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Abstract: While the vision of synthetic biology is to create complex genetic systems in a rational
fashion, system-level behaviors are often perplexing due to the context-dependent dynamics of
modules. One major source of context-dependence emerges due to the limited availability of shared
resources, coupling the behavior of disconnected components. Motivated by the ubiquitous role of
toggle switches in genetic circuits ranging from controlling cell fate differentiation to optimizing
cellular performance, here we reveal how their fundamental dynamic properties are affected by
competition for scarce resources. Combining a mechanistic model with nullcline-based stability
analysis and potential landscape-based robustness analysis, we uncover not only the detrimental
impacts of resource competition, but also how the unbalancedness of the switch further exacerbates
them. While in general both of these factors undermine the performance of the switch (by pushing
the dynamics toward monostability and increased sensitivity to noise), we also demonstrate that
some of the unwanted effects can be alleviated by strategically optimized resource competition. Our
results provide explicit guidelines for the context-aware rational design of toggle switches to mitigate
our reliance on lengthy and expensive trial-and-error processes, and can be seamlessly integrated
into the computer-aided synthesis of complex genetic systems.

Keywords: synthetic biology; competition for shared resources; modularity; toggle switch; multista-
bility; robustness; rational design; potential landscape

1. Introduction

Living organisms synthesize a large collection of complex products relying on a vast
array of intertwined processes [1]. Synthetic biology seeks to take advantage of these
processes by modifying and rewiring existing connections, and via introducing novel
components. This interdisciplinary field thus holds the promise of controlling cellular
behavior by combining expertise from a diverse set of domains, including experimental
techniques from the life sciences and quantitative tools from engineering disciplines [2–4].
As a result of this integrative approach, multiple industries are expected to be transformed
and revolutionized, including regenerative medicine, biosensing and bioremediation,
as well as sustainable manufacturing and energy production [5–8].

While synthetic biology bears many similarities to traditional engineering disciplines,
designing synthetic gene circuits is often time consuming due to their context-dependent
behavior [9–14], frequently leading to unexpected and perplexing phenomena [15–17].
Thus, the construction of even simple systems typically relies on massive DNA libraries
that needs to be iteratively refined, involving high-throughput screening and testing in a
lengthy and expensive process [18–20]. Although this library-based screening approach can
prove successful for modules of modest complexity, the method rapidly becomes infeasible
with increasing circuit size. Context-dependence thus poses a critical limitation in synthetic
biology by undermining the modular and rational design of large-scale systems.
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Unlike the above approach based on combinatorial DNA libraries, quantitative tools
and computational techniques facilitate the rational forward-engineering of complex ge-
netic circuits. This is achieved by leveraging mathematical models explicitly accounting
for various sources of context-dependence, such as metabolic burden due to the limited
availability of shared resources, both internal and external to organisms. As a result, syn-
thesizing heterologous proteins can lead to growth rate reduction, and the expression of
two unrelated proteins may become coupled [10,11,13,21–30]. Tackling this issue requires
system-level approaches [31–34] combining a diverse set of quantitative tools [35–47]. This
data-driven quantitative approach thus holds the promise of transforming the way complex
biocircuits are designed by offering a more scalable approach [48].

Considering the central role that multistable switches play in both synthetic and
natural systems with application examples ranging from regulating cell fate to autonomous
control of maximizing cellular productivity [49–57], it is especially troubling that their
behavior displays particularly strong dependence on their context [58,59]. Thus, our
objective here is to reveal how tunable biophysical parameters of the toggle switch shape
its fundamental properties. In particular, we seek to characterize how the interplay of
competition for shared cellular resources, parameter asymmetries, and burden from the
genetic context affects the stability and robustness of toggle switches [60].

Recent results illustrate that competition for shared cellular resources has profound
implications regarding fundamental properties of symmetric genetic switches [61–63].
Here, we significantly extend these findings to the case of asymmetric toggle switches [64],
thus amplifying the impact of our analysis by considering a much wider and experimentally
more realistic set of circuits. Combining nullcline analysis and potential landscape-based
robustness analysis, our results reveal that resource competition acts against bistability and
the unbalancedness of the toggle switch further exacerbates this effect. Thus, bistability
requires reduced parameter asymmetry due to resource competition, that is, the toggle
switch needs to be better balanced in the presence of scarce resources [64]. Additionally,
we demonstrate that both parameter asymmetries and resource competition reduce the
overall robustness of metastable fixed points to noise by decreasing the potential barriers
separating these equilibria. As a result, the frequency of random switching between
these states increases, thus reducing the long-term reliability of the toggle switch as a
memory unit. Illustrating the practical implications of our findings, we further reveal that
unbalancedness significantly reduces the critical number of bistable toggle switches that
can be simultaneously deployed without their collective behavior becoming monostable
due to the additional resource competition they face from each other [64]. All of the above
findings highlight that resource competition generally has negative impacts on the stability
and robustness properties of the toggle switch. However, our analysis also reveals that by
carefully adjusting resource sequestration (e.g., via the introduction of decoy sites [65]), it
can also increase the balancedness of the toggle switch, an idea similar to how substrate
sequestration can be leveraged for biosensor optimization [66]. As we illustrate, this is
crucial for leveraging the toggle switch as a “digital comparator” in genetic optimizer
modules [67].

Importantly, the results presented in this paper are underpinned by a mechanis-
tic model capturing the scarcity of transcriptional and translational resources, leading
to accurate in vivo and in vitro predictions [26,28]. By collapsing tunable microscopic
model parameters (e.g., promoter strength, DNA copy number, and ribosome binding site
strength) into lumped constants, we dramatically decrease complexity while preserving
interpretability. Our findings thus not only provide explicit guidelines promoting modular-
ity and increased robustness to noise, but they can also be mapped directly to experimental
considerations and concrete design choices. Consequently, the stability and robustness of
genetic toggle switches can be rationally adjusted by combining a wide variety of experi-
mental tools, such as ribosome binding site and promoter engineering [20,68], introduction
of decoy sites [65], and expression of heterologous proteins [25,26].
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This paper is organized as follows. After briefly introducing the mathematical model
of the toggle switch explicitly accounting for the limited availability of shared cellular re-
sources, we present the quantitative framework underpinning the computational results of
the paper (see Supplementary Materials for source code). Following this, we leverage these
tools to reveal the role that each parameter plays in determining stability and robustness
properties of the toggle switch, and how these results can be translated to explicit design
guidelines for the context-aware synthesis of genetic switches.

2. Materials and Methods

Here, we first detail the mathematical model of the toggle switch in the presence of
scarce transcriptional/translational resources. Following this, we introduce the main tools
and techniques we leverage to uncover how competition for shared resources and parame-
ter asymmetry shape the stability and robustness properties of genetic toggle switches.

2.1. Mathematical Model and Parameters

Comprising the repressor proteins Y and Z, the behavior of the toggle switch [60]
evolves according to

dY
dt

=
αY

1 + (Z/KZ)
θZ
− γYY,

dZ
dt

=
αZ

1 + (Y/KY)
θY
− γZZ, (1)

where KY and γY are the dissociation and decay rate constants of Y, respectively, with Hill
coefficient ΘY, and KZ, γZ, and ΘZ are defined similarly. In this paper, we consider
ΘY = ΘZ = 2 corresponding to the most commonly considered case of repressors bind-
ing as dimers [50,52,69–73], but our analysis can be easily extended to other cases as
well [20,49,56,59,74,75]. Assuming that protein decay is primarily determined by cell
growth, in this manuscript we consider γY, γZ ≈ γ where γ is the cell growth rate. Note
that gratuitous protein expression can negatively affect host growth [11,21,25,76], and the
extent of this effect largely depends on experimental conditions [77–79]. This in turn can
lead to the reallocation of cellular resources [22–24], eventually yielding a bidirectional
coupling between genetic circuits and their host, further complicating the rational analysis
and design of large-scale systems. Motivated by the evidence suggesting that such effects
may only be transient in the exponential phase and that they disappear after several gener-
ations of exponential growth [26,80], here, we assume that cellular growth rate is constant.
In case this assumption does not hold, integrative circuit–host models [10,32–34,40] offer a
promising avenue of inquiry to accurately predict how cell proliferation and gene expres-
sion affect one another in the above bidirectional coupling. Finally, the production rate
constants αY and αZ encompass all transcriptional and translational processes. For instance,
considering the mechanistic model detailed in [26,28], we have that

αY =
λTX

Y λTL
Y D

δYκYkY
, αZ =

λTX
Z λTL

Z D
δZκZkZ

, (2)

where λTX and λTL are transcriptional and translational rate constants, respectively; κ and
k denote the dissociation constants of RNA polymerase (RNAP) and ribosomes to their
targets, respectively; and D and δ stand for DNA concentration and mrNA decay rate,
respectively. Typical values of these parameters are provided in Table 1.

While the above model captures the dynamics of the toggle switch when transcrip-
tional/translational resources are abundant, it fails to account for the competition phe-
nomenon that arises when these resources are scarce [25–28]. As both repressors, as well as
the genetic context of the toggle switch, rely on the same pool of resources (building blocks,
energy, RNAP, ribosomes, etc.), the above coupling effects need to be modeled explicitly
for predictable system-level behavior.
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Table 1. Typical range of parameter values.

Symbol Meaning Typical Value Unit Reference

κ RNAP dissociation constant 1 µM [22,26]
k ribosome dissociation constant 10 µM [26,81]
K repressor dissociation constant 0.1 nM [82]
D DNA concentration 100–1000 nM [26,83]

λTX transcriptional rate constant 100 1/h [26,81]
λTL translational rate constant 1000 1/h [26,81]

δ mRNA decay rate constant 10 1/h [84]

Accounting for the limited availability of these scarce resources, the dynamics of the
toggle switch becomes

dY
dt

=

αY
1+(Z/KZ)

2

1 + βY
1+(Z/KZ)

2 +
βZ

1+(Y/KY)
2

− γY,
dZ
dt

=

αZ
1+(Y/KY)

2

1 + βY
1+(Z/KZ)

2 +
βZ

1+(Y/KY)
2

− γZ (3)

according to the works in [26,28], with the lumped constants

βY =
DY
κY

(
1 +

λTX
Y

δYkY

)
, βZ =

DZ
κZ

(
1 +

λTX
Z

δZkZ

)
. (4)

Note that βY and βZ decrease the effective production rate constants of Y and Z,
respectively, and this effect increases with protein production levels. Therefore, these
lumped constants measure resource sequestration associated with the production of Y
and Z, respectively, due to the limited availability of shared resources. For instance,
βY = βZ = 0 in case of abundant resources (i.e., in the absence of competition and
unwanted coupling between processes responsible for the expression of Y and Z).

Finally, to simplify further analysis, introduce the dimensionless quantities

y =
Y

KY
, z =

Z
KZ

, αy =
αY

γKY
, αz =

αZ
γKZ

, t′ = γt,

together with βy = βY and βz = βZ, so that (3) becomes

dy
dt′

=

αy
1+z2

1 + βy
1+z2 +

βz
1+y2

− y,
dz
dt′

=

αz
1+y2

1 + βy
1+z2 +

βz
1+y2

− z. (5)

Based on the typical parameter ranges presented in Table 1, we estimate αy, αz ≈
1 . . . 100 and βy, βz ≈ 0.1 . . . 10 to be typical from (2) and (4). Naturally, this range can be
extended by varying promoter regions, ribosome binding sites, degradation tags, etc.

2.2. Stability Analysis

Considering the model in (1), neglecting the effects of resource competition, it was
shown numerically that balancedness of the toggle switch (i.e., αy ≈ αz) is essential for
bistability [60]. To characterize this crucial feature, we introduce a = αy/αz together with
α0 =

√
αyαz measuring the mean expression strength of the repressors. With this, we write

the dynamics (5) as
ẏ = fy(y, z), ż = fz(y, z) (6)

such that αy = α0
√

a and αz = α0/
√

a. In what follows, we assume that a ≥ 1 without loss
of generality (if a ≤ 1 then swapping y and z would result in a ≥ 1).

The stability profile of (6) can be established using nullcline analysis to reveal the
effects of resource competition and parameter asymmetry. Focusing first on balanced



Life 2021, 11, 271 5 of 20

toggle switches (i.e., a = 1), with β0 =
√
(1 + βy)(1 + βz) the nullclines 0 = fy(y, z) and

0 = fz(y, z) intersect three times if α0 > 2β0 and at a single point otherwise [61] (Figure 1a).
Considering the Jacobian of (6) at these intersections, it was also shown in [61] that two
of them correspond to stable fixed points, whereas the third one gives rise to an unstable
equilibrium. As increased resource sequestration yields greater values of β0, it pushes the
nullclines lower in Figure 1a, eventually causing the transition from bistability (middle
panel in Figure 1a) to monostability (right panel in Figure 1a).

y z

y z

a

b

a = 1

a > 1

0.1 1 10
y

0.1

1

10

z

0.1 1 10
y

0.1

1

10

z

0.1 1 10
y

0.1

1

10

z

0.1 1 10
y

0.1

1

10

z

a = 1.2

xy

xz

a = 1

Figure 1. Resource sequestration and unbalancedness both act against bistability. Fixed points and
stability profile are determined by the intersection of the nullclines fy(y, z) = 0 and fz(y, z) = 0
depicted in blue; stable and unstable fixed points are denoted by full and empty circles, respectively.
(a) Stability profile in case of a balanced toggle switch (a = 1). Middle panel: moderate resource
sequestration (α > 2β0) yields bistable dynamics (αy = αz = 10, βy = βz = 1). Right panel: increas-
ing resource sequestration above the critical threshold (2β0 > α) eventually results in monostable
dynamics (αy = αz = 10, βy = βz = 10). (b) In the general case when a ≥ 1, fixed points and stability
profile are determined by the intersection of the nullclines with the manifold given by the constraint
in (7), depicted with solid gray lines. Middle panel: in case of a balanced toggle switch we have
a = 1, thus (7) simplifies to y = z or yz = 1. Right panel: increasing a pulls the two branches of (7)
apart from each other, thus pushing the dynamics towards monostability.

While in the case of balanced toggle switches an equilibrium lies either on the y = z
or on the yz = 1 manifolds [61] (middle panel in Figure 1b), in case of unbalanced switches
this is no longer true. In particular, fixed points of (6) given by the intersections of the
nullclines 0 = fy(y, z) and 0 = fz(y, z) must also satisfy the constraint

0 = a
z

1 + z2 −
y

1 + y2 , (7)

as illustrated in the right panel in Figure 1b (see Appendix A for more details). As the
branches of this constraint move away from each other as a increases, we expect unbal-
ancedness to act against bistability. In particular, as we reveal in Section 3.1, while minor
differences between αy and αz (i.e., a ≈ 1) still yield bistable dynamics with stable fixed
points xy and xz (y-dominated and z-dominated), exceeding a critical threshold eventually
leads to a single stable fixed point, yielding monostability.
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2.3. Robustness Analysis

To uncover how the the interplay between unbalancedness and resource sequestration
affects the robustness of (6) to noise, here we study the average time trajectories spend near
the metastable fixed points xy and xz before transitioning towards the other. To this end,
we first extend (6) in the form of the overdamped Langevin dynamics as

ẏ = fy(y, z) +
√

2εξy, ż = fz(y, z) +
√

2εξz, (8)

where ε regulates the intensity of the zero-mean δ-correlated Gaussian white noise (ξy,
ξz) [63]. It is this noise that leads to trajectories (infrequently) leaving the metastable
fixed points [85–88], thus causing unwanted xy ↔ xz transitions. The frequency of these
events can be characterized by approximating the underlying dynamics with a Markov
jump process [89], where transition rates are parametrized using the Eyring–Kramers
formula [85–88]. Within this framework, transition rates depend on the potential barriers
separating metastable fixed points. Therefore, we next define a suitable (quasi) potential.

As ∂ fy(y, z)/∂z 6= ∂ fz(y, z)/∂y, the dynamics in (6) do not correspond to a gradient
system, hence a quasi-potential must be defined [90,91]. Following one of the most common
approaches, the quasi-potential V(y, z) changes along trajectories according to

∆V(y, z) = −
[

f 2
y (y, z) + f 2

z (y, z)
]
∆t (9)

for a sufficiently small time step ∆t [90,92]. As ∆V(y, z) ≤ 0 and ∆V(y, z) = 0 only when
fy(y, z) = fz(y, z) = 0, the potential surface behaves like a Lyapunov function [90,92]:
system trajectories “flow downhill” towards the metastable fixed points xy and xz (for
more details on the computation of V(y, z), see Appendix B).

According to the Eyring–Kramers formula [87,88], the average time trajectories spend
near a metastable fixed point (mean transition time) is exponentially proportional to the
potential barrier required for leaving its neighborhood. To characterize this time and
potential barrier, let Ωy, Ωz ∈ R2 denote the regions of convergence of the metastable fixed
points xy and xz, respectively. With this, τy = E[inf{t > 0 : (y, z) ∈ Ωy, (y(0), z(0)) ∈
Ωz}] and τz = E[inf{t > 0 : (y, z) ∈ Ωz, (y(0), z(0)) ∈ Ωy}] are the average duration
trajectories spend near the metastable fixed points xy and xz, respectively. From the Eyring–
Kramers formula, as ε→ 0 the time τy is exponentially proportional to the potential barrier
hy required for leaving Ωy (Figure 2a), defined as

hy = inf
γ

sup
x∗∈χ

V(x∗)−V(xy), (10)

where χ denotes continuous paths leading from xy to Ωz [85,87,88]. The potential barrier hz
is defined similarly. Therefore, to reveal how resource sequestration and unbalancedness
of the toggle switch impact its robustness to noise, in Section 3.2 we characterize how the
potential barriers hy and hz separating the metastable fixed points depend on these factors.

To further understand the long-term implications of reduced robustness to noise, we
consider a two-step process to model both the random transitions between the metastable
states xy and xz and the doubling of cells (Figure 2b). This way it becomes possible to reveal
how the population-level distribution of colonies evolve over time, and how this process is
shaped by resource sequestration and unbalancedness of the toggle switch. To this end, let
py and pz denote the probability of leaving xy and xz during one cell cycle, respectively
(STEP 1 in Figure 2b). Furthermore, we assume that switching happens during growth
and concludes before doubling takes place, thus cells preserve their states during the
deterministic doubling (STEP 2 in Figure 2b). Starting from a single cell in generation 0,
the population size after i doublings is Ni = 2i.
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STEP 1: random switching before doubling STEP 2: deterministic doubling after switching

15
z

y

V

00 15

a

15
z

y

V

00 15

15
z

y

V

00 15

resource competition unbalancedness

b

STEP 2: deterministic doublingSTEP 1: random switching

generation i-1 generation i

xy

xz
xy

xz
xyxz

Figure 2. Resource competition and unbalancedness both decrease robustness to noise. (a) In case of balanced bistable
toggle switches, the two potential barriers are identical (hy = hz, middle panel), and resource sequestration lowers both
these potential barriers (left panel). Conversely, unbalancedness increases one of the potential barriers at the expense of the
other (right panel). Simulation parameters: αy = αz = 10, βy = βz = 0.25 in the left panel; αy = αz = 10, βy = βz = 0 in
the middle panel; αy = 9.33, αz = 10.72, βy = βz = 0 in the right panel (thus a = 1.15). In all panels α0 = 10. (b) Based on
the robustness of the metastable fixed points, cells switch states with probabilities py and pz (STEP 1), followed by their
doubling yielding two identical cells preserving the same state (STEP 2). Before the ith doubling, ny and nz cells preserve
their y-dominated and z-dominated states, respectively, and the rest switch states (my and mz from the former to the latter
and vice versa, respectively). The random variable Y′i denotes the number of cells in the y-dominated state between STEP 1
and STEP 2, just before the ith doubling, so that Yi = 2Y′i .

With this, we are interested in how the population-level distribution of cell fates evolve
over time, depending on the state of the seed cell in generation 0. To this end, introduce
the random variables Yi and Zi to denote the number of cells in the y-dominated and
z-dominated states in generation i, respectively. Therefore, qi(yi) = Pr(Yi = yi | Y0 = 0) is
the probability of observing yi cells in the former state after i doublings provided that the
initial seed cell was in latter state, and similarly, let ri(yi) = Pr(Yi = yi | Y0 = 1). As with
this we have

Pr(Zi = zi | Y0 = 0) =Pr
(

Yi = 2i − zi | Y0 = 0
)
= qi(2i − zi),

Pr(Zi = zi | Y0 = 1) =Pr
(

Yi = 2i − zi | Y0 = 1
)
= ri(2i − zi),

(11)
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the population-level composition of cell fates can be calculated by computing qi(·) and
ri(·) for i = 0, 1, 2, . . . , as we detail in Section 3.2.

3. Results

Leveraging the tools and results from the previous section, here we reveal how re-
source competition and parameter asymmetry affect fundamental stability and robustness
properties of the toggle switch. In addition to illustrating their unwanted consequences,
we also uncover how these tunable biophysical properties can be utilized, for instance,
by exploiting resource sequestration to balance asymmetric toggle switches so that they can
be employed in genetic optimizer modules [67]. As our approach relies on a mechanistic
model of the system dynamics underpinned by biophysical parameters with clear interpre-
tations, the findings presented here are directly translatable to experimental considerations.

3.1. Stability Properties

While the stability analysis of (6) is significantly more complex in the unbalanced case,
it is possible to derive sufficient conditions ensuring monostability and bistability (see
Appendix A for details). In particular, (6) becomes monostable if

1 +
β0√

b
≥ α0
√

a +
√

a− 1
a

. (12)

In addition to providing explicit design guidelines, the above formula (together with its
counterpart in Theorem A1 in Appendix A) also illuminates the role that the parameters

α0 =
√

αyαz, a = αy/αz, β0 =
√
(1 + βy)(1 + βz), and b = (1 + βy)/(1 + βz) play in

shaping the stability profile of unbalanced toggle switches.
For instance, we have already seen that in case of balanced toggle switches (i.e., a = 1),

the dynamics are bistable if α > 2β0 [61], independent of the value of b (Figure 3a). In case
of unbalanced switches, from (12) we expect that greater values of a push the dynamics
towards monostability by decreasing the right-hand side of (12), whereas increasing α0
would have the opposite effect, confirmed in Figure 3b. Our results also reveal that the
repressor with stronger expression can tolerate higher resource sequestration without
losing bistability. For instance, assume that a > 1, thus αy > αz (black circles in Figure 3c).
As greater values of β0 increase the left-hand side of (12), we expect this change to push the
dynamics towards monostability. Furthermore, keeping β0 constant (representing the same
overall amount of resource sequestration), while increasing b decreases the left-hand side,
thus pushes the dynamics towards bistability, decreasing b has the opposite impact. These
effects are confirmed and illustrated in Figure 3c: while low β0 yields bistable dynamics
despite the unbalancedness (first panel), increasing it evenly for both sides of the toggle
switch causes a shift to monostability (second panel). Conversely, shifting the same amount
of overall resource sequestration exclusively towards the side with higher production rate
constant α preserves bistability (third panel), whereas allocating it to the other side has the
opposite effect (fourth panel).
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Figure 3. Stability properties of the toggle switch are shaped by resource competition and parameter asymmetry. Gray
regions denote parameter combinations yielding bistable dynamics. Bistability/monostability was determined numerically
by simulating 100 trajectories with randomly chosen initial conditions for each parameter value and clustering the endpoints.
(a) Stability profile in case of balanced dynamics. Values of (β0, b) in the checkered regions are not possible with βy, βz ≥ 0.
(b) Stability profile in case of unbalanced dynamics. (c) Stability profile in case of unbalanced dynamics with β0 = 0 in the
first panel and β0 = 6 in the other three panels.

3.2. Robustness Properties

Having revealed how resource sequestration and parameter asymmetry affect the
stability profile of (6), we next focus on the robustness properties of the metastable fixed
points considering (8). As detailed in the previous section, according to the Eyring–Kramers
formula, the mean transition time between these points is proportional to the height of the
potential barriers separating them. Therefore, here we first focus on how these barriers
are shaped by increased competition for shared resources and unbalancedness. To this
end, consider a variety of toggle switches with different pairs of (αy, αz) and progressively
increasing α0 =

√
αyαz (Figure 4, first panel).
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To reveal the role of balancedness, assume first that βy = βz = 0. Note that from a
stability perspective, increasing α0 pushes the dynamics towards bistability (Figure 3); thus,
it is reasonable to expect that robustness to noise also increases as the dynamics lie farther
from the monostable/bistable border. While this is certainly the case for balanced switches
(toggle variants #1 and #19) as the potential barriers hy and hz increase with α0 (red and
green dotted lines in Figure 4), the relationship in case of unbalanced toggle switches is
more nuanced (toggle variants #2–#18). In particular, as α0 increases by first increasing
αz while keeping αy constant (toggle variants #2–#10), hz is indeed increasing rapidly but
at the expense of hy decreasing (red and green dotted lines in Figure 4). Therefore, while
increasing α0 in this case pushes the dynamics farther away from monostability (Figure 3),
only the xz metastable state becomes more robust to noise, the other’s sensitivity to noise
instead increases, and a similar trend can be observed when the roles are reversed (toggle
variants #10–#18).
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Figure 4. Robustness properties of the toggle switch are shaped by resource competition and parameter asymmetry. Solid
lines denote the values with the indicated resource sequestration, whereas dotted lines correspond to the case when
(βy, βz) = (0, 0). Potential barriers are all normalized by the same factor so that the maximum across all plots is 1.

The role of resource sequestration can be analyzed similarly. As increasing β0 pushes
the dynamics towards monostability (Figure 3), we expect it to have a negative effect
on the robustness of metastable states to noise. This is indeed the case, but parameter
asymmetries also play a key role. In particular, the results in Figure 4 illustrate that while
increasing βy and βz fundamentally affect hy and hz, thus the robustness of xy and xz to
noise, respectively, cross effects are negligible (Figure 4). That is, increasing loading on
one side renders the same side more sensitive to random switchings, but leaves the other
side unaffected.

Next, we focus on how the robustness of the metastable states shape the population-
level composition of colonies. To this end, note that from the Eyring–Kramers formula
the mean transition time τy is proportional to exp (hy/ε) where ε regulates noise inten-
sity [85–88]. Furthermore, assuming that random xy → xz transitions are distributed
exponentially [89] with parameter 1/τy (so that the mean wait time is precisely τy), and con-
sidering the doubling time td = ln(2)/γ where γ is the growth rate, we obtain that the
probability of a random xy → xz switching between consecutive doublings is given by
py = 1− e−td/τy . This highlights that py increases with the doubling time td and decreases
with τy, thus increases with noise intensity and decreases with the potential barrier hy.
Similarly, we obtain that pz = 1− e−td/τz for xz → xy transitions. Having uncovered how
the potential barriers are shaped by the interplay between competition for shared resources
and balancedness (Figure 4), we next focus on how py and pz affect the evolution of the
population-level composition of colonies by computing qi(·) and ri(·) from (11). To this
end, from Figure 3 with yi = 2y′i and zi = 2z′i it follows that
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qi(yi) =Pr
(
Y′i = y′i | Y0 = 0

)
=

2i−1

∑
yi−1=0

Pr
(
Y′i = y′i, Yi−1 = yi−1 | Y0 = 0

)
=

2i−1

∑
yi−1=0

Pr
(
Y′i = y′i | Yi−1 = yi−1, Y0 = 0

)
Pr(Yi−1 = yi−1 | Y0 = 0)

=
2i−1

∑
yi−1=0

Pr
(
Y′i = y′i | Yi−1 = yi−1

)
qi−1(yi−1),

ri(yi) =Pr
(
Y′i = y′i | Y0 = 1

)
=

2i−1

∑
yi−1=0

Pr
(
Y′i = y′i, Yi−1 = yi−1 | Y0 = 1

)
=

2i−1

∑
yi−1=0

Pr
(
Y′i = y′i | Yi−1 = yi−1, Y0 = 1

)
Pr(Yi−1 = yi−1 | Y0 = 1)

=
2i−1

∑
yi−1=0

Pr
(
Y′i = y′i | Yi−1 = yi−1

)
ri−1(yi−1),

together with Pr(Y′i = y′i | Yi−1 = yi−1) = ∑
yi−1
ny=0 (

yi−1
ny

)p
my
y (1− py)

ny(zi−1
nz

)pmz
z (1− pz)nz

where zi−1 = 2i−1 − yi−1, my = yi−1 − ny, mz = y′i − ny, and nz = 2i−1 + ny − y′i from
Figure 3. Note that here we used the generalized definition of the binomial coefficients such
that (n

k) = 0 if k < 0 or if k > n. Therefore, with the initial conditions q0(0) = r0(1) = 1
and q0(1) = r0(0) = 0 we can recursively compute qi(yi) and ri(yi).

This result reveals that depending on the transition probabilities py and pz, after only a
few generations the population-level profile of steady-state distribution can fundamentally
differ from the state of the initial seed cell (e.g., red in Figure 5a starting from Y0 = 1),
especially if the distribution mean at the steady state is substantially different from the
initial state (Figure 5b). Importantly, the expected composition of the population at steady
state does not depend on the state of the initial seed cell (Figure 5c), but the speed at which
this state is reached does (Figure 5d).

3.3. Balancing via Optimized Competition

The balancedness of the toggle switch not only fundamentally affects its stability
and robustness properties, as we have uncovered in this paper (Figures 3–5), it is also
crucial when the toggle switch is utilized as a “digital comparator” to optimize cellular
performance [67]. We have already highlighted that carefully chosen resource competi-
tion can restore bistability (Figure 4c), thus here we explore how it can be leveraged to
increase balancedness.

To illustrate this, first consider the case when resource competition is neglected (i.e.,
βy = βz = 0) and the toggle switch is balanced (i.e., αy = αz). In this case, trajectories
converge to xy and xz if y(0) > z(0) and if y(0) < z(0), respectively, that is, to the fixed
point that corresponds to the dominant initial coordinate. In case of an unbalanced toggle
switch (i.e., αy 6= αz), this is not true anymore: for instance, if αy > αz then some initial
conditions where y(0) < z(0) will yield trajectories that converge erroneously to xy (gray
region in Figure 6a). To measure this effect, for the initial condition (y0, z0) let (y, z) →
(y∞, z∞) as t → ∞ and define Ψ = {(y0, z0) | (y0 − z0)(y∞ − z∞) < 0}, that is, the set of
initial conditions where the initial and final dominant coordinates are different (Figure 6a).
To measure the size of this region, define eΨ = 1

αyαz

∫∫
Ψ dA, so that eΨ characterizes the

fraction of the rectangle [0, αy]× [0, αz] with incorrect initial/final state pairings (Figure 6a).
In particular, eΨ = 0 in case of balanced switches and eΨ increases as the toggle gets
increasingly more unbalanced. The data in Figure 6a confirm that while eΨ increases with
unbalancedness, it stays fairly constant for a given level of unbalancedness above a certain
threshold value of α0 =

√
αyαz.
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Figure 5. Evolution of population-level distribution of cells starting from a z-dominant and y-dominant initial cell (Y0 = 0
and Y0 = 1, respectively). (a) Population-level distribution of cells in the y-dominant state in generation 5. (b) The average
number of cells in the y-dominant state after successive doublings. (c) The mean percentage of the population in the
y-dominant state at equilibrium. (d) The number of generations required to (approximately, within 0.1% range) reach the
steady state distribution. Simulation parameters: (py, pz) = (0.02, 0.2), (py, pz) = (0.1, 0.05), (py, pz) = (0.1, 0.15) for red,
green, and purple, respectively.

Importantly, unbalancedness due to αy 6= αz can be mitigated by carefully selecting βy
and βz, e.g., via the introduction of decoy sites [65]. This is illustrated in Figure 6b where
the optimal choice of (βy, βz) significantly reduces the error eΨ: if 1 ≤ a = αy/αz ≤ 2
the error decreases from 20% (Figure 6a) to less than 1% (Figure 6b), rendering the toggle
switch almost perfectly balanced. Additionally, this optimal loading of the toggle switch
also expands the range of (α0, a) pairs that yield bistable dynamics, rendering previously
monostable dynamics bistable (e.g., orange circle in Figure 6).
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Figure 6. Resource competition can be leveraged to increase the balancedness of the toggle switch (uncolored regions
correspond to parameter combinations that yield monostable dynamics). Contour values represent eΨ in percentages. (a) In
the absence of resource competition (i.e., βy = βz = 0), differences between αy and αz lead to significant error eΨ. (b) By the
optimal choice of (βy, βz) the error eΨ is greatly reduced.

3.4. Context Effects

Here, we reveal how competition for shared resources originating in the genetic
context of the toggle switch shapes its stability and robustness properties. To this end, let
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βc capture the resource sequestration of modules other than the toggle switch (its context),
yielding the dynamics

ẏ =

αy
1+z2

1 + βy
1+z2 +

βz
1+y2 + βc

− y, ż =

αz
1+y2

1 + βy
1+z2 +

βz
1+y2 + βc

− z.

Importantly, with α′w = αw/(1 + βc) and β′w = βw/(1 + βc) for w ∈ {y, z} we obtain
the dynamics in (6) with these rescaled parameters instead of the original αw and βw. Thus,
the results presented in this paper can be applied in a straightforward manner even in the
presence of loading from the context of the toggle switch.

To illustrate the detrimental effects of such competition, consider the collective behav-
ior of N toggle switches, given by the dynamics

ẏi =

αy,i

1+z2
i

1 +
βy,i

1+z2
i
+

βz,i
1+y2

i
+ βc,i

− yi, żi =

αz,i
1+y2

i

1 +
βy,i

1+z2
i
+

βz,i
1+y2

i
+ βc,i

− zi,

where βc,i = ∑j 6=i(
βy,i

1+z2
i
+

βz,i
1+y2

i
) for i = 1, 2, . . . , N. While a single toggle switch alone may

display a bistable stability profile, the addition of further switches decreases the separation
of the two stable fixed points (Figure 1), eventually leading to the collectively monostable
dynamics of individually bistable toggle switches (Figure 7a) as a result of additional
loading from each other [61].

To reveal the role that parameter asymmetry and resource competition play in the
above phenomenon, consider the simulation data in Figure 7b,c illustrating the critical
number Ncrit of identical toggle switches (i.e., αw = αw,i and βw = βw,i for w ∈ {y, z} and
i = 1, 2, . . . , Ncrit) such that one more unit would render the collective behavior monostable.
These results reveal two key findings, which follow from the data in Figure 4a,b. First,

Ncrit increases with α0 =
√

αyαz and decreases with β0 =
√
(1 + βy)(1 + βz). Second,

while asymmetry in the parameters measuring resource loading via βy and βz captured
by b = (1 + βy)/(1 + βz) does not have any appreciable effect, the balancedness of the
toggle switch (i.e., a = αy/αz ≈ 1) is crucial, as increasing the difference between αy and
αz significantly decreases Ncrit. These results once again underscore that unbalancedness
exacerbates the detrimental effects of resource competition. Naturally, as the number of
toggle switches increases and approaches Ncrit, additional resource competition also yields
reduced robustness to noise, following directly from Figure 4.
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Figure 7. Resource competition arising in the genetic context of toggle switches can fundamentally alter their behavior. (a)
Bistable toggle switches can render each other monostable due to increased resource sequestration. Simulation parameters
are (αy, αz) = (25, 20) and (βy, βz) = (1, 1.5) with 100 randomly selected initial conditions from [0, α0]

2. (b) The critical
number Ncrit in case of unbalanced realizations (i.e., αy 6= αz). (c) The critical number Ncrit in case of balanced realizations
(i.e., αy = αz). Values of (β0, b) in the checkered region are not possible with βy, βz ≥ 0.

4. Discussion

Given that genetic modules display context-dependent behavior [9,25,28], predictive
and quantitative models play a fundamental role in the development of complex genetic
circuits [36,37]. One major source coupling the behavior of seemingly unconnected compo-
nents emerges due to the limited availability of shared cellular resources, thus introducing
the “bioenergetic cost” of genes due to their existence and expression [93]. As recent
experimental developments enable the precise characterization and separation of this cost
into expenses that cells incur at various levels [94,95], these high-throughput technologies
illuminate the inner workings of cells at the part-level. As a result, leveraging quantitative
modeling and formal analytic tools offer promising avenues for aiding the rational design
of synthetic gene circuits.

Therefore, in this paper we focused on revealing how competition for shared cellular
resources affects the stability and robustness properties of one of the most widely used
genetic modules: the toggle switch [60]. This core building block plays a central role in a
vast array of both natural and synthetic systems. One prominent example is checkpoint
control enabling the division of complex tasks into independent sub-tasks [96], allowing
cells to respond to a wide variety of input signals [97] influencing a diverse set of cellular
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processes [98,99]. Given their central role, understanding how fundamental dynamic
properties of the toggle switch depend on tunable biophysical parameters in real-world
applications is thus of considerable interest to promote modularity and predictable system-
level performance.

To this end, our combined analytical/numerical approach uncovered explicit guide-
lines aiding the design and tuning of genetic switches in a rational fashion, even in the
presence of competition for shared transcriptional and translational resources. For in-
stance, we revealed that while greater protein expression rates push the dynamics towards
bistability and yield increased robustness to noise, resource competition has the opposite
effect. Furthermore, our findings highlight that parameter asymmetries play a crucial
role in establishing stability and robustness properties: not only can they exacerbate detri-
mental effects of resource competition, but also restore bistability and balancedness when
carefully optimized.

To obtain the results presented in this paper, we explicitly modeled the scarcity of
shared resources and the resulting coupling phenomena, both between genes of the toggle
switch and arising due to its genetic context. The reduced order model underpinning our
findings offers a realistic approximation of the dynamics of the switch as it considers pa-
rameter asymmetries and the model assumptions lead to accurate experimental predictions
in vitro and in vivo [26,28]. As the parameters all possess clear physical interpretations and
correspond to easily tunable properties of standard genetic parts, the design guidelines we
uncovered are directly translatable to experimental considerations. For instance, α can be
tuned via ribosome binding site engineering [68], β via the introduction of decoy sites [65],
and βc via the expression of heterologous proteins [25,26].

The results presented here are complemented by recent efforts to mitigate the adverse
effects of competition for shared cellular resources, for instance, by decoupling resource-
coupled gene expression [100], upregulating ribosome production reacting to increased
metabolic burden [101], and splitting up multicomponent genetic systems into smaller
subcomponents distributed among multiple collaborative cell strains [102]. Additionally,
as integrative models [10,32–34,40] can accurately capture the bidirectional coupling be-
tween genetic circuits and the host harboring them, they offer unique and invaluable
insights for the synthesis of large-scale biocircuits, for instance, by revealing how cell prolif-
eration and gene expression affect one another. Our findings together with these tools thus
offer promising opportunities for the rational and context-aware design of genetic switches
relying on carefully characterized parts [103]. Therefore, we expect the key findings pre-
sented in this paper to be incorporated into the computer-aided fabrication of large-scale
synthetic circuits [96,104,105], among other effects of context-dependence [9,15,22–24].

Supplementary Materials: The MATLAB scripts required for obtaining the simulation data are
available online at https://github.com/netbio-lab/unbalanced-toggle.git. All data were obtained
using MATLAB R2020b, figures were prepared using Adobe Illustrator 2021.
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Appendix A. Stability Profile of the Unbalanced Toggle Switch

Theorem A1 (Adopted from [64]). Fix a ≥ 1 and define w̄ = a +
√

a2 − 1 ≥ 1. Define

g1(z) =
αz

βy

1
1 + z2 , g2(z) =

1
βy

(
1 +

βz

1 + z2

)
, g(y, z) =

g1(z)
g2(z) + 1

(1+y2)

, (A1)

and introduce
¯
G1(z) = 0, Ḡ1(z) = αz, together with

¯
Gk+1(z) = g(

¯
Gk(z), z) and Ḡk+1(z) =

g(Ḡk(z), z) for k = 1, 2, . . . , and let
¯
G(z) = limk→∞ ¯

Gk(z) and Ḡ(z) = limk→∞ Ḡk(z). The dy-
namics (6) are bistable if

¯
G(1) ≥ w̄ and monostable if Ḡ(1) ≤ w̄.

From Theorem A1 it follows that sufficient conditions for bistability and monostability
of (6) are

g1(1)
g2(1) + 1

≥ a +
√

a2 − 1,
g1(1)
g2(1)

≤ a +
√

a2 − 1, (A2)

respectively. As αz = α0/
√

a, the first condition in (A2) is equivalent to

α0
√

a +
√

a− 1
a

≥ 2 + 2βy + βz.

Furthermore, as b = (1 + βy)/(1 + βz) and β0 =
√
(1 + βy)(1 + βz), we have that

2 + 2βy + βz ≤ 2(1 + βy) + (1 + βz) = 2β0
√

b +
β0√

b
= β0

1 + 2
√

b√
b

.

Therefore, if
α0

√
a +

√
a− 1

a

≥ β0
1 + 2

√
b√

b

then the first condition in (A2) is satisfied, thus (6) is bistable. Similarly, the second
condition in (A2) is equivalent to

α0
√

a +
√

a− 1
a

≤ 2 + βz = 1 + (1 + βz) = 1 +
β0√

b
,

thus (6) is monostable if
α0

√
a +

√
a− 1

a

≤ 1 +
β0√

b
.

Appendix B. Computation of the Potential Landscape and the Potential Barriers

While (9) details how the quasi-potential is calculated along system trajectories, the ini-
tial value of V(y, z) is not specified at the beginning of each trajectory. As detailed in [90],
this lets us satisfy two fundamental properties of the potential landscape: (i) trajectories
converging to identical fixed points have the same potential at their endpoints and (ii) trajec-
tories starting sufficiently close have the same initial potential at their origin. With this, we
can calculate the potential landscape and the barriers hy and hz separating the metastable
fixed points xy and xz in case of bistable dynamics as follows:

1. locate the unique unstable and the two stable fixed points of (6);
2. create a set of initial conditions in the range (y, z) ∈ [αy, αz];
3. compute the potential decrease along system trajectories starting from the above

initial points according to (9);
4. using k-means clustering, partition the endpoints of these trajectories into two clusters;
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5. having identified the two regions of convergence (Ωy and Ωz), adjust the initial
potentials in both of them so that trajectories converging to the same stable fixed point
have the same end potential;

6. adjust the initial potentials alongside the border separating Ωy and Ωz so that trajec-
tories starting close but on different sides share the same potential; and

7. calculate the potential barriers hy and hz according to (10).
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