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Joint models are a powerful class of statistical models which apply to any data where event times are recorded alongside a
longitudinal outcome by connecting longitudinal and time-to-event data within a joint likelihood allowing for quantification of
the association between the two outcomes without possible bias. In order to make joint models feasible for regularization and
variable selection, a statistical boosting algorithm has been proposed, which fits joint models using component-wise gradient
boosting techniques. However, these methods have well-known limitations, i.e., they provide no balanced updating procedure
for random effects in longitudinal analysis and tend to return biased effect estimation for time-dependent covariates in survival
analysis. In this manuscript, we adapt likelihood-based boosting techniques to the framework of joint models and propose a
novel algorithm in order to improve inference where gradient boosting has said limitations. The algorithm represents a novel
boosting approach allowing for time-dependent covariates in survival analysis and in addition offers variable selection for joint
models, which is evaluated via simulations and real world application modelling CD4 cell counts of patients infected with
human immunodeficiency virus (HIV). Overall, the method stands out with respect to variable selection properties and
represents an accessible way to boosting for time-dependent covariates in survival analysis, which lays a foundation for all
kinds of possible extensions.

1. Introduction

First suggested by [1], joint models were established as a valu-
able tool for analysing data where event times are measured
alongside a longitudinal outcome. One naive approach of eval-
uating such frequently occurring data structures would be sep-
arate modelling, i.e., fitting appropriate models independently
for longitudinal and time-to-event data. However, separate
modelling neither corrects for event-dependent dropout in
longitudinal analysis nor quantifies the relation between a
time-dependent covariate and the risk for an event in survival
analysis [2]. Various approaches have been proposed to
address these issues, one being the Andersen-Gill model [3]
for time-varying covariates in survival analysis or two-stage
approaches, where longitudinal model fits are included as
fixed covariates in time-to-event regression. It has been
shown, however, that these methods tend to produce biased

results [4, 5]. One solution therefore is combining both the
survival and longitudinal models within one single joint likeli-
hood. A wide introduction to this joint modelling framework
is presented in [4] including the JM package [6]. Moreover,
an evolution of joint model progression up to the year 2004
is provided in [7], and in addition, several Bayesian
approaches have been carried out [8–10].

Current joint modelling estimation methods, however,
lack clear concepts for proper variable selection and good
performance regarding prediction. Moreover they are not
feasible for high-dimensional data, in particular where the
number of covariates exceeds the number of observations,
i.e., p > n problems. In order to overcome these hindrances,
an algorithm was initially proposed, where joint models are
fitted with gradient boosting techniques, which are known
for addressing exactly these issues [11]. Evolved from
machine learning as an approach to classification problems
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originally proposed in [12], gradient boosting deals with
high-dimensional data and the component-wise updating
scheme offers implicit variable selection. The boosting algo-
rithm for joint models was extended [13], but when wanting
to lay more focus on the survival side of the model, gradient

boosting proved to struggle with time-varying covariates in
time-to-event analysis. This has also been observed for pure
survival models in [14].

Hence, this work focuses on likelihood-based boosting.
First introduced in [15], likelihood-based boosting is

(i) Initialize starting values bβ ½0�
0 , bβ ½0�

t , bβ ½0�
l , bλ ½0�

, bβ ½0�
s , bα ½0�, bγ ½0�

0 , and bγ ½0�
t with variance-covariance-components bσ2½0�, Q̂½0�

according to
Section 3.3. Choose ðmmax,l,mmax,sÞ and execute the following for every possible tuple ðml,msÞ with ml <mmax,l, ms <mmax,s:

Longitudinal part
(ii) form = 1 to mldo
step1: Update fixed effects

For r = 1,⋯, pl define ~βr ≔ ðbβ ½m−1�
0 , bβ ½m−1�

t , bβ ½m−1�
r Þ

T

with bβ ½m−1�
r denoting the rth component of bβ ½m−1�

l . Compute the score vector and
Fisher matrix

srð~βrÞ = ∂ℓpen/∂~βr , Frð~βrÞ = −E½∂2ℓpen/∂~βr∂~β
T
r �,

with respect to the current intercept bβ ½m−1�
0 , time effect bβ ½m−1�

t , and the rth linear effect bβ ½m−1�
r . Obtain pl possible updates

ur = Frð~βrÞ
−1srð~βrÞ,

and find the best performing component ∗∈f1,⋯, plg according to Section 2.2, yielding the update u∗ = ðu0, ut , u∗ÞT containing the

update for the effect ∗ with corresponding updates u0 for intercept and ut for the time effect. Receive bβ ½m�
0 , bβ ½m�

t , and bβ ½m�
l by updatingbβ ½m�

0 = bβ ½m−1�
0 + νlu0, bβ ½m�

t = bβ ½m−1�
t + νlut ,

bβ ½m�
r =

bβ ½m−1�
r ifr ≠ ∗,

bβ ½m−1�
r + νlu∗ ifr = ∗,

8<: r = 1,⋯, pl:

step2: Update random effects
Receive updates bγ ½m−1�

0 ⟶ bγ ½m�
0 , bγ ½m−1�

t ⟶ bγ ½m�
t ,

for random intercepts and slopes in an additional Fisher scoring step on the penalized log-likelihood ℓpen.
step3: Update variance-covariance components
Update variance-covariance componentsbσ2½m−1�

⟶ bσ2½m�, Q̂½m−1�
⟶ Q̂½m�

following the description in Section 3.3.
end for

Proceed with estimates bβ ½ml �
0 , bβ ½ml �

t , bβ ½ml�
l , bγ ½ml �

0 , bγ ½ml �
t as fixed values.

Survival part
form = 1 to msdo
Update survival effects

For r = 1,⋯, ps + 1 define ~βr ≔ ðbλ ½m−1�T
, bβ ½m−1�

r Þ
T

with bβ ½m−1�
r denoting the rth component of bβ ½m−1�

s and bβ ½m−1�
ps+1

= bα ½m−1�. Compute the

score vector and Fisher matrix

srð~βrÞ = ∂ℓpen/∂~βr , Frð~βrÞ = −E½∂2ℓpen/∂~βr∂~β
T
r �,

with respect to the current baseline hazard bλ ½m−1�
and the rth linear effect β½m−1�

r or bα ½m−1�, respectively. Obtain ps + 1 possible updates
ur = Frð~βrÞ

−1srð~βrÞ,
and find the best performing effect ∗∈f1,⋯, ps + 1g according to Section 2.2, yielding the update u∗ = ðuTλ , u∗ÞT containing the

update for the effect ∗ with corresponding baseline hazard update uλ. Receive bλ ½m�
, bβ ½m�

s , and bα ½m� by updating

bλ ½m�
= bλ ½m−1�

+ νsuλ, bα ½m� =
bα ½m−1�, if∗ ≠ ps + 1,

bα ½m−1� + νsu∗, if∗ = ps + 1,

8<:
bβ ½m�
r =

bβ ½m−1�
r if r ≠ ∗,

bβ ½m−1�
r + νlu∗ if r = ∗,

8<: r = 1,⋯, ps:

end for
(iii) Determine the best performing tuple ðm∗,l,m∗,sÞ with respect to prediction based on the unpenalized joint log-likelihood ℓ as
explained in more detail in Section 3.3.

Algorithm 1: lbbJM.
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designed to directly maximize a given likelihood where con-
cepts, which gradient boosting implicitly offers, are repro-
duced artificially for regular optimization methods like
Newton algorithms or Fisher scoring. The method was fur-
ther developed for flexible semiparametric mixed models
[16] and for several classes of generalised mixed models
[17–20]. The R package GMMBoost [21] covers most of
these approaches. Likelihood-based boosting has also been
proved useful for survival analysis with time-varying effects
[22], and a general overview is given in [23]. Since the ran-
dom structure plays an important role as a connector
between longitudinal and time-to-event data, we addition-
ally incorporate a novel correction step within the estima-
tion procedure for the random effects, which was first
suggested in [24, 25] and reduces possible bias arising from
wrongly identified random effects.

The contribution of this work is the novel lbbJM boost-
ing algorithm for joint models, which offers the first
boosting-based regularization approach for time-dependent
covariates in survival analysis and in addition new variable
selection mechanics for joint models with focus on time-
to-event analysis.

The remainder of this manuscript is structured as fol-
lows: Section 2 highlights the overall concepts of both joint
modelling and likelihood-based boosting to give a sufficient
understanding of the methods used in the following parts.
Section 3 then contains a detailed description of the consid-
ered joint model together with the proposed boosting algo-
rithm and its computational details. Sections 4 and 5 deal
with applying the algorithm to different setups of simulated
data as well as to the AIDS dataset [26] included in the JM

package. Results and possible extensions are discussed in
the final section.

2. Backgrounds

Before the algorithm is presented and discussed in detail, we
briefly highlight the concepts of both joint modelling and
likelihood-based boosting.

2.1. Joint Models. In general, a joint model consists of two
parts, one longitudinal and one survival submodel. A popu-
lar view on joint modelling is to choose one model as the
main model, whereas the other model then features the anal-
ysis occurring in the main model. With the primary out-
come being longitudinal data, a survival model can be used
to correct for event-dependent dropout in longitudinal anal-
ysis. For time-to-event data as outcome of interest, addi-
tional longitudinal modelling reduces measurement error
on the one hand and, on the other hand, extrapolates only
on single time points observed longitudinal data to continu-
ous functions which are then included in survival analysis.
We will from now on focus on joint models with time-to-
event data as primary outcome.

The longitudinal submodel takes the form:

y = ηl t, xð Þ + ε, ð1Þ

where longitudinal outcome y is described by the longitudi-
nal predictor function ηl depending on time t and a set of
covariates x. Although t can be included in x, we will high-
light it in the context of joint models, as the role of t is of
greater importance. In the survival submodel, the hazard

λ t ∣ xð Þ = λ0 tð Þ exp ηs xð Þ + αηl t, xð Þð Þ, ð2Þ

is modelled by a baseline hazard λ0ðtÞ with multiplicative
effects described by the survival predictor function ηs. In
addition, the longitudinal predictor ηl is reappearing in the
survival model, this time scaled by a factor α. The parameter
α thus quantifies the association of the two submodels and is
therefore called the association parameter. It can be inter-
preted as the impact a time-varying longitudinal covariate
has on the hazard for an event.

Parameter estimation for such joint models can be done
in various ways. Two common methods are two-stage and
joint likelihood approaches, respectively. In the former, the
longitudinal model is estimated with the estimation method
of choice leading to the model fit bη l, which is then carried
forward as fixed covariate into survival analysis. In the latter,
longitudinal and survival submodels are combined in a sin-
gle joint likelihood. Let i = 1,⋯, n denote clusters and j = 1
,⋯ni the repeated measurements. Assuming independent
data generating processes for both submodels, the joint like-
lihood can then be written as

L y, T , δð Þ =
Yn
i=1

Yni
j=1

f l yij ∣ ηl
� � !

f s Ti, δi ∣ α, ηl, ηs, λ0ð Þ,

ð3Þ

Table 1: Shrinkage and variable selection properties regarding
longitudinal and survival outcomes averaged over 100 simulation
runs of the low-dimensional scenario.

βt (sd) βl1 (sd) βl2 (sd) βl3 (sd) TP FDR m∗
l

True 2 1 2 1

JM
1.998 0.994 2.008 1.002 — — —

(0.03) (0.07) (0.07) (0.07)

lbbJMa 1.760 0.914 1.922 0.923 1.00 0.23 108.25

(0.08) (0.07) (0.07) (0.07)

lbbJMb 1.992 0.994 2.008 1.002 — — —

(0.03) (0.07) (0.07) (0.07)

α (sd) βs1 (sd) βs2 (sd) βs3 (sd) TP FDR m∗
s

True 0.5 1 2 -2

JM
0.457 0.903 1.807 -1.800 — — —

(0.04) (0.08) (0.12) (0.12)

lbbJMa 0.390 0.728 1.521 -1.516 1.00 0.27 209.2

(0.03) (0.06) (0.07) (0.07)

lbbJMb 0.373 0.713 1.500 -1.495 1.00 0.22 196.9

(0.03) (0.06) (0.07) (0.08)

glmnet
0.427 0.909 1.833 -1.823 1.00 0.51 —

(0.03) (0.07) (0.11) (0.10)
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with densities f l and f s for the longitudinal and survival sub-
models and time-to-event outcome ðT , δÞ = ðTi, δiÞi∈ℕ. Reg-
ular inference is now done by maximizing (3) using
appropriate maximization methods, the most prominent
one being EM algorithms.

2.2. Likelihood-Based Boosting. We intend to give a short
description of the underlying mechanics used in the follow-
ing section. The overall concept of likelihood-based boosting
is to create an iterative and component-wise updating
scheme, which eventually converges to a maximum likeli-
hood estimator but is stopped early in order to prevent over-
fitting. Let β model be the effect of p covariates. Likelihood-

based boosting maximizes a given log-likelihood lðβÞ by
component-wise Fisher scoring in the following way:

For each covariate r ∈ f1,⋯, pg consider the subvector
βr containing only the coefficients referring to the rth covar-
iate. We compute the score vector and Fisher matrix as

sr βrð Þ = ∂l βð Þ
∂βr

, Fr βrð Þ = −E
∂2l βð Þ
∂βr∂β

T
r

" #
, ð4Þ

and obtain a possible update

ur ≔ Fr βrð Þ−1sr βrð Þ, ð5Þ

for the rth component. Now, we determine the best per-
forming covariate with respect to likelihood maximization,
i.e., find the component

∗ = arg max
r=1,⋯,p

l ~βr

� �
, ~βr = β1,⋯, βr + ur ,⋯, βp

� �
ð6Þ

where the corresponding update yields the biggest improve-
ment of the likelihood. One receives a new model fit by
weakly updating this best performing component, i.e., by
scaling with a factor ν, the so called step length:

βnew
r =

βr if r ≠ ∗,

βr + νur if r = ∗,0 < ν ≤ 1,

(
r = 1,⋯, p: ð7Þ

The step length ν is controlling the weakness of the
update to prevent overfitting and give every covariate a
chance for selection. A popular choice in the literature is
ν = 0:1.
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Figure 1: Piecewise-constant baseline hazard estimates with K = 10 by JM, lbbJMa and lbbJMb averaged over 100 simulation runs of the low
dimensional scenario.

Table 2: Shrinkage and variable selection properties regarding the
longitudinal and survival outcomes averaged over 100 simulation
runs of the high-dimensional scenario.

βt (sd) βl1 (sd) βl2 (sd) βl3 (sd) TP FDR m∗
l

True 2 1 2 1

lbbJMa 1.748 0.868 1.843 0.875 1.00 0.36 124.2

(0.20) (0.14) (0.14) (0.14)

lbbJMb 1.991 1.008 1.982 1.011 — — —

(0.08) (0.13) (0.16) (0.15)

α (sd) βs1 (sd) βs2 (sd) βs3 (sd) TP FDR m∗
s

True 0.5 1 2 -2

lbbJMa 0.307 0.512 1.242 -1.216 1.00 0.70 136.7

(0.06) (0.12) (0.16) (0.13)

lbbJMb 0.285 0.498 1.215 -1.191 1.00 0.67 127.0

(0.05) (0.13) (0.15) (0.13)

glmnet
0.293 0.627 1.449 -1.422 1.00 0.83 —

(0.08) (0.18) (0.30) (0.28)
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Repeating this updating process for a sufficiently large
number of iterations leads to the regular maximum likeli-
hood estimator for β. But instead the algorithm is stopped
early to gain better prediction performance and variable
selection. The optimal amount of iterations actually is a tun-
ing parameter of the method and can be determined via
cross-validation or by focusing on information criteria like
AIC or BIC [27, 28].

3. Boosting Joint Models

3.1. The Model. Before we introduce the boosting algorithm,
we describe the specific joint model. With i = 1,⋯, n denot-
ing the individual and j = 1,⋯, ni a single specific measure-
ment, the longitudinal submodel is given by

yij = ηl tij, xli
� �

+ εij = β0 + βt tij + βT
l xli + γ0i + γtitij + εij,

ð8Þ

where yij is modelled by ηl depending on specific measure-
ment times tij and longitudinal time-independent covariates
xli ∈ℝpl . This represents a standard linear mixed model with
intercept β0 and fixed linear effects βt and βl of time and
baseline covariates as well as individual specific random
effects γ0i and γti with ðγ0i, γtiÞ ~N ⊗2ð0,QÞ. The error terms
εij are assumed to follow a normal distribution with E½εij�
= 0 and VarðεijÞ = σ2 > 0.

Please note that the model can be additionally extended
to interaction effects of time tij with baseline covariates xti
∈ℝpt by including the term βT

t xtitij in (8). This results in

slightly adjusted integrals in the survival part and is omitted
in the following for the sake of better readability.

In the survival part, the individual hazard

λi tð Þ = λ0 tð Þ exp ηs xsið Þ + αηl t, xlið Þð Þ, ð9Þ

is modelled with the survival predictor ηsðxsiÞ = βT
s xsi con-

taining additional linear effects βs of baseline covariates xsi
∈ℝps . To execute a full likelihood approach, the baseline
hazard

λ0 tð Þ = 〠
K

k=1
λk1Ik tð Þ, ð10Þ

is chosen to be piecewise-constant depending on the number
of segments K and their exact locations Ik = ½tk−1, tkÞ with
t0 = 0 and tk =max ðTÞ for k = 1,⋯, K . The collection of
values for the baseline hazard is denoted in λ = ðλkÞk=1,⋯,K .
Later, we will choose K between 7 and 10 in order to guaran-
tee substantially more flexibility than a constant baseline
hazard without becoming computationally too demanding.

Given two formulas (8) and (9), we can now calculate the
joint log-likelihood. Let y = ðyijÞi=1,⋯,n,j=1,⋯,ni

denote the col-

lection of all longitudinal measurements. Assuming the
time-to-event process is conditionally independent from
the longitudinal random structure, the joint likelihood can
be decomposed into a longitudinal and a survival term. Set

γT = ðγiÞi=1,⋯,n with γTi = ðγ0i, γtiÞ and ϑl ≔ ðβ0, β
T
l , βt , γTÞ

T

. Furthermore, τ contains information on variance-
covariance components σ2 and Q. The unpenalized longitu-
dinal log-likelihood is

ℓl ϑl, σ2 ∣ y
� �

= 〠
n

i=1
〠
ni

j=1
log ϕ yij ∣ ηl tij, xli

� �
, σ2

� �
, ð11Þ

where ϕð·∣m, vÞ denotes the density of a normal distribution
with mean m and variance v. Laplace approximation follows
[29] and then leads to an additional quadratic penalty term
for the random effects yielding the penalized log-likelihood:

ℓpenl ϑl, τ ∣ yð Þ = 〠
n

i=1
〠
ni

j=1
log ϕ yij ∣ ηl tij, xli

� �
, σ2

� �
−
1
2
γTi Qγi

 !
:

ð12Þ

Note that for the penalized log-likelihood τ substitutes
σ2 as an argument, since the penalized log-likelihood addi-
tionally contains information of the variance matrix Q.

On the other hand, for given survival outcome ðT, δÞ =
ðTi, δiÞi=1,⋯,n with event times Ti and censoring indicator
δi, the survival log-likelihood takes the well-known form:

ℓs ϑs ∣ T, δð Þ = 〠
n

i=1
δi log λi Ti ∣ ηl, ηs, α, λð Þ −

ðTi

0
exp λi t ∣ ηl, ηs, α, λð Þð Þdt,

ð13Þ

Table 3: Averaged computation times for one single model fit (in
seconds).

Setup JM glmnet lbbJMa lbbJMb

Low 110.00 149.15 15776.16 43.76

High — 156.44 4072.80 248.08

Table 4: Structure of the dataset with primary outcomes for the
joint analysis in the three columns on the left.

y T δ t Drug Gender AZT prevOI ID

10.67 16.97 0 0 ddC Male Intolerance AIDS 1

8.43 16.97 0 6 ddC Male Intolerance AIDS 1

9.43 16.97 0 12 ddC Male Intolerance AIDS 1

6.32 19.00 0 0 ddI Male Intolerance noAIDS 2

8.12 19.00 0 6 ddI Male Intolerance noAIDS 2

4.58 19.00 0 12 ddI Male Intolerance noAIDS 2

5.00 19.00 0 18 ddI Male Intolerance noAIDS 2

3.46 18.53 0 0 ddI Female Intolerance AIDS 3

3.61 18.53 0 2 ddI Female Intolerance AIDS 3

6.16 18.53 1 6 ddI Female Intolerance AIDS 3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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with ϑs ≔ ðλT , α, βT
s Þ

T
. For ϑ≔ ðϑTl , ϑTs Þ

T
, we finally receive

the penalized and unpenalized joint log-likelihood:

ℓ ϑ, σ2 ∣ y, T, δ
� �

= ℓl ϑl, σ2 ∣ y
� �

+ ℓs ϑs ∣ T, δð Þ,
ℓpen ϑ, τ ∣ y, T, δð Þ = ℓpenl ϑl, τ ∣ yð Þ + ℓs ϑs ∣ T, δð Þ:

ð14Þ

3.2. The Algorithm. The following lbbJM algorithm (likeli-
hood-based boosting for joint models) describes a way to
fit the formulated joint model by likelihood-based boosting
methods discussed in Section 2.2.

3.3. Computational Details of the Algorithm. In general, the
algorithm carries out a hybrid between a two-stage and a
joint likelihood approach. For one single tuple ðml,msÞ, the
fitting procedure goes as follows: In a first step, the longitu-
dinal submodel is boosted up to ml iterations using the
lbbLMM boosting algorithm [25]. The received estimates
are carried forward into the survival model, where another
boosting process up to ms iterations takes place. This fitting
process is carried out for any tuples ðml,msÞ withml <mmax,l
, ms <mmax,s, where mmax,l and mmax,s are prespecified max-
imum numbers of iterations per submodel. For every of
these possible combinations of stopping iterations, the cor-
responding estimates are evaluated based on the joint likeli-
hood using test data, which can be achieved via cross-

validation or bootstrapping. Hence, the algorithm uses
two-stage fitting but joint likelihood evaluation. We give a
detailed description for both parts. Exact formulas for all
appearing variants of score vectors and Fisher matrices can
be found in the supplementary material. Please note that
due to the component-wise updating scheme in both sub-
models, the lbbJM algorithm works with arbitrarily high
numbers of candidate variables and is therefore not confined
to low-dimensional data structures.

For starting values, the parameters, which actually
underlie the boosting process, are necessarily set to zero,

thus bβ ½0�
l = bβ ½0�

s = bα ½0� = 0. The baseline hazard is initialized

with the intercept estimator bλ ½0�
= ð∑iδi/∑iTiÞk=1,⋯,K . The

remaining values are extracted from a standard linear mixed
model for time and random effects

yij = β0 + βt tij + γ0i + γtitij + εij, ð15Þ

by using, e.g., the function lme from the R package nlme.
For boosting longitudinal fixed effects, for convenience,

we omit the iteration index as well as the hat indicating esti-
mated values in the following subsections. In the first step of
the longitudinal part, the effects βl follow the classical
component-wise likelihood-based boosting procedure. In

Table 5: Shrinkage and variable selection properties by the different packages for model (22).

β0 βl βt1 βt2 α βs1 βs2 βs3

JM 6.97 0.49 −0:18 <0:01 −0:24 0.31 0.09 0.66

lbbJMa 6.95 0.26 −0:05 0 −0:13 0 0 0.73

lbbJMb 6.95 0.48 −0.16 −0.02 −0:18 0.03 0 0.61

glmnet — — — — −0:15 0.31 0.09 0.81

p value (JM) <0:01 0:26 <0:01 0:98 <0:01 0:23 0:61 <0:01
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Figure 2: Coefficient progression in the survival part for lbbJMa ((a), with m∗,l = 10Þ and lbbJMb (b).
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each iteration, an update for every single covariate r together
with intercept β0 and time effect βt is computed, leading to
pl three-dimensional updates. Selection of the best perform-
ing component is then performed either by selecting the
component yielding the optimal likelihood maximization
or lowest information criteria like AIC or BIC, which mini-
mizes the model complexity rather than residuals. The linear
effect βt is excluded from the selection process, as it holds a
very important role in a joint model and should always be
included.

For updating random effects, after the best performing
fixed effect from βl was updated, in every iteration, an
update for the random effects is executed separately. This
means that the score vector and Fisher matrix

sran γð Þ = ∂ℓpen

∂γ
, Fran γð Þ = −E

∂2ℓpen

∂γ∂γT

" #
, ð16Þ

have to be derived in order to execute the update

γnew = γ + CFran γð Þ−1sran γð Þ: ð17Þ

The matrix C is a correction matrix which prevents from
potential correlations between the random effects estimates
and any observed covariates [25], and its derivation can be
traced in more detail in the supplementary material.

For updating variance-covariance components, the
covariance matrix Q of the random effects is updated with
an approximate EM algorithm using the posterior curva-
tures Fii of the random effects model [30]. Receive an update
by computing

Q =
1
n
〠
n

i=1
F−1ii + γiγ

T
i

� �
: ð18Þ

The current longitudinal model error is obtained by set-
ting Varðy − ηlÞ.

For boosting the association parameter and survival
effects, once the longitudinal part was updated in up to ml
iterations, the algorithm proceeds to boost the effects βs
and α. Although being of different structures, the association
parameter α is boosted alongside the effects βs, meaning the
algorithm decides whether the association or some baseline
survival effect is updated, based on which parameter leads
to the best likelihood improvement. This means, the linear
effect of the whole longitudinal trajectory is also scaled by
the step length ν when being updated within the selection
step, which minimizes the chance of potential overfitting
also for the association parameter. An alternative method
would be choosing just from the effects in βs and updating
α in an additional step by optimizing the current likelihood.
This approach was used in [11] and treats α as a nuisance
parameter, which might not be satisfactory with regards to
the importance of α. Again, only the update for α and βs is
scaled by the step length νs. The baseline hazard λ receives
a full update.

For step lengths, apart from the stopping iterations, the
step lengths are tuning parameters of the boosting algo-
rithm. Although there is some effort in focusing on adaptive
step lengths recently, we chose to set both step lengths to the
constant value νl = νs = 0:1. The exact choice of the step
length factor is of minor importance as long as it is suffi-
ciently small to ensure proper performance. Setting it to
0.1 is an established choice in the boosting literature [31, 32].

For stopping iterations, since the step lengths are chosen
to be constant, the tuple ðml,msÞ is the main tuning param-
eter of the boosting algorithm. In regular boosting with only
one iteration index, it is convenient to check for every single
iteration and take the estimates from the estimation count
leading to the best prediction. In the present two-
dimensional case, this would mean finding

m∗,l,m∗,sð Þ = arg max
ml ,msð Þ∈M

ℓ bϑ ml ,ms½ �
∣X test

� �
, ð19Þ

with M≔ f1,⋯,mmax,lg × f1,⋯,mmax,sg, bϑ ½ml ,ms�
denoting

the vector of estimates received via the tuple ðml,msÞ of total
iterations and X test a complete set of test data for evaluation.
Problem (19) is then solved via k-fold cross-validation. But
since checking for every single tuple ðml,msÞ ∈M implies
a very high computational effort, we suggest to coarsen the
grid and check for fewer possible stopping iterations in the
longitudinal part, e.g., ml ∈ f10,20,30,⋯,mmax,lg. Because
of the two-stage-approach nature of the algorithm, we still
can check for every single ms ∈ f1,⋯,mmax,sg without gain-
ing additional computational effort. Furthermore, parallel
computing can be executed in order to minimize computa-
tional demand.

4. Simulations

We evaluate the lbbJM algorithm with a simulation study.
The aim is to assess estimation and shrinkage characteristics
in general as well as variable selection properties and perfor-
mance in high dimensional, i.e., p > n settings. The lbbJM
algorithm is included in two variants. While lbbJMa executes
the full approach as depicted in Section 3.2, lbbJMb performs
a shortened two-stage procedure where the longitudinal sub-
model is fitted in advance using regular maximum likelihood
inference and does not underlie any regularization. The
exact lbbJMb algorithm is depicted in detail in the supple-
mentary material. We additionally include the JM package
as state of the art for convenient estimation of joint models
as well as the glmnet package, which offers elastic net penal-
ization for start-stop-data and therefore an alternative
approach for regularization of time-dependent covariates
in survival analysis. None of the competitors are completely
suitable for a benchmark comparison and are viewed as ref-
erence points for the specific objectives addressed by the
lbbJM algorithm. Regarding glmnet, as an alternative
approach to regularization of time-dependent covariates,
shrinkage and variable selection properties are of interest,
although it focuses solely on survival analysis. JM in addition
offers unregularized effect estimates with corresponding
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significance indicator but is neither suitable for high-
dimensional setups nor offers variable selection.

4.1. Setup. The simulations are executed according to the
model described in Section 3.1 with n ∈ f100,500g and ni
= 5 using inversion sampling, which is explained in detail
in the supplementary material. The prespecified true param-
eter values are

β0 = 1, βt = 2, βT
l = 2, 1, 2ð Þ, βT

s = 1, 2,−1ð Þ, α = 0:5,
ð20Þ

with variance components

σ = 0:1, Q =
2 0:1

0:1 0:3

 !
: ð21Þ

The entries of the covariate vectors xli and xsi are drawn
independently from the standard normal distribution N ð0,
1Þ. In addition to the informative covariates with effects βl
and βs, the covariate vectors xli and xsi are expanded with
noninformative noise variables until the chosen numbers pl
and ps of total dimensions are reached. These additional
noise variables are included to evaluate variable selection
properties and robustness of the approach in case of a mis-
specified model. The baseline hazard is chosen as λ0ðtÞ =
2:5t1:5 and given the censoring mechanism described in the
supplementary material, the chosen parameter values result
in an average censoring rate of ≈50%.

Overall, we consider two scenarios. One low-
dimensional setup with n = 500 and pl = ps = 9 mimicking a
more common data structure and one high-dimensional
setup, where the number of covariates included in the sur-
vival submodel exceeds the number of individuals so that
conventional approaches like JM fail to return results.

For the computation, JM and lbbJM use K = 10 with
equidistant knot placement. The grid M≔ f25, 50,⋯, 500g
× f1, 2,⋯, 1000g is specified for possible tuples of stopping
iterations and the optimal regularization parameter for
glmnet is determined by the function cv.glmnet() based on
10-fold cross-validation.

4.2. Results. Since the compared estimation routines follow
different approaches targeting various objectives from regu-
lar maximum likelihood estimation in joint models to regu-
larization in pure time-to-event analysis, we focus on plain
coefficient estimates averaged over 100 independent simula-
tion runs in order to asses estimation characteristics. Vari-
able selection properties are evaluated by considering share
of true positives (TP) and false discovery rate (FDR).

For low-dimensional setup (n = 500, ps = 9), Table 1
depicts the results for the low-dimensional setup. In the lon-
gitudinal submodel, lbbJMa has small shrinkage and there-
fore offers variable selection with a rather low false
discovery rate of 0.23 but still selects all informative vari-
ables. The time effect βt receives comparatively high shrink-
age, since time, as a cluster-varying variable, adds more
information to the model. Overall, the longitudinal submo-

del is boosted up to 108.25 iterations on average yielding
rather strongly shrunk coefficient estimates. Please note that
the results for lbbJMb are simply obtained by lme() and very
similar to JM. In the survival part, both boosting approaches
substantially outperform glmnet in terms of variable selec-
tion while again receiving also more shrinkage. Due to the
comparatively rough baseline hazard depicted in Figure 1,
all full likelihood approaches, i.e., JM and lbbJM, receive
additional shrinkage which is unaffected by possible regular-
ization. As glmnet uses the partial likelihood, there are no
estimates for the baseline hazard function available and the
small elastic net penalty of λ∗ = 0:003 on average also results
in weaker performance regarding the rate of false positives.
Overall, the lbbJM approaches yield satisfactory results
regarding both regularization and variable selection. The
effect estimates clearly reflect the true values approximately
obtained by JM while simultaneously receiving sufficiently
large shrinkage for decent performance of identifying influ-
ential covariates in both the longitudinal and survival
submodels.

For high-dimensional setup (n = 100, ps = 100), Table 2
depicts the results for the high-dimensional setup. As
expected, estimates in the high-dimensional setup are regu-
larized stronger and therefore experience more shrinkage.
Again, the boosting approaches contained in lbbJM yield
better variable selection properties and slightly more regu-
larized coefficient estimates, although results seem to align
with increasing dimensions. Note that JM is not capable of
handling high-dimensional data structures and is therefore
not included in the high-dimensional setup at all.

For computational effort, Table 3 shows estimates for
elapsed computation time of each routine. Times are mea-
sured in seconds and depict the computation time for one
single model fit which was carried out on a 2 × 2:66GHz-
6-Core Intel Xeon CPU (64GB RAM). As expected, the full
boosting approach executed in lbbJMa comes with high
computational costs similar to [11]. Note that the runtimes
are higher in the low-dimensional scenario as the overall
number of clusters is higher (n = 500) leading to an
increased burden in the already time-consuming longitudi-
nal boosting procedure. The reduced approach lbbJMb, how-
ever, runs considerably faster and is therefore more desirable
as long as research focus lies solely on the time-to-event
analysis.

5. Application

We showcase the lbbJM algorithm by applying it to the 1994
AIDS data [26]. The study is aimed at comparing the two
antiretroviral drugs, didanosine (ddI) and zalcitabine
(ddC), based on a collective of 467 patients infected with
human immune deficiency virus (HIV) who were either
intolerant to or failed a previous treatment with Zidovudine
(AZT). Alongside several baseline covariates, the square root
CD4 cell count was recorded at study entry and in multiple
follow-ups after 2, 6, 12, and 18 months, respectively. The
CD4 cells are attacked by the virus and thus decrease over
time for infected patients; hence, they are a widely used sur-
rogate for disease progression. In addition to the
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longitudinal outcome, 188 patients died during the time of
the study leading to 188 observed and 279 censored events.
The structure of the data is depicted in Table 4.

We formulate the joint model

CD4i tð Þ = ηli tð Þ + εi tð Þ = β0 + βldrugi + βt1t + βt2 t · drugið Þ + γ0i + γtit + εi tð Þ,
ð22Þ

λi tð Þ = λ0 tð Þ exp βs1 · genderi + βs2 · AZTi + βs3 · prevOIi + αηli tð Þð Þ:
ð23Þ

The CD4 cell count CD4iðtÞ for i = 1,⋯, 467 is described
by a linear mixed model with random intercepts, random
slopes for time t and linear effects of time, drug and an addi-
tional interaction between time and drug. The true, i.e. mod-
elled by ηlðtÞ, underlying profile of the CD4 cell count is
then included together with the remaining baseline covari-
ates in the Cox full likelihood model, thus the model error
εðtÞ is eliminated. Here, drug is a dummy for ddI, gender
for female gender, AZT for failure of Zidovudine therapy,
and prevOI for prevalence of AIDS. The number of seg-
ments for the baseline hazard was chosen to be K = 7.

We fit model (22) with the same methods as already used
in the simulation study. The tuning parameters of the boost-
ing algorithm were chosen to be νl = νs = 0:1 for step lengths
and Ma ≔ f5, 10,⋯, 100g × f1, 2,⋯, 250g for the grid of
possible tuples of stopping iterations for lbbJMa and Mb ≔
f1, 2,⋯, 250g for lbbJMb. Again, glmnet was tuned using
the cv.glmnet() function and all regularization approaches
are based on 10-fold cross validation.

For lbbJMa, m∗,l = 10 and m∗,s = 33 formed the best per-
forming tuple of stopping iterations. The two-stage
approach lbbJMb used m∗,s = 40 and the optimal penaliza-
tion parameter for glmnet turned out as λ∗pen = 0:0014. The
corresponding coefficient estimates are shown in Table 5.
Overall, the results reflect what was already observed in the
simulation study. While glmnet shows quite conservative
shrinkage properties where every variable is included in the
final model, the lbbJM approaches tend to stop rather early
yielding bigger shrinkage and in addition effects, which did
not get selected at all. In order to give some point of refer-
ence regarding variable selection properties, the p values
computed by JM are included in Table 5. The selected effects
align quite nicely with being significant according to JM.
While lbbJMa only includes the variable drug with only half
the effect size, lbbJMb additionally sees a quite tiny impact of
female gender.

The corresponding coefficient progressions for the sur-
vival submodel are visualized in Figure 2. Both algorithms
update the coefficients referring to the longitudinal CD4 cell
profile and the variable prevOI right away and therefore see
a strong connection between the risk for death and the CD4
cell count as well as whether or not a patient has AIDS. Due
to early stopping, lbbJMa selects neither of the two remain-
ing covariates into the final model. lbbJMb includes one var-
iable more, gender, which however only has a very small
effect.

6. Outlook and Discussion

Overall, the lbbJM algorithm introduces a novel boosting-
based regularization scheme to joint models focusing on sur-
vival analysis as well as to Cox models with time-dependent
covariates. The method fits in well among alternative rou-
tines and especially stands out with respect to variable selec-
tion properties. Due to its clear advantage regarding
computational effort as depicted in Table 3, lbbJMb is the
preferred routine when research interest clearly lies on
time-to-event analysis, whereas lbbJMa is capable of regular-
izing both submodels simultaneously. Besides the good
results regarding variable selection, it is also expected that
the proposed boosting methods can improve the predictive
power of a joint model, since boosting algorithms are, due
to their model tuning based on test errors, primarily used
for prediction. A thorough investigation of improving and
evaluating prediction performance of a joint model by sev-
eral boosting techniques remains an interesting task.

Still, the presented foundation is of a comparatively sim-
ple nature and possible extensions include more flexible
modelling, e.g., based on P-splines which allow smooth
effects of time-dependent as well as time-independent covar-
iates and can additionally include time-varying effects as
well as possibly time-varying association structures. As the
current algorithm is confined to a time-constant association
parameter α, an extension to αðtÞ would increase the flexibil-
ity of the model. While it is usually difficult to disentangle a
time-dependent association parameter from the longitudinal
trajectory for parameter estimation, the lbbJM algorithm
could potentially avoid these identification issues due to its
clear separation in a longitudinal and a survival boosting
process.

Similar regularization-based approaches have been
proved useful for time-to-event settings [22, 33], and it can
be assumed that the presented method could benefit from
these concepts as well.

Moreover, the presented work only lays a foundation to
several extensions addressing known issues for both boost-
ing and joint modelling. It represents an accessible way to
boosting for time-dependent covariates in survival analysis.
Gradient boosting has known limitations in this matter,
and although efforts for a framework to overcome these
issues are made [34], things rather quickly become technical
and the proven robustness of likelihood-based boosting rep-
resents a flexible and far more intuitive alternative. Further
developments in this direction could include multiple
time-dependent covariates based on the two-stage approach
of lbbJMb, where additional effort is necessary in order to
provide a fair competition between time-dependent and
time-independent covariates within the selection procedure.

Furthermore, the component-wise updating process is
capable of including allocation mechanisms into the algo-
rithm. While the lbbJM algorithm is due to its two-stage fit-
ting process fairly robust to estimate models, where one
candidate variable is assigned to both submodels, this kind
of specification is not advised in general as identification
issues may arise and a proper interpretation of the resulting
model might be challenging. However, it is usually tricky to
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decide, whether a covariate should be included in the longi-
tudinal or the survival part of the model and these decisions
are often made using prior knowledge. An allocation routine
based on likelihood maximization could therefore greatly
improve joint model inference and would additionally elim-
inate the two-stage nature of the lbbJM algorithm. This
would not only decrease the computational burden but also
provide a far more flexible algorithm allowing for regulariza-
tion, variable selection, and allocation.
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