feedback circuit that regulates cellular polyamines. This paper presents

the molecular cloning and characterization of AZ from small abalone. Sequence analysis

showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two over-

lapping open reading frames (ORFs) and conformed to the +1 frameshift property of the

frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein

encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degrada-

tion. The result demonstrated that the expression level of AZ was higher than that of ODC in

the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the differ-

ent development stages of the ovary indicated that these two genes might be involved in the

gonadal development of small abalone.

Introduction
Abalone is a common name of a group of marine sea snail belonging to gastropod molluscs. In
the evolutionary history, abalone appears earlier than mammals and lies between Coelomata
and Euteleostomi. Abalone is an economically important marine shellfish that is increasingly
utilized in aquaculture worldwide [1]. The small abalone H. diversicolor is distributed in the
coast of South China and Japan. The aquaculture of H. diversicolor has recently encountered a
series of problems, including gonad precocity and slow growth rate. The mechanism underly-
ing the gonadal development of H. diversicolor at the cellular molecular levels is still unclear.
Nevertheless, molecules such as gonadotropin-releasing hormone (GnRH) are reportedly
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involved in the gonadal development of higher animals [2, 3]. It was suggested that polyamines
may also play an important role in gonadal development [4, 5].

Polyamines such as putrescine, cadaverine, spermidine, and spermine are small basic mole-
cules that play an important role in fundamental cellular processes, including ion channel func-
tion, DNA folding, replication, transcription, and translation [4, 6, 7]. Previous studies
demonstrated that polyamines have high concentrations in developing tissues and tumor cells
[8]. All cells can synthesize polyamines, and most cells can absorb polyamines across the
plasma membrane [9–12]. Intracellular polyamine levels are regulated and primarily depend
on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17). ODC is the first rate-limiting
enzyme in the polyamine biosynthetic pathway; this enzyme catalyzes the synthesis of putres-
cine, which is further converted into the polyamines spermidine and spermine [12–16]. ODC
has a very short half-life and is rapidly degraded by 26s protease when polyamine levels
increase [17, 18].

ODC degradation is controlled by antizymes (AZs), a class of proteins that respond to poly-
amine concentration. AZs were originally described as ODC inhibitors [19]. The affinity of
AZs toward ODC subunits is higher than that of ODC subunits to one another; hence, AZs can
easily bind to transient ODC subunits to form inactive ODC/AZ heterodimers and target ODC
to ubiquitin-independent proteasomal degradation [20–22]. It is suggested that interaction
with AZs would expose C-terminal proteasome degradation signal of ODC [23]. AZs reduce
cellular polyamine concentration not only by promoting ODC degradation but also by interfer-
ing with the polyamine transport of external polyamines via an unknown mechanism [24–26].
The capacities of AZs to degrade ODC, inhibit polyamine uptake, and consequently suppress
cellular proliferation make AZs act as tumor suppressors. Maintaining the balance between
ODC and AZ is apparently important for normal cell growth, because ODC overproduction
was associated with neoplastic transformation [27, 28] and AZ overexpression was indicated to
inhibit cell growth [29]. AZs are synthesized from two open reading frames (ORFs) via a
unique polyamine-stimulated ribosomal frameshifting [30–32]. The functional part of AZs is
encoded by a +1 open reading frame (i.e., ORF2); thus, ribosomes should be subverted to the
+1 reading frame to be translated into mature functional antizymes. This frameshift is stimu-
lated by a pseudoknot structure located at 30 to the frameshift site in the AZ mRNA [33]. The
frameshifting efficiency is affected by the levels of cellular polyamines. A high polyamine con-
centration is likely to increase frameshifting efficiency, promote AZ synthesis, increase ODC
degradation rate, inhibit polyamine uptake, and thus reduce the polyamine concentration in
the cell. Therefore, AZs can be regarded as a biosensor for intracellular free polyamines [33].
AZ genes have been identified from yeasts to mammalians [31, 32] but not in bacteria. The
frameshift mechanism is conservative, and proteins possess conservative domains from yeasts
to mammalians [34, 35].

In the present study, we isolated, expressed in vitro, and identified the function ofH. diversi-
color antizyme (HdiODCAZ) and investigated the effect of AZ on the cellular polyamine syn-
thesis and cell proliferation in abalone. Analysis on the expression pattern of HdiODCAZ in
different tissues and in different developmental stages were also performed.

Materials and Methods

1. Amplifying and sequencing the complete sequence of HdiODCAZ
Following the procedure described by Li et al. [36], we isolated the total RNA of small abalone
hemocyte by using a TRIzol kit and conducted reverse transcription polymerase chain reaction
(RT-PCR) to generate cDNA clones. The design of the degenerate primers used to amplify the
HdiODCAZ sequence was based on the published partial sequence of HdiODCAZ mRNA in
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the National Center for Biotechnology Information (NCBI) (accession number EU244375)
[37]. The designed primers were AZ-up-1 (50-ATCCCCTTCGTCAGAGTCTTCCT-30) and
AZ-up-2 (50-GACGGAGAAGCCCAGGAAACTGA-30). The amplified segments were
inserted into the cloning vector pMD-18T and were transferred into competent cells of E. coli
DH 5α. The positive clone was selected and sequenced. The primers for 50 RACE and 30 RACE
were designed on the basis of the sequenced data, and segments from the 50 and 30 RACE of the
first-strand cDNA solution were also cloned and sequenced.

2. Analysis of HdiODCAZ sequence
The ORFs in the complete mRNA sequence of HdiODCAZ were identified using an ORF
finder (http://www.ncbi.nlm.nih.gov/projects/gorf/orfig.cgi), and then the nucleotide
sequences were translated into amino acids using the Vector NTI 11 software. The AZ
sequence was analyzed using the ODC AZ finder software [38], and the codon region and fra-
meshifting site were identified.

Homology searches were performed using BLASTn and BLASTp in NCBI. The Conserved
Domain (CD) Search service was used to identify the CDs in the predicted protein sequences
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). 3-D structure of the predicted protein
were predicted according to the methods described in the website http://bioinf.cs.ucl.ac.uk/
psipred/. The deduced amino acid sequence of HdiODCAZ was aligned using the CLC main
workbench software (http://www.clcbio.com) with the known homologous proteins of the AZ
class obtained from GenBank. A phylogenetic tree was reconstructed using the CLC main
workbench software through the neighbor-joining method for the amino acid sequences of
AZs from the SwissProt databank/Genbank: red jungle fowl, Gallus gallus (O42148); human,
Homo sapiens (P11926); house mouse,Mus musculus (P54369); Norway rat, Rattus norvegicus
(P09057); pig, Sus scrofa (NP_001116466); cattle, Bos taurus (P27117); fruit fly, Drosophila
melanogaster (P54361); mosquito, Aedes aegypti (Q95P51); red flour beetle, Tribolium casta-
neum (NP_001242998); yeast, Schizosaccharomyces pombe (Q9USQ5); sea purse, Triplophysa
marmorata (AAG16236); zebrafish, Danio rerio (Q9YI97, Q9YI98); Atlantic salmon, Salmo
salar (NP_001134904); African clawed frog, Xenopus laevis (P55814); zebra finch, Taeniopygia
guttata (NP_001166235); and small abalone (ACV32415).

3. Protein expression and activity determination of HdiODCAZ
HdiODCAZ was expressed in Escherichia coliHT414 as described by Li et al. [36]. Two ORFs
were identified in the AZ gene; thus, two proteins called AZORF1 and AZ+1ORF2 were
expressed. The coding regions were subcloned into the expression vector pGEX-4T-2, which
could be expressed as a recombinant protein with a C-terminal fusion glutathione S-transferase
tag. The expressed proteins were confirmed through 12% sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis (SDS–PAGE) as described by Laemmli [39]. The enzyme activity of
HdiODCAZ was identified as described by Gandre et al. [40] using a 26s proteinase degenera-
tion kit. The different treatments were as follows: 1) the supernatant of 4T-2 reacted with orni-
thine; 2) the supernatant of ODC reacted with ornithine; 3) the supernatant of ODC and the
inhibitor difluoromethylornithine (DFMO) reacted with ornithine; 4) the supernatants of
ODC and AZORF1 reacted with ornithine; 5) the supernatants of ODC and AZ+1ORF2
reacted with ornithine; 6) the supernatants of ODC and 26s protease reacted with ornithine; 7)
the supernatant of ODC and the supernatants of AZORF1 and 26s protease reacted with orni-
thine; and 8) the supernatant of ODC and the supernatants of AZ+1ORF2 and 26s protease
reacted with ornithine. The reaction products were identified through thin-layer chromatogra-
phy (TLC) as described by García–Moruno et al. (2005) and De las Rivas et al. (2008) [41, 42].
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4. Expression of AZ in different tissues
The tissue distribution of AZ in small abalone was examined in various organs, including the
muscles, digestive gland, hemocyte, tentacle, mantle, gill, and ovary. The total RNAs from vari-
ous tissues were extracted using a TRIzol reagent. The expression of AZ in the different tissues
was identified through quantitative real-time PCR (Invitrogen, USA) with HdiODCAZ specific
primers AZ-up-1 and AZ-up-2. Actin was used as a reference gene to normalize the amount
and quality of each cDNA for the reason that this gene were expressed constitutively in differ-
ent tissues [43, 44].

5. Expression of AZ at different gonadal development stages
The gonadal development was divided into five stages based on the covering areas on the diges-
tive gland. Tissue cells from the small abalone ovaries at four development stages except the
resting stage, were separated to determine the expression of AZ. Two samples with three repli-
cates were used for each stage. The total RNAs were extracted from the ovaries at different
development stages using a TRIzol reagent. The expression levels of ODC and AZ were deter-
mined via quantitative real-time PCR with HdiODCAZ specific primers AZ-up-1 and AZ-up-
2. Statistical analysis was conducted by SPSS 19.0 (IBM Corporation) and T-test was performed
to test the statistical significance for the different expression.

Results

1. Analysis of HdiODCAZ cDNA sequence and deducible amino acid
sequences
The cDNA sequence of HdiODCAZ was cloned and submitted to Genbank with the accession
number FJ809756.

The nucleotide sequence and the predicted amino acid sequence of HdiODCAZ are pre-
sented in Fig 1. HdiODCAZ nucleic acids were 1434 bp long. The red asterisk indicated the
first stop codon TGA, and the small ORF (ORF1) coded for a nonfunctional protein that was
composed of 51 amino acids. Different from the usual two start codons in most of higher verte-
brates, four start codons (ATG) were found in ORF1 of HdiODCAZ [40]. Many previous stud-
ies predicted the frameshifting properties in AZ sequences, and the analysis of HdiODCAZ
cDNA sequence in our study confirmed this conclusion. In this case, the ribosome skipped
nucleotide A in the stop codon TGA and read TGT instead during the translation. Thus,
frameshift occurred, and +1 ORF2 encoded for a functional AZ composed of 212 amino acids.
The conserved sequence TCCTGATGT existed around the frameshift site. The 50 untranslated
region (UTR) of the cDNA sequence was very short, whereas the 30 UTR was remarkably long.
The typical polyA recognition site (AATAAA) was absent in the 30 UTR, but this site was
substituted by TATAAA and AAATAA.

2. Analysis of deducible proteins
As showed in Fig 2, the C-terminal 3D structure of abalone AZ appears as a clamp. This struc-
ture allows AZ to fuse to ODC and form a heterodimer.

The predicted amino acid sequence of HdiODCAZ was aligned with the known AZ
sequences through BLASTp. As shown in Fig 3, the small abalone AZ protein sequence shared
a low percentage of similarity to other known AZ protein sequences. This result indicates that
members of the AZ family are more diverged from one another than those of the ODC family.
The amino acid sequence of HdiODCAZ was approximately 44% identical to those of AZs
from Norway rat and house mouse, approximately 43% identical to those of AZs from red
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jungle fowl and zebra finch, and 41% identical to that of AZ from humans. The highest level of
similarity appeared near to the C-terminal, and the similarity in the N-terminal and in the mid-
dle of the amino acid sequence was very low.

A molecular phylogenetic tree was constructed to analyze the evolutionary relationship of
AZ amino acid sequences (Fig 4). The tree showed that the AZ of small abalone evolutionally

Fig 1. Sequences of small abalone antizyme nucleic acid and deducible amino acids.

doi:10.1371/journal.pone.0135251.g001
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Fig 2. C-terminal 3-D structure comparison of small abalone AZ and ODC (A) C-terminal 3D structure of ODC (B) C-terminal 3D structure of AZ.

doi:10.1371/journal.pone.0135251.g002

Fig 3. Multiple alignment of the predicted AZ amino acid sequence with known AZ protein sequences.

doi:10.1371/journal.pone.0135251.g003
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shared a higher sequence identity with fruit fly, mosquito, zebra fish, and sea purse. These
results indicate that this gene may be used as an evolutionary marker.

SDS-PAGE analysis (Fig 5) indicated that the fusion protein GST-AZORF1 was approxi-
mately 32 kDa, whereas the fusion protein GST-AZ+1ORF2 was approximately 50 kDa.

TLC analysis of the overexpressed proteins proved that the cloned nucleic acid fragments
were abalone mRNAs coding for AZ. As shown in Fig 6, ODC catalyzed L-ornithine to gener-
ate putrescine, and the activity of ODC was inhibited by DFMO. The overexpressed protein of
AZORF1, AZ+1ORF2, or 26s protease did not prevent putrescine production catalyzed by
ODC individually. The overexpressed protein of AZORF1 did not inhibit putrescine generation
with the existence of 26S protease and ATP. However, the overexpressed protein of AZ
+1ORF2 inhibited putrescine generation. These results demonstrated that the overexpressed
protein of abalone AZORF1 was the nonfunctional AZ, whereas the expressed protein of AZ
+1ORF2 was the functional AZ that promoted ODC degradation through 26S protease.

3. Expression distribution of ODC and AZ in abalone
3.1 AZ expression in different tissues. The tissue distribution of the small abalone AZ

gene was investigated through real time RT-PCR, with the total RNA isolated from small

Fig 4. A phylogenetic tree of small abalone antizyme with known AZ. The tree is constructed by the neighbor-joining method based on an alignment
corresponding to full-length amino acid sequences, using CLCmain workbench. The length of the tree branches indicated the evolutionary relation of those
species.

doi:10.1371/journal.pone.0135251.g004
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abalone tissue used as a template. As shown in Fig 7, the AZ gene was expressed at different lev-
els in tissues from the muscle, digestive gland, hemocyte, tentacle, mantle, gill, and ovary of
abalone. The highest expression quantity relative to actin was observed in the tentacle, which
preceded the mantle and gill. By contrast, the lowest expression level was in the digestive gland,
followed by the hemocyte, muscle, and ovary. The expression quantity of AZ was consistently
slightly higher than that of ODC in almost all the tested tissues, except in the ovary. The
expression quantities of AZ and ODC showed no significant difference in small abalone ovary.

3.2. AZ expression at different gonadal development stages. The expression levels of
ODC and AZ at the different gonadal development stages in the female small abalone were
investigated. As shown in Fig 8, the expression of ODC at the four developmental stages ini-
tially increased, decreased, and then peaked at the maturing and spawning stages (C1). The
final expression of ODC was more than 10 times higher than the initial expression. The expres-
sion quantity at the final stage was almost the same as that at the initial stage. Similar to the
expression of ODC, that of AZ also increased and then decreased. However, the peak expres-
sion of AZ was detected at the growth stage (B1). The final expression of AZ was approximately
five times higher than the initial expression.

Discussion
Antizymes affect cell proliferation and viability by regulating cellular polyamines [45]. The AZ
approach to deplete cellular polyamine concentration has been investigated by many research-
ers. The expressed AZ protein would significantly reduce ODC activity, but AZ overexpression
can only slightly influence cellular polyamine concentration [46]. This result indicates that AZs

Fig 5. SDS-PAGE analysis of Az ORFs overexpression by E. coli HT414 strain. (M) Molecular weight marker (1–6) Electrophoresis separations of
cytosolic proteins from E. coli HT414 (1) The solution from E. coli HT414 that contained the plasmid pGEX-4T-2 (2) induced solution of IPTG from E. coli
HT414 that contained the plasmid pGEX-4T-2 plasmid and produced the tag-protein GST (red arrowhead point) (3) the solution from E. coli HT414, which
contained the plasmid pGEX-4T-2-AzORF1 (4) induced solution of IPTG from E. coli HT414, which contained the plasmid pGEX-4T-2-AZORF1 and
produced the fused protein GST-AZORF1 (red arrowhead point) (5) The solution from E. coli HT414, which contained the plasmid pGEX-4T-2-AZ+1ORF2
(6) induced solution of IPTG from E. coli HT414, which contained the plasmid pGEX-4T-2-AZ+1ORF2 and produced the fusion protein GST-AZ+1ORF2 (red
arrowhead point).

doi:10.1371/journal.pone.0135251.g005
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regulate cell proliferation by targeting proteins that do not belong to the cellular polyamine
metabolic pathway. Research [47] suggested that AZ regulated intestinal cell growth indepen-
dent of polyamines. AZ also facilitates the degradation of a set of regulatory proteins, including
Cyclin D1 [48], SMAD1 [49], Aurora-A kinase [50], and Mps1 [51, 52]. Research on ODC AZ
from abalone is limited. The AZ gene was validated to be used as a single nucleotide

Fig 6. TLC analysis of overexpressed proteins of Az ORFs reaction to L-ornithine. The putrescine produced during the enzymatic reactions was
separated on a precoated silica gel 60 F254 plate (Merck, Darmstadt, Germany). (1) Control putrescine standard solution (2) Putrescine was not produced, in
the supernatant from E. coli HT414 that contained plasmid pGEX-4T-2 and generated the tag-protein GST, reacted with substrate L-ornithine (3) Putrescine
was produced, in the supernatant from E.coli HT414 that contained the plasmid pGEX-4T-2-ODC and generated the recombinant protein GST-ODC, reacted
with L-ornithine (4) Putrescine was not produced, in the supernatant from E. coli HT414 that contained the plasmid pGEX-4T-2-ODC and the inhibitor DFMO,
reacted with L-ornithine (5) Putrescine was produced, in the supernatant from E.coli HT414 that contained the plasmid pGEX-4T-2-ODC and the plasmid
pGEX-4T-2-AZ ORF1, and generated the recombinant proteins GST-ODC and GST-AZ ORF1, reacted with L-ornithine (6) Putrescine was produced, in the
supernatant from E. coli HT414 that contained the plasmid pGEX-4T-2-ODC and the plasmid pGEX-4T-2-AZ+1 ORF2, and generated the recombinant
proteins GST-ODC and GST-AZ+1 ORF2, reacted with L-ornithine (7) Putrescine was produced, in the supernatant from E. coli HT414 that contained the
plasmid pGEX-4T-2-ODC and generated the recombinant protein GST-ODC, with 26s protease and ATP existed, reacted with L-ornithine (8) Putrescine was
produced, in the supernatant from E. coli HT414 that contained the plasmid pGEX-4T-2-ODC and pGEX-4T-2-AZ ORF1 and generated the recombinant
proteins GST-ODC and GST-AZ ORF1, reacted with L-ornithine, with 26S protease and ATP existed (9) Putrescine was not produced, in the supernatant
from E. coli HT414 that contained the plasmid pGEX-4T-2-ODC and pGEX-4T-2-AZ+1 ORF2 and generated the recombinant proteins GST-ODC and
GST-AZ +1 ORF2, reacted with L-ornithine, with 26S protease and ATP existed

doi:10.1371/journal.pone.0135251.g006
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polymorphism marker to evaluate the loss of genetic diversity due to hatchery selection [53] or
internal control gene [54] in abalone.

Fig 7. The tissue expression of HdiODCAz in small abalone,H. diversicolor. (A) Schematic representation of a de-shelled 5-mm-long juvenile of small
abalone. The gills, heart, stomach, mantle, tentacles, digestive gland (dg), adductor muscle (am), epipodial tentacles (ept) and left mantle lobe (lml) are
indicated. (B) The electrophoresis result of real-time PCR. (C) The pillar figure of real-time PCR. Actin gene is the control gene. Seven different tissues were
chose to investigate the tissue expression pattern of AZ. (1) digestive gland (2) muscle (3) hemocyte (4) tentacle (5) mantle (6) gill (7) ovary.

doi:10.1371/journal.pone.0135251.g007
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This study is the first to isolate, sequence, and characterize cDNA clones that encode AZs
from small abalone. Two overlapping ORFs in the HdiODCAZ sequence illustrated the frame-
shifting property of the sequence; this finding suggested that HdiODCAZ was a member of the
AZ family (Fig 1). Numerous studies demonstrated that the AZ family has at least four mem-
bers. AZ 1 promotes ODC degradation through 26S proteasome, inhibits polyamine uptake,
and stimulates polyamine excretion [55]. AZ 2 is less abundantly expressed than AZ 1 [56] and
does not promote ODC degradation [57]. Research also suggested that AZ 2 can augment the
effects of AZ 1 on the follicle development of Sichuan white goose [58]. The expression of AZ 3
is restricted to certain stages of spermatogenesis [59]. Lastly, AZ 4 was originally isolated from
a human brain cDNA library [32], and the function of this AZ family remains uncharacterized.
The isolation and characterization of the other AZ members in small abalone require further
research.

AZ may be expressed in prokaryotic expression systems for the reason that currently there
is no AZ gene found in prokaryotes. Functional determination indicated that the expressed
proteins of HdiODCAZ did not work directly but regulated ODC degradation. Previous
research demonstrated that AZ and ODC would form an ODC/AZ dimer that facilitates ODC
degradation through 26S proteasome. It was shown in Fig 6 that the expressed protein of
AZORF1 is nonfunctional, whereas that of AZ+1ORF2 is functional and can augment ODC
degradation.

AZ is not a tissue-specific gene and can be expressed in various tissues from different small
abalone organs. The expression distribution of AZ is in accordance with that of ODC but with
slight differences (Fig 7), suggested that the expression levels of AZ and ODCmay reach a vari-
able balance. This finding confirms the correlation of AZ and ODC, implying that AZ may be

Fig 8. The expression of ODC and AZ in different ovary development stages. (A1)(A2) ovaries in proliferating stage (B1)(B2) ovaries in growth stage
(C1)(C2) ovaries in maturing and spawning stage (D1)(D2) ovaries in final stage. The expression levels of ODC and AZ in A1 were set to 1, and the ratios of
expression quantities in other groups to that in A1 were showed respectively. The letters in the figure indicated the significant difference from t-test (P<0.01).
And the error bar represented the standard deviation.

doi:10.1371/journal.pone.0135251.g008
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used as a negative regulator of ODC. The lowest expression quantity of AZ relative to ODC
was in the ovary; thus, the highest ODC expression was detected in the ovary of small abalone.

According to the size of the areas or the extent of the covering on the digestive gland, the
gonadal development in female small abalone is commonly divided into five stages: resting,
proliferating, growing, maturing and spawning, and final stage. The expression levels of ODC
and AZ at the four development stages of the ovary increased and then decreased (Fig 8). This
result agrees with the growth curve of the germs in the ovary. In general, almost no gonadal tis-
sue appears at the resting stage which starts on January; at the proliferating stage from Febru-
ary to April germ cells start to appear and the gonad covers about one fourth of digestive gland;
germ cells rapidly reproduce and the gonad thickens at the growing stage from May to July,
and the gonad would cover approximate half to two third of digestive gland; germ cells become
mature and start to spawn at the maturing and spawning stages from August to October, the
digestive gland is fully covered by the gonad; and the gonad shrink at the final stage from
November to next January (S1 Fig). The highest expression level of ODC was detected at the
maturing and spawning stage (C1) because the fully developed ovary at this stage produces
large amounts of gametes and requires a high concentration of cellular polyamines. The expres-
sion of AZ at the different stages would balance the expression levels of ODC because AZ is a
negative ODC regulator. The results demonstrate that ODC and AZ significantly affect the
development of small abalone gonad. To prevent gonad precocity of small abalone further
research for details is required.

Supporting Information
S1 Fig. Schematic representation of the different gonadal development stages in small aba-
lone. The digestive system of small abalone were shown. The gray area indicated the gonad tis-
sues. The gonadal development were divided into five stages based on the size of gonad tissues
or the extent of the covering on the digestive gland. (1) resting stage (2) proliferating stage (3)
growth stage (4) maturing and spawning stage (5) final stage.
(TIF)
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