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Abstract

Background: A key challenge of identifying disease–associated genes is analyzing transcriptomic data in the
context of regulatory networks that control cellular processes in order to capture multi-gene interactions and yield
mechanistically interpretable results. One existing category of analysis techniques identifies groups of related genes
using interaction networks, but these gene sets often comprise tens or hundreds of genes, making experimental
follow-up challenging. A more recent category of methods identifies precise gene targets while incorporating
systems-level information, but these techniques do not determine whether a gene is a driving source of changes in its
network, an important characteristic when looking for potential drug targets.

Results: We introduce GeneSurrounder, an analysis method that integrates expression data and network information
in a novel procedure to detect genes that are sources of dysregulation on the network. The key idea of our method is
to score genes based on the evidence that they influence the dysregulation of their neighbors on the network in a
manner that impacts cell function. Applying GeneSurrounder to real expression data, we show that our method is
able to identify biologically relevant genes, integrate pathway and expression data, and yield more reproducible
results across multiple studies of the same phenotype than competing methods.

Conclusions: Together these findings suggest that GeneSurrounder provides a new avenue for identifying individual
genes that can be targeted therapeutically. The key innovation of GeneSurrounder is the combination of pathway
network information with gene expression data to determine the degree to which a gene is a source of dysregulation
on the network. By prioritizing genes in this way, our method provides insights into disease mechanisms and suggests
diagnostic and therapeutic targets. Our method can be used to help biologists select among tens or hundreds of
genes for further validation. The implementation in R is available at github.com/sahildshah1/gene-surrounder.
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Background
The advent of high–throughput transcription profiling
technologies has enabled identification of genes and path-
ways associated with disease, providing new avenues for
precision medicine. A key challenge is to analyze this
data in the context of the regulatory networks that con-
trol cellular processes, while still obtaining insights that
can be used to design new diagnostic and therapeutic
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interventions. It is thus necessary to develop methods
that analyze omic data in the context of the full network
of interactions, while still providing specific, targetable
gene-level findings.
The most common method for detecting gene-

association is via differential expression analysis, in which
each gene is independently tested for significant differ-
ences in mean expression between phenotypes [1]. How-
ever, while differential expression analysis can identify
specific (and hence targetable) disease-associated genes, it
does not take into consideration the network of molecu-
lar interactions that govern cellular function, limiting the
mechanistic insights that can be derived from the data. As
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a result, this analysis can miss crucial multi-gene interac-
tions that underlie complex phenotypes. Since biological
systems are complex and expression data is typically noisy,
the multi-gene mechanisms that underlie a disease may
be detectable across multiple studies, but the individual
genes contributing to those mechanisms may vary from
one study to the next. As a result, differential expression
analysis can exhibit poor agreement between different
studies of the same conditions [2–4].
Maps of experimentally derived molecular interaction

networks contained in pathway databases and the growth
of analysis techniques that infer context-specific interac-
tion networks have enabled the development of methods
that integrate systems level information with expression
data. KEGG [5], for example, is a well-established path-
way database that organizes genes into hundreds of indi-
vidual networks corresponding to biological processes.
One use of interaction networks has been to identify
groups of related genes underlying a biological mecha-
nism. By incorporating systems-level information, these
pathway analysis techniques can capture multi-gene inter-
actions, yielding mechanistically interpretable results that
are more reliable than single–gene analyses [2–4]. Path-
way analysis techniques can be broadly grouped into
three categories: ‘functional scoring methods’, ‘topology
methods’, and ‘active modules tools.’ Functional scoring
methods, such as GSEA [6], identify groups of genes
that are enriched for association with the phenotype of
interest. Topology methods, such as SPIA [7] and CePa
[8, 9], also identify groups of genes that are enriched for
association, but augment functional scoring methods with
additional information about the network of interactions
between the genes. Active modules tools, such as jActive-
Modules [10], HotNet [11], and COSINE [12], attempt
to find disease associated subnetworks within pathways.
These methods integrate systems-level information with
expression data to identify groups of related genes.
While pathway analysis techniques integrate systems–

level information with omic data to provide functional
interpretations of the dataset, the “significant pathways”
identified by such analyses often comprise tens or hun-
dreds of genes, making experimental follow-up chal-
lenging. Additionally, boundaries between pathways are
often arbitrary, thus potentially neglecting key interac-
tions. Moreover, many techniques rely on user–settable
parameters and ad-hoc heuristics that depend on network
size, limiting their interpretability and reliability [4, 13].
Together, these issues point to the need for analysis tech-
niques that integrate network and omics data to identify
precise gene targets for follow-up studies.
Early efforts to identify precise gene targets while incor-

porating systems-level information include ENDEAV-
OUR [14] andGeneWanderer [15]. ENDEAVOUR takes in
as input various data sources (such as literature abstracts

and protein-protein interactions) and prioritizes genes
based on their similarity to genes known to be involved
in the disease. GeneWanderer uses protein-protein inter-
action networks and identifies gene targets based on
distance to known disease genes on the network. How-
ever, these methods require knowledge of mechanisms
known to be associated with the disease. Later analysis
techniques – such as a method that uses the Laplacian
kernel [16], an extension of SPIA [17], and nDGE [18]
– addressed this issue and do not require knowledge of
disease associated mechanisms to identify precise gene
targets. The first method uses a protein association net-
work, recomputes distances using the Laplacian kernel,
and finds disease genes based on “neighboring” differen-
tial expression. Since the distances are recomputed, the
neighbors could include genes that are not neighbors on
the original network. In other words, this method uses
indirect interactions instead of direct interactions, com-
plicating the interpretation. In the extension of SPIA [17],
disease genes are found by propagating changes in expres-
sion along the edges of the individual pathway so that
each gene is scored for disease-association according to
its own change in expression combined with the change in
expression of its upstream neighbors. Since each pathway
is considered separately and the pathways have artificial
(sometimes overlapping) boundaries, an individual path-
way could exclude genes that are on a global network
(i.e. union of the individual pathways). nDGE takes in as
input expression profiles and for a putative disease gene
class conditionally identifies its co-regulated and actively
co-regulated neighbors. While powerful, each of these is
limited in its treatment of the networks. These methods
either do not consider direct interactions between genes
on a global network ([16] uses indirect interactions based
on the Laplacian kernel and [17] considers each KEGG
pathway separately) or infer interactions based on cor-
relations (e.g., [18]). Thus due to the limitations of the
previously described techniques, an analysis technique
that takes into account direct interactions between genes
globally may prove useful in identifying targets and the
effect they have on the network.
Most recently, LEAN [19] was developed to use direct

interactions on a global interaction network and find
disease genes by scoring the differential expression of
“local subnetworks.” LEAN scores each gene for disease-
association according to the enrichment of its immediate
neighbors. Thus, LEAN’s algorithm restricts its focus to
a local subnetwork that only considers nearest neighbors.
As a result, LEAN only identifies genes based on the
changes in expression of a given gene’s local subnetwork,
but can not determine whether that gene is actually the
source of changes in its neighborhood or on the network;
an important characteristic when looking for potential
targetable disease genes for use in precision medicine.
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The goal of the present work is to combine pathway
network information with gene expression data to deter-
mine the degree to which a gene is a source of dys-
regulation on the network. We present a novel analysis
technique, GeneSurrounder, that takes into account the
complex structure of interaction networks to identify spe-
cific disease-associated genes from expression data. The
key idea of our method is to score genes based on the
evidence that they influence the dysregulation of their
neighbors on the network in a manner that impacts cell
function. In this way, the genes returned by our method
may be considered sources of “disruption” on the network
and therefore candidate targets for therapeutics. We thus
seek to identify genes with two defining characteristics:
(i) they appear to influence other genes nearby in the net-
work, as evidenced by strongly correlated expression with
nearby genes; and (ii) their dysregulation is associated
with disease, as evidenced by a pattern of (progressively
weaker) differential expression centered about that gene.
By finding these genes, our method identifies candidate
genes that are “disruptive” to the mechanisms underlying
a given phenotype and does so without any reliance on
user-set parameters or arbitrary pathway boundaries.
In this manuscript, we describe the GeneSurrounder

algorithm and apply it to data from three independent
studies of ovarian cancer to demonstrate its use, evalu-
ate the reproducibility of its results, and demonstrate the
methodological and biological validity of our approach.
In order to evaluate the algorithm, we evaluate its cross-
study concordance, i.e., its consistency across different
data sets measuring the same phenotype. We compare the
cross-study concordance of GeneSurrounder’s results to
that of standard differential expression analysis, and find
that genes identified as sources of pathway disruption by
GeneSurrounder are more consistently identified across
the various studies than are differentially expressed genes.
We also compare our method to LEAN, and show that
genes identified by GeneSurrounder are more consistent
across studies than both LEAN and differential expression
analysis. We demonstrate that our method represents an
integration of pathway and expression data to yield results
that are not solely driven by either alone and find that it
identifies genes associated with ovarian cancer. Together,
these results suggest that GeneSurrounder reproducibly
detects functionally-relevant genes by integrating gene
expression and network data. Our novel analysis approach
complements existing gene– and pathway–based analysis
strategies to identify specific genes that control disease–
associated pathways, providing a new strategy for identi-
fying promising therapeutic targets.

Methods
Our goal is to identify candidate disease genes by ana-
lyzing gene expression data in the context of interac-

tion networks to discover genes that drive the behav-
ior of pathways associated with disease. We thus seek
to identify genes with two defining characteristics: (i)
they appear to influence other genes nearby in the net-
work, as evidenced by strongly-correlated expression with
nearby genes; and (ii) their dysregulation is associated
with disease, as evidenced by a pattern of differential
expression centered about that gene. Since the ‘extent’
of dysregulation of a given gene on a global gene net-
work is not known a priori, we score the gene sepa-
rately for every neighborhood size on the network (i.e.
genes one ‘hop’ away, genes up to two ‘hops’ away,
etc) and then return the results for the highest scor-
ing neighborhood. Genes with significantly high-scoring
neighborhoods may then be prioritized for follow-up
experiments.
To this end, the GeneSurrounder method consists of

two tests that are run independently of each other (Fig. 1)
and then combined, for every neighborhood size on the
network. To determine if the putative disease gene is
a “disruptive” candidate disease gene meeting both cri-
teria, the results for the highest scoring neighborhood
are returned. To prioritize genes, our method is applied
exhaustively to each assayed gene in a transcriptomic
data set, and the results from each gene’s highest scoring
neighborhood are compared to rank the genes.
The algorithm takes as input gene expression data and

a network model of cellular interactions derived from
a pathway database. In order to consider the full scope
of a gene’s interactions and avoid artificially imposed
pathway boundaries, we create a global KEGG network
by merging the individual pathways so that the links
which are in at least one KEGG pathway will be part
of the new global network (i.e., the graph union of
all pathways). We then consider the largest connected
component of the resulting network in our algorithm.
Using this global network and gene expression data,
we compute evidence for each of the above criteria
as follows.

Does a gene appear to influence its neighbors in the
network? Evidence of “Sphere of Influence”
If a gene is a source of regulatory control or disruption,
we may expect to see that its behavior is correlated with
that of its neighbors. The first step, dubbed “Sphere of
Influence,” assesses if a candidate gene i meets this crite-
rion by testing if gene i is more strongly correlated with
its network neighbors than would be expected by chance
(Fig. 2), compared to a random sample of genes. The first
step, therefore, of the Sphere of Influence procedure is to
calculate the Spearman rank correlation ρij between gene
i and every other gene j assayed and on the network. From
this set of correlations, we calculate the observed total
(absolute) correlation between gene i and its neighbors
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Fig. 1 Overview of GeneSurrounder algorithm. The algorithm incorporates systems–level information, in the form of a network model of cellular
interactions, with gene expression data to identify the genes that control disease–associated mechanisms. The algorithm than identifies “disruptive”
genes by assessing the significance of the combined evidence that (1) a gene has a influence on others in the network and (2) that its influence is
driving disease

within a neighborhood of radius r,

Ci(r) =
∑

{j:dij≤r}
|ρij| , (1)

where dij indicates the geodesic distance of gene j from
gene i on the network.

In order to compute the distribution of total correlation
under the null hypothesis that it is drawn from a random
sample of genes, we re-sample with replacement from the
set of correlations between gene i and every other gene
j and recompute Eq. 1. This procedure effectively redis-
tributes the gene–gene correlations about the network,

Fig. 2 Procedure for Sphere of Influence. The Sphere of Influence computation tests if a putative driver gene is more correlated with its neighbors
than a random sample of genes



Shah and Braun BMC Bioinformatics          (2019) 20:229 Page 5 of 12

enabling a comparison of gene i’s influence in the true net-
work neighborhood to its influence on a random selection
of genes. This step tests the so–called “competitive null”
described in [3]; that is, whether gene i has a greater cor-
relation with genes in its neighborhood than would be a
expected from a random set of genes.
The null distribution of the total absolute correlation

for gene i as a function of the neighborhood radius is
computed using 103 re-samplings, and the observed total
absolute correlation is compared to the re-sampled null
distribution, yielding a “Sphere of Influence” p–value at
each neighborhood radius for gene i, pSi (r), that quanti-
fies whether i is more correlated with its neighbors than
expected by chance, evidence that it may be an influential
gene.

Does the gene’s neighborhood exhibit an association with
phenotype? Evidence of “Decay of Differential Expression”
The previous step tests whether gene i is strongly corre-
lated with its network neighbors, independent of pheno-
type. If a gene is a source of disease-associated disruption,
we may expect that it and its neighbors will exhibit dif-
ferential expression. We thus now turn our attention to
whether the gene and its neighbors also exhibit an associ-
ation with the phenotype of interest. In particular, if a gene
i is a source of dysregulation that drives the phenotype,
we would expect that gene i and its close neighbors will

be differentially expressed, while genes farther away in
the network will exhibit weaker differential expression. In
other words, we expect a pattern of differential expression
that is strongly localized about i and decays as one moves
farther from it in the network.
Hence, the second calculation, “Decay of Differential

Expression,” tests whether the magnitude of differen-
tial expression of other genes j in the neighborhood is
inversely related to the distance dij of gene j from gene i
(Fig. 3).
In order to do this, we must first compute a gene–level

statistic gj that quantifies the magnitude of j’s association
with the outcome of interest. We then quantify the “decay
of differential expression” with the Kendall τB rank corre-
lation coefficient between the differential expression and
distance from gene i.
The observed discordance is

Di(r) = τB
({gj : dij≤r}, {dij : dij≤r}) , (2)

where dij is the geodesic distance between gene j and gene
i.
To assess the statistical significance of Di(r), we ran-

domly permute the phenotype labels and recompute the
gene–level association statistics gj under the null hypothe-
sis that the genes are not meaningfully associated with the
phenotype. We then use the permuted g∗

j to recompute

Fig. 3 Procedure for Decay of Differential Expression. The Decay of Differential Expression computation tests if the discordance between differential
expression and distance from the driver gene is greater with the phenotype labels we observe than with



Shah and Braun BMC Bioinformatics          (2019) 20:229 Page 6 of 12

D∗
i according to Eq. 2. A set of 103 such re-computations

forms a reference distribution against which we compare
the observedDi to obtain a p value pDi (r) as the fraction of
D∗
i < Di.
It should be noted here that while pSi (r) (above) was

obtained by randomly permuting genes, pDi (r) is obtained
by permuting the class labels. An important feature of
the latter is that it preserves correlations between genes
that were found in the pSi (r) calculation. In consequence,
the null models, and hence the interpretations, of the
two tests differ. pSi (r) quantifies whether the neighbor-
hood surrounding gene i is more strongly correlated
with it than a random set of genes would be (indepen-
dent of phenotype), testing the so–called “competitive
null” [3]. In contrast, pDi (r) assesses whether the neigh-
borhood surrounding gene i is more strongly associated
with the phenotype of interest than those same genes
would be with randomly–assigned phenotype labels (pre-
serving the organization of genes in the network), thus
testing the so–called “self-contained null” [3]. That is, it
tests whether a specific set of genes in a neighborhood
is more strongly associated with the phenotype of inter-
est than the same set of genes would be for a random
phenotype.
Because these two procedures permute orthogonal axes

(genes vs. samples), they provide two independent tests
with independent interpretations: pSi (r) tests whether
gene i influences its neighbors, and pDi (r) tests whether
that neighborhood is associated with disease. We then
combine these independent pieces of evidence into a sin-
gle assessment, as described below.

Combined evidence
At this point in our algorithm, the Sphere of Influence and
Decay of Differential Expression procedures have been
run independently of each other, but neither component is
sufficient by itself to determine if putative disease gene i is
in fact a “disruptive” candidate disease gene meeting both
criteria. Therefore, the last step our method performs is
to combine the p-values outputted by each component(
pSi (r) and pDi (r)

)
using Fisher’s method [20],

X2 = −2
(
ln

(
pSi (r)

)
+ ln

(
pDi (r)

))
. (3)

X2 follows a χ2 distribution with 4 degrees of freedom,
which can be used compute pComb

i (r), the combined evi-
dence that gene i is a “disruptive” gene.

Neighborhood size
Above we described the Sphere of Influence and Decay of
Differential Expression procedures for a fixed radius (r),
but different genes may have different extents of influ-
ence on the network, and this extent is not known a
priori. Therefore, we have devised our analysis technique

to apply the Sphere of Influence, Decay of Differential
Expression, and Combined Evidence calculations to the
neighborhood of every radius (up to D the diameter of
the network). The p-value our method outputs for each
gene

(
pGSi

)
, therefore, is the smallest pComb

i (r) across all
distances.
To evaluate the significance of pGSi , we then apply a Bon-

ferroni correction to the significance threshold to conser-
vatively adjust for the multiple hypothesis tests that we
perform when applying our method to the neighborhoods
of each radius. Since the number of neighborhoods (and
therefore number of tests) is determined by the diam-
eter of the network, we scale the significance threshold
by the diameter of the network to determine whether
a gene was significantly found to be “disruptive” in the
data. Adjustment for the multiplicity of genes tested is
achieved through permutation as previously described [6,
21, 22]; this has the important benefit of preserving the
biologically-relevant dependency structure between genes
[6, 22].

Example of GeneSurrounder steps applied to an example
gene
To illustrate the components of the GeneSurrounder com-
putation, we present the results for each component of
our algorithm as applied to gene MCM2 using data from
one study of high-vs-low grade ovarian cancer [23] (GEO
accession GSE14764). In Fig. 4, each of the first three
plots (from top to bottom) displays the − log10(p) from
the Sphere of Influence, Decay of Differential Expres-
sion and Combined components of our method. Since
we compute these values as a function of network neigh-
borhood size surrounding that gene, the p-values are
plotted against the neighborhood radius (i.e. radius of
geodesic distance from the putative “disruptive” disease
geneMCM2.)
Figure 4a (Sphere of Influence) illustrates the dilution

of influence with distance and the effect that the size
(i.e. number of assayed genes) of a neighborhood has on
the decrease of influence. The putative disease gene in
this example, MCM2, has significant influence in neigh-
borhoods near to it, but this influence falls off and stays
non-significant at far-away distances. The largest differ-
ence occurs between a radius of 5 and 6, where the num-
ber of assayed genes within the neighborhood (Fig. 4d)
increases sharply, contributing to the dilution of MCM2’s
influence.
Figure 4b (Decay of Differential Expression) indicates

a significant concentration of differential expression for
neighborhoods with radii of 4–6. We observe that small
neighborhoods immediately near a putative disease gene
are not big enough to detect a decaying pattern of
differential expression, such that the localized differen-
tial expression is only detectable at with a radius of at
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(a)

(b)

(c)

(d)

Fig. 4 Illustration of Method. Displayed are the results for the gene MCM2 when our algorithm was applied to Ovarian Cancer Study GSE14764. a
shows − log10(pSphere) vs the Neighborhood Radius. b shows − log10(pDecay) vs the Neighborhood Radius. c shows − log10(pCombined) vs the
Neighborhood Radius. d shows the Number of Assayed Genes vs the Neighborhood Radius. In the top three plots, the dashed and dotted lines
correspond to a significance level of 0.05 and 0.01 respectively. In the bottom plot, the solid line corresponds to the total number of genes assayed
and on the network

least 4. At the other end, big neighborhoods are too
diverse to exhibit a consistent decay of differential expres-
sion; like the sphere of influence, the significance of
the decay of differential expression flattens out at large
distances.
Figure 4c illustrates the results of combining the results

for each neighborhood. The p-value our method outputs
for each gene is the most significant pComb

i (r) across all
neighborhood radii; for MCM2 in this study, this occurs
at a neighborhood radius of 4 with pGS = 1.48e−05.
Since our method returns the smallest pComb

i (r) for each
gene (equivalently, the largest − log10 pComb

i (r)) and the
smallest pComb

i (r) of MCM2 is highly significant, MCM2
would be identified as a central candidate disease gene
of high grade ovarian cancer. From a biological stand-
point, this finding is sensible:MCM2 is a DNA replication
factor, and therefore likely plays a role in the aggres-
sive proliferation associated with high-grade ovarian
carcinoma.

Results
Application to ovarian cancer data with global KEGG
network model
We apply our algorithm to three gene expression data
sets of high-vs-low grade ovarian cancer from the pub-
licly available and curated collection ‘curatedOvarianData’
[23] to illustrate the components of the GeneSurrounder
method and evaluate its performance. In order to test
our algorithm, we evaluate its cross-study concordance,
i.e., its consistency across different data sets that are
measuring the same conditions, as previously described
[4]. The intuition underlying this approach is that meth-
ods that detect true biological signals should find them
across different data sets measuring the same conditions.
To test this we use data from three independent stud-
ies of gene expression in high and low grade ovarian
cancer tumors (Table 1). The data were obtained from
the Bioconductor package ‘curatedOvarianData’ [23], a
project designed to facilitate meta-analysis by providing
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Table 1 Ovarian cancer datasets used in this study

GEO Accession No. N(low-grade) N(high-grade)

GSE14764 24 44

GSE17260 67 43

GSE9891 103 154

Comparisons were made between low– and high–grade serous ovarian carcinoma
using public data. Sample sizes for each group in each dataset are given. The data
are publicly accessible and available as part of the curatedOvarianData package [23]

data that has been harmonized to ensure that clinical mea-
surements (such as grade) are comparable across studies.
Gene expression data was preprocessed by the origi-
nal authors using established normalization techniques,
and no further preprocessing was required. Following
our previous work [4], we confine our analysis to genes
assayed in common across all datasets and which appear
in the KEGG network; a total of 2709 genes meet these
criteria.
Our method combines two independent sources of

information — the gene expression data and a pathway
network model — to detect the disruptive genes of the
phenotype under consideration. We use the same global
network model for each study, which we have constructed
from KEGG pathways [5]. The KEGG database organizes
experimentally derived pathway information into individ-
ual networks of functionally related molecules. In the
KEGG representation, the nodes (i.e. vertices) are genes
or gene products, and the links (i.e. edges) are cellular
interactions. We create a global KEGG network to avoid
the artificial boundaries between individual pathways by
taking the graph union of the individual pathways, i.e.
merging the pathways so that the links which are in at least
one KEGGpathwaywill be part of the new global network.
We then consider the largest connected component of the
resulting network in our algorithm. This global network
has N = 4867 nodes, L = 42874 edges, and a diameter
D = 34. Of the N = 4867 nodes, 2709 of them are also
amongst the 7680 genes assayed in all three ovarian cancer
studies.
We apply ourmethod to each of the ovarian cancer stud-

ies with the global gene network to calculate the combined
evidence pComb

i (r) for each of the 2709 genes i that are
assayed and on the network. A table of the full results is
provided as an Additional files 1, 2 and 3. With the results
from each of the three ovarian cancer data sets, we eval-
uate not only the cross-study concordance of our analysis
technique, but also its ability to identify biologically rel-
evant genes and truly integrate pathway and expression
data.

Disruptive genes found by GeneSurrounder are associated
with ovarian cancer
To evaluate GeneSurrounder’s ability to identify biologi-
cally relevant genes, we compare our results in all three

ovarian cancer studies (Table 2) to existing biological
knowledge. Applying GeneSurrounder to the 2709 com-
mon genes between studies that were assayed and on
the network, we generated three distinct ranked lists of
genes for each study based on the computed pGSi value.
To compare these results to existing biological knowledge,
we consider genes that pass our Bonferroni corrected
threshold (at significance level α = 0.05 and with a diam-
eter of D = 34, our Bonferroni corrected threshold is
− log10(p) ≥ 2.83) in all three studies (Table 2).
We used the DOSE R package [24] to analyze the enrich-

ment of these genes with Disease Ontology (DO) terms
[25]. We found that the genes that pass our Bonferroni
corrected threshold in at least one ovarian cancer study
were significantly enriched with the DO term “ovarian
cancer” (DOID:2394) (p = 0.0000177). Furthermore,
amongst these genes are three families of protein coding
genes, CDC (involved in the cell division cycle), MCM,
andORC (both involved in DNA replication), with biolog-
ical functions that support their role in ovarian cancer.
To further compare our results to existing biological

knowledge, we found evidence in the literature thatCDC7,
ORC6L, and DBF4 are associated specifically with ovar-
ian cancer [26–28]. The inclusion of CDC45 suggests the
possibility that it is also associated with ovarian cancer.
CDC7 encodes for a cell division cycle protein and has
been found to both predict survival and be a powerful
anticancer target in ovarian cancer [26]. ORC6L encodes

Table 2 “Disruptive” disease genes in high-grade ovarian cancer
consistently found by GeneSurrounder

− log10 p
GS

Gene GSE14764 GSE17260 GSE9891

ADRB3 3.033 2.933 3.554

AURKA 2.865 3.383 3.716

CDC45 4.270 3.741 4.830

CDC7 4.386 3.769 4.830

DBF4 4.270 3.769 4.830

IL7 3.055 2.898 2.910

ITGAM 2.961 3.024 3.094

MCM2 4.830 3.372 4.830

MCM3 4.830 3.383 4.830

MCM4 4.830 3.394 4.830

MCM5 4.830 3.372 4.830

MCM6 4.830 3.428 4.830

ORC4 4.386 3.172 4.830

ORC6 4.386 3.691 4.830

TTK 2.904 3.089 4.830

At a threshold of p = 0.05 and with a diameter of D = 34, the Bonferroni corrected
threshold is − log10(p) ≥ 2.83. Listed are the genes that pass this threshold in all
three studies
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for a origin recognition complex that is crucial for the ini-
tiation of DNA replication and has been found to highly
expressed in ovarian cancer [27]. DBF4 encodes for a
protein that activates the kinase activity of CDC7 and
was found to be associated with ovarian cancer [28]. The
finding of these genes from studies of high-vs-low grade
ovarian cancers suggests the possibility that they are not
only involved in ovarian cancer but, more specifically,
drive high grade ovarian cancer. A table of the full results
is provided as an Additional files 1, 2 and 3.

GeneSurrounder results represent a true integration of
pathway and expression data
The method that we have developed combines gene
expression data with an independent network model. To
investigate whether our results are driven solely by either
the network or the expression data or represent a true
integration of biological knowledge (the pathway net-
works) and experimental data, we consider the association
between our results, the centrality, and the differential
expression for each gene. If the results were driven solely
by the network, the evidence a gene is a disruptive gene
would correlate strongly with its centrality in the network.
We therefore calculate the correlation between our results
and two differentmeasures of centrality. If the results were
driven solely by the expression data, the evidence a gene
is a disruptive gene would correlate strongly with its dif-
ferential expressionWe therefore calculate the correlation
between our results and the differential expression for
each of the studies. The results are given in Table 3. We
find that for each of the studies, the correlations are small
(on the order of 0.01), confirming that GeneSurrounder
is not driven solely by network features or the expression
data, but rather represents a true integration of biologi-
cal knowledge (the pathway networks) with experimental
data.

GeneSurrounder findings are more concordant than
differential expression analysis
The intuition underlying evaluating cross-study concor-
dance is that methods that detect true biological signals

Table 3 Correlation between GeneSurrounder results and
network/gene statistics

Network/Gene statistic GSE14764 GSE17260 GSE9891

Degree Cor. 0.044 0.070 0.038

Betweenness Cor. 0.047 0.059 0.030

pDE Cor. 0.060 0.103 − 0.051

The three columns are the rank correlation between GeneSurrounder results (pGS)
and network/gene statistics (Degree, Betweenness, and pDE) across all genes in
each dataset. The Degree and Betweenness are two different network centrality
measures. The Degree is the number of connections a node has and the
Betweenness is the fraction of shortest paths that passes through the node. pDE is
the p-value obtained from a standard differential expression t-test

should find them across different data sets measuring the
same conditions. To investigate the cross-study concor-
dance of our analysis technique (i.e. its consistency across
different data sets measuring the same conditions), we
consider each pair of the three studies and calculate the
correlation between our results. As a point of reference,
we also calculate the correlation between the gene level
statistics obtained using the customary t-test for differ-
ential expression. The results are given in Table 4. As
mentioned earlier, methods that do not take into account
systems-level information tend to have poor agreement
between studies because the individual genes contribut-
ing to disease-associated mechanisms can vary from one
study to the next. Indeed, we find that the cross-study
concordance of differential expression results is remark-
ably low (Table 4). By contrast our method is 3.51—
8.55 times more consistent than differential expression
analysis. This cross–study concordance suggests that our
method reliably detects biological effects reproducibly
across studies.

GeneSurrounder findings are more concordant than LEAN
We also compare GeneSurrounder to LEAN, a recent
method that also attempts to integrate gene expression
and network data to identify significant genes. In con-
trast to our method, LEAN considers only the immediate
neighborhood (i.e. at a radius of one) and assesses the
enrichment of significant genes. To compare the per-
formance of our analysis technique to LEAN, we com-
pare their respective cross-study concordances. To ensure
comparability between our method and LEAN, we use the
same network and expression data for inputs to LEAN that
we used for GeneSurrounder. Again, we consider each pair
of the three studies and calculate the correlation between
our results and the correlation between results of LEAN
[19] (which is available as an R package on CRAN). The
results are given in Table 4. We found that while LEAN
is more consistent than the differential expression analy-
sis, GeneSurrounder is more consistent than LEAN. That
is, the list of “disruptive” genes detected by GeneSur-
rounder are more reproducible across studies than both
differentially expressed genes and the results from LEAN.

Table 4 Cross study concordance of GeneSurrounder results
compared to differential expression analysis and LEAN

Ovarian cancer study pair pGS Cor. pDE Cor. pLEAN Cor.

GSE14764 - GSE17260 0.342 0.040 0.056

GSE14764 - GSE9891 0.436 0.056 0.130

GSE17260 - GSE9891 0.485 0.138 0.290

The columns pGS Cor., pDE Cor., and pLEAN Cor. are the Spearman rank correlations
respectively between the results obtained from GeneSurrounder, differential
expression analysis, and LEAN for each study pair
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Application to bladder cancer data with global KEGG
network model
As a further demonstration of our method, we apply our
algorithm to three bladder cancer gene expression data
sets from the publicly available and curated collection
‘curatedBladderData’ [29] (Additional file 7: Table S1).
Bladder tumor samples in each data set are classified as
either superficial (no invasion of the main muscle layer) or
invasive (tumor growth into the main muscle layer), and
we compare samples between these two groups. As in our
application to ovarian cancer, the bladder cancer data was
downloaded using the Bioconductor package ‘curated-
BladderData’ without further processing. The same global
KEGG network we created to analyze the ovarian cancer
data was used to analyze the bladder cancer data. In order
to compare results obtained from each of the bladder
cancer datasets and compute cross-study concordance,
we restricted each analysis (GeneSurrounder, differential
expression, and LEAN) to the set of 2205 genes that were
assayed in all three studies and were in the KEGG net-
work. These were then filtered further to exclude both
genes and samples with > 25% missing data in any study.
After mapping gene symbols in the three bladder data sets
to KEGG identifiers and filtering out genes with missing
data, 1757 genes remained in common to all three bladder
cancer studies.
We apply GeneSurrounder to these 1757 genes to iden-

tify genes passing the Bonferroni corrected threshold (at
a threshold of p = 0.05 and with a diameter of D =
34, our Bonferroni corrected threshold is − log10(p) ≥
2.83) A table of the full results is provided as an Addi-
tional files 4, 5 and 6). Several genes are identified as
statistically significant in all three studies (Additional
file 7: Table S2); their functional roles in cell migration
and adhesion (a mechanism required for the progression
of tumors from “superficial” to “invasive”) further sup-
ports the ability of GeneSurrounder to detect biologically
relevant signals.
As with the ovarian cancer data, we also evaluate

our method’s correlation with network features and its
cross–study concordance. We confirm that GeneSur-
rounder is not driven solely by network features or
the bladder cancer expression data, but represents an
integration of both (Additional file 7: Table S3). We
also confirm that GeneSurrounder yields more repro-
ducible results than competing analyses (Additional file 7:
Table S4). While concordance values for all analysis
methods were generally lower in the bladder cancer
studies than in the ovarian cancer studies, we nev-
ertheless find that GeneSurrounder is still more con-
cordant than both differential expression analysis and
LEAN. A more detailed description of these results,
including discussion of significant genes, is provided in
Additional file 7.

Discussion
In this manuscript, we have developed and presented a
new analysis technique, GeneSurrounder, that integrates
a network model with expression data to identify indi-
vidual genes that can be targeted therapeutically. Our
analysis technique identifies “disruptive” genes — genes
that impact pathway networks in a disease associated
manner. The algorithm consists of two tests that are run
independently of each other and then combined. The first
test, Sphere of Influence, calculates the evidence that a
putative disease gene is correlated with its neighbors, and
the second test, Decay of Differential Expression, calcu-
lates the evidence that the neighbors of a putative disease
gene are differentially expressed (with the magnitude of
differential expression decreasing with distance).
We applied our algorithm to three gene expression data

sets of high-vs-low grade ovarian cancer [23] and com-
bined each of them with the same global network model
that we constructed from KEGG pathways. With the
results from each of the three ovarian cancer data sets, we
evaluated our analysis technique. By applying our method
to three different data setsmeasuring the same conditions,
we were able to show that it yields consistent (i.e. concor-
dant) results across studies, suggesting its ability to detect
biologically meaningful associations that are reproducible
across studies. We also compare our results to existing
biological knowledge and find that our method identifies
biologically relevant genes. To show that our method truly
integrates pathway and expression data, we compare the
results from our method to the results from a single gene
analysis and the centrality of the genes in the network. Our
positive results along these three dimensions of our analy-
sis technique suggest that our method is a promising new
strategy for identifying the genes that control disease.
As discussed in the Introduction, pathway analysis

techniques such as GSEA [6], jActiveModules [10], and
COSINE [12] use interaction networks and expression
data to find groups of related disease-associated genes.
GeneSurrounder, to make experimental follow-up eas-
ier, identifies precise gene targets rather than groups
of tens or hundreds of genes. Efforts to identify indi-
vidual genes, as our method does, have either required
prior biological knowledge (as in ENDEAVOUR [14] and
GeneWanderer [15]) or have not used direct interactions
on a global network (as in [16], an extension of SPIA
[17], and nDGE [18]). Our analysis technique addresses
these shortcomings by using the shortest direct distance
on a global network and not requiring any prior biolog-
ical knowledge. LEAN [19] considers interactions on a
global interaction network and is closest to our method
in this respect, but restricts its focus to nearest neigh-
bors on the network and does not determine whether
a putative disease gene is the source of change on the
network.
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Conclusions
The key innovation of GeneSurrounder is the combina-
tion of pathway network information with gene expression
data to determine the degree to which a gene is a source of
dysregulation on the network. GeneSurrounder employs
a novel strategy by finding genes that both appear to
influence nearby genes and cause dysregulation associ-
ated with the disease. Because GeneSurrounder considers
every neighborhood size around a putative gene, it is
able to identify disease genes that may have broad effects
on the regulatory network (beyond nearest neighbors).
GeneSurrounder thus provides a new avenue for iden-
tifying disease-associated genes by detecting genes that
appear to be sources of change and could therefore be
promising therapeutic targets.
While our method performs well in practice, there are

limitations that bear consideration. We note that the net-
work model that we use, KEGG, is not phenotype-specific
(as are most pathway databases) and we therefore have to
assume that the network does not change between con-
ditions. Additionally, because KEGG (and other pathway
databases) may not be complete, genes that are not anno-
tated in any pathway cannot be considered in a GeneS-
urrounder analysis. Furthermore, as implemented our
algorithm calculates geodesic distances between genes
without taking into account the direction or type of
interactions. However, we note that our approach as pre-
sented here could easily be modified to take in as input
other kinds of networks (including context-specific com-
putationally derived networks) and/or considering edge
directionality by changing the gene-gene distance matrix
that the Sphere of Influence and Decay of Differential
computations use.
GeneSurrounder can be potentially generalized to other

types of data. For instance, one might envision applying
it to other kinds of omic data. For example, GeneSur-
rounder could potentially be extended to use genomic
sequence data to identify epistatic interactions, evi-
denced by gene neighborhoods that have a high level
of correlations in their genetic variants. Our method
could also possibly be generalized for time-series gene
expression data by either changing the gene-level statis-
tics used by the algorithm or applying it separately to
time points.
GeneSurrounder thus provides means to prioritize

genes that are sources of disruption for a disease in the
context of gene regulatory networks. By prioritizing genes
in this way, our method provides insights into disease
mechanisms and suggests diagnostic and therapeutic tar-
gets. Our method can be used to help biologists select
among tens or hundreds of genes for further valida-
tion. Furthermore, it can be generalized to other kinds
of networks (including context-specific networks) and
omic data. This approach can not only be used directly

to prioritize promising targets, but also suggests new
strategies for integrating systems level information with
omic data to identify, validate, and target disease mecha-
nisms. We have made the implementation of our method
available to researchers on GitHub at http://github.com/
sahildshah1/gene-surrounder with the aim of furthering
our understanding of statistical techniques to identify
disease-associated genes.
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