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Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has
been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown
bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation.
However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation.
As DCs form a complex network composed by several subpopulations, differences observed may be due to different
interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models.
The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate
at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other
studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche.
Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference
between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can
explain the weak secretion of IL12p70 and TNFa in the GMCSF-DC model and the low level of maturation observed
when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce
DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing
immune response against pathogens.

Introduction

Brucella is a Gram-negative facultative intracellular bacterium
responsible for brucellosis, a worldwide re-emerging zoonosis.1

Brucella is able to infect a large number of mammals including
land and aquatic animals. In animals, brucellosis leads to abor-
tion and sterility responsible for serious economic losses.

Brucella can be transmitted to humans by ingestion of con-
taminated food products or through exposure to infected aerosol-
ized particles. Brucellosis in humans consists in a wide variety of
symptoms, from recurrent fever and influenza-like symptoms in
the acute phase, to arthritis in most common cases of chronic
infection. Chronic brucellosis may affect different organs and
induce more serious forms of the disease like hepatitis or
endocarditis.2

Upon infection, Brucella translocates throughmucosal barrier and
is internalized by professional phagocytes. It has been demonstrated
that Brucella acts as a stealthy pathogen and modulates host immune
responses.3 Brucella is able to survive and persist inside infected cells
by modification of its intracellular trafficking. Bacteria avoid fusion
with lysosomal compartments and reside in a Brucella-containing
vacuole (BCV) harboring endoplasmic reticulum (ER) markers as a
safe replicative niche.4-10 Brucella lipopolysaccharide (LPS) is impli-
cated in the control of host immunity against Brucella infection. It is
known as a poor Toll-like receptor 4 (TLR4) agonist reducing toxic-
ity and immune responses.11-13 Most of these studies have been car-
ried out on macrophages but in 2005 Billard et al. showed for the
first time that Brucella can invade and proliferate in human DCs.
DCs constitute the most potent professional antigen-presenting cell
linking innate and adaptive immunity.14-16
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Since then, different studies have showed that Brucella effi-
ciently proliferates within human, murine and bovine DCs.17-23

Interestingly, Brucella infected human DCs do not engage into a
maturation process and are poor inducers of na€ıve T cells.18 Bru-
cella also interferes with murine DC maturation in particular via
BtpA and BtpB, 2 TIR-containing proteins that inhibit TLR sig-
naling.20,24-27 Weak DC maturation can also be related to Bru-
cella non endotoxic LPS,28,29 IL10 production30 and interference
with type 1 Interferon (IFN) pathway.31 Brucella infection in
vivo induces the recruitment of inducible isoform of Nitric oxide
synthase (iNOS)-positive cells expressing CD11b, Ly6C and
major histocompatibility complex (MHC) II,32 comparable to
Tumor Necrosis Factor a (TNFa) and iNOS-producing DCs
(TipDC) identified following Listeria monocytogenes infection.33

Interestingly, Copin et al. demonstrated by in situ microscopy
analysis that Brucella infection in vivo induces splenic DC matu-
ration and migration to the white pulp T cell area.34 All these
studies highlight the implication of DCs in Brucella pathogenesis.

Most of the in vitro studies performed to date have made use
of GMCSF to differentiate bone marrow-derived monocytes into
DCs (BMDCs).35 We know now that murine DCs form a com-
plex network of cells composed of different subtypes with pheno-
typic and functional differences.14,36 Moreover, bacteria can
interact differently with each DC subset and as a result the
immune response can be subset-specific (Papadopoulos A and
Gorvel JP, submitted). Interestingly, deep characterization of
human DCs showed that they resemble mouse DCs populations
and equivalents can be found for each subset that have been
studied.36

In order to decipher the mechanisms of Brucella-DC interac-
tion we compared Brucella infection in different murine BMDCs
models. To this aim, we used GMCSF BMDCs (G-DC). Then,
we studied 3 other models: 1) Flt3l BMDCs (FL-DC) that gives
rise to 3 DC subsets including plasmacytoid DC (pDC) and
equivalents of splenic CD8a and splenic CD11bC.37,38 2)
GMCSF C Flt3l BMDCs (G/FL-DC). We chose this model
because it has been demonstrated that Flt3l is continuously pro-
duced 39 and GMCSF is highly produced upon pathogenic chal-
lenge and can alter the developmental outcome of murine
DCs.40,41 G/FL-DC may correspond to DCs found upon in vivo
infection. 3) GMCSF C IL15 BMDCs (G/15-DC). We selected
this model because IL15 is produced by a wide range of tissues in
response to inflammatory stimuli and some studies showed that
IL15 can convert monocytes into DCs.42-46

Materials and Methods

Bacterial strain
In this study, B. abortus smooth virulent strain 2308 was

grown on Tryptic Soy Agar (TSA) plates (Sigma Aldrich) for 7 d.
For infection, 2mL of Tryptic Soy Broth (TSB) (Sigma Aldrich)
were inoculated with one colony. Bacteria were grown overnight
at 37�C under shaking until the OD (600nm) reached 1.8. All
experiments with Brucella were carried out in a BSL3 facility.

Mice
6- to 10-week-old wild type C57BL/6 female mice were

obtained from Charles River Laboratories. All experiments were
done in accordance with French and European guidelines for ani-
mal care.

In vitro generation of BMDCs
BMDCs were prepared from 6–10 week-old C57BL/6 female

femurs and tibias as previously described.20 Briefly, bone ends
were cut off and marrow was flushed with RPMI medium
(GIBCO) containing 5% FCS and 50 mM of 2-mercaptoethanol
(Sigma). 3 £ 106 cells were seeded onto 6-well plates in a
medium containing either supernatant of the J558L GMCSF
producing cell line (G-DC), both GMCSF and IL15 at 20 ng/
mL (Miltenyi) (G/IL15-DC) or both GMCSF and supernatant
of the Flt3L-producing B16 melanoma cell line (G/FL-DC). 1.5
£ 106 cells were seeded in 6-well plates in a medium containing
the supernatant of the Flt3L-producing B16 melanoma cell line
only (FL-DC).

G-DC medium was changed at day 2.5. G/IL15-DC medium
was changed at days 2 and 4. G/FL-DC and FL-DC medium
was changed at day 4.

Infection of BMDCs
BMDCs infections were performed at a multiplicity of infec-

tion (MOI) of 30. Bacteria were centrifuged onto cells at 400 g
for 10 min at 4�C and then incubated for 30 min at 37�C in a
5% CO2 incubator. Cells were washed twice with medium and
then incubated for 1 h in medium containing 50 mg/ml gentami-
cin (Sigma Aldrich) at 37�C to kill extracellular bacteria. Thereaf-
ter, the antibiotic concentration was decreased to 10 mg/ml.

Intracellular replication assays
To monitor bacterial intracellular survival, infected cells were

washed 3 times with PBS and lysed with 0.1% Triton X-100 in
H2O for 10 min and serial dilutions were plated in triplicate
onto TSB agar and Colony forming units (CFUs) were scored
after 3–4 d of culturing at 37�C.

Electron microscopy
Cells were fixed for 1h at room temperature with 2.5% glutar-

aldehyde in 0.1M Na-cacodylate buffer, pH 7.2 containing 0.1M
sucrose, 5 mM CaCl2 and 5 mM MgCl2 and washed with com-
plete cacodylate buffer, and post-fixed for 1 h at room tempera-
ture with 1% osmium tetroxide in the same buffer devoid of
sucrose. They were washed with buffer, scraped off the dishes,
concentrated in 2% agar in cacodylate buffer and treated for 1 h
at room temperature with 1% uranyl acetate in Veronal buffer.
Samples were dehydrated in a graded series of ethanol and
embedded in Spurr resin. Thin sections (70 nm thick) were
stained with 1% uranyl acetate in distilled water and then with
lead citrate.

Flow cytometry
Cells were harvested and stained for 20 min at 4�C with anti-

bodies mix. After a wash in PBS with 2% of FCS, cells were
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stained with Fixable Viability Dye eFluor 506 (eBiosciences) for
10 min at room temperature to evaluate cell viability. Cells were
then fixed for 20 min in 3.2 % PFA at RT. Antibodies used in
flow cytometry are the following, CD11c-PeCy5.5 (1/1500),
B220 BV605 (1/200) and MHC II (I-A/I-E) Al700 (1/800)
from eBioscience, CD11b APC-Cy7 (1/800), CD86 BV650 (1/
200), CD80-BV421 (1/800) and CD40-PeCy5 (1/400) from
BioLegend, SIRPa Pe (1/200), CD24 Pe-Texas red (1/2000)
and Annexin V APC (1/500) (BD).

G-DC, G/IL15-DC and G/FL-DC were gated based on the
expression of CD11c and CD11b. Flt3l were separated in 3 sub-
types: pDC expressing CD11c (intermediate) and B220 and neg-
ative for CD11b; CD11bC DC equivalent expressing CD11c,
SIRPa and CD11b and negative for CD24 and B220; CD8aC

equivalent expressing CD11c, CD24 and negative for CD11b,
SIRPa and B220.

Flow cytometry was performed using a FACSLSRII (Becton
Dickinson) and data were analyzed with BD FACSDIVA
software.

RNA extraction and RT
Total RNAs were extracted from infected BMDCs using

RNeasy Mini Kit (Qiagen) and following manufacturer’s instruc-
tions. cDNAs were generated by using Quantitech Reverse Tran-
scription Kit (Qiagen) following manufacturer’s instructions.

qPCR
qPCR was performed with SYBR Green (Takara) following

the manufacturer’s instructions in 7500 Fast Real-time PCR
(Applied Biosystem). HPRT was used as a housekeeping gene to
determine DCt. Fold increase was compared between the control
and the infected cells. Primers used in this study to amplify
mouse cDNA are presented in the Table 1.

Cytokine measurement
Culture supernatants were analyzed by cytometric beads assay

(CBA from BD, Mouse Inflammation kit) and ELISA from
eBiosciences for IL1b, IL-12p40 and IL12p70.

Statistics
All experiments were performed at least 5 independent times.

Flow cytometry statistical analysis was performed using a ratio
paired T test (paired and parametric) to compare mean of fluo-
rescence of more than 100 000 cells in non-infected vs infected
conditions. Cytokine secretion statistical analysis was performed

Table 1. qPCR primers

FW RV

IL-12b AAATTACTCCGGACGGTTCA ACAGAGACGCCATTCCACAT
TNFa CATCTTCTCAAAATTCGAGTGACAA TGGGAGTAGACAAGGTACAACCC
IFNg TCAAGTGGCATAGATGTGGAAGAA TGGCTCTGCAGGATTTTCATG
IL-6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA
IL1b TCCAGGATGAGGACATGAGCAC GAACGTCACACACCAGCAGGTTA
IL-10 GGTTGCCAAGCCTTATCGGA ACCTGCTCCACTGCCTTGCT
CCL2 GCCTGCTGTTCACAGTTGC ATTGGGATCATCTTGCTGGT
IFNa GGACTTTGGATTCCCGCAGGAGAAG GCTGCATCAGACAGCCTTGCAGGTC
IFNb GAAAAGCAAGAGGAAAGATT AAGTCTTCGAATGATGAGAA
CCR2 GAAGAGGGCATTGGATTCAC GTATGCCGTGGATGAACTGA
CCR7 GTGGTGGCTCTCCTTGTCAT GAAGCACACCGACTCGTACA
NOS2 CAGCTGGGCTGTACAAACCTT CATTGGAAGTGAAGCGTTTCG

Figure 1. Brucella CFU counts and replication in different BMDCs models
BMDCs from C57BL/6 mice were infected at a MOI of 30. Extracellular
bacteria were killed by antibiotic treatment and cells were recovered,
lysed and plated to obtain intracellular bacterial counts per well at differ-
ent time point. Each point represent at least 3 experiments Statistical
analysis were performed using an unpaired T test to compare CFU
counts. GMCSF BMDCs are used as a reference to compare other BMDCs
model. P values > 0.05 were not consider significant, p values < 0.05 are
represent with *, p values < 0.01 are represent with **, p values < 0.001
are represent with *** and p values < 0.0001 are represent with ****.
(A) Results are expressed by number of CFU obtain at different time
point. (B) Results are standardized to compare Brucella replication using
CFU count 2 hours post-infection as a reference.
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using a Wilcoxon test (paired and non-parametric) to compare
non-infected vs infected conditions and a Mann-Whitney test
(unpaired and non-parametric) to compare results between
infected BMDCs models. P values over 0.05 were not considered
as significant.

Results

Replication of Brucella in different BMDC models
We first tested the infection and proliferation efficiency of

B. abortus in 4 different BMDC models. Cells were infected at

an MOI of 30 and the intracellular
bacteria were recovered at 2, 8, 24
and 48 h post-infection (Fig. 1A).
Results showed that B. abortus can
infect all the BMDC sub-types.
CFU counts decreased for the first
8 h post-infection. This was fol-
lowed by a proliferation phase
until a plateau value was reached.
Interestingly, at 2 h post-infection
differences between DC sub-types
was observed. Both G/15-DCs and
FL-DCs were respectively 3 and
10 times more infected than G-
DCs and G/FL-DCs. At late time
points, these differences were lost
and Brucella CFU scores were sim-
ilar between the different DC
models. We also determined the
fold increase in the amount of bac-
teria with respect to the amount
found at 2h post-infection
(Fig. 2B). Results showed that
Brucella replication is significantly
more important in G-DCs and G/
FL-DCs than in G/15-DCs and
FL-DCs.

Fate of B. abortus in the
different BMDC models

It has been shown in macro-
phages and G-DC that B. abortus
escapes lysosomal compartments
and fuses with ER membranes
to establish a safe replicative
niche.4-10

To characterize the compart-
ment in which B. abortus was con-
tained in the different BMDC
models, infected cells were fixed
and processed for electron micros-
copy at selected time point
post-infection. The morphological
app-earance was analyzed on elec-

tron microscopy thin sections and BCV profiles were then exam-
ined for the presence or absence of ribosomes (arrows Fig. 2).
BCVs harboring ribosomes indicated that they were ER-derived
(left panel Fig. 2A). Some BCVs containing either one or several
bacteria were free of ribosomes (right panel Fig. 2A). They seem
to contain lysosomal material. The relative abundance of ER-
derived BCV was evaluated on EM cell profiles at 24 and 48h
post-infection (Fig. 2B). As previously described in G-BMDCs20

more than 90% of B. abortus were located in vacuoles surrounded
by ribosomes. We obtained different results for all the other DC
sub-types tested. Upon G/FL-DC infection, bacteria were mainly
present in an ER-derived vacuoles but 20% of BCVs either

Figure 2. Intracellular localization in BMDCs analyzed by electronic microscopy BMDCs from C57BL/6 mice
were infected at a MOI of 30. 24h and 48h post-infection, cells were fixed and processed for Electron Micros-
copy analysis. The BCV morphological appearance was analyzed on electron microscopy thin sections either
BCVs harboring ribosomes (A/arrows left panel). Some BCVs containing either one or several bacteria were
free of ribosomes (A/right panel). The relative abundance of ER-derived BCV was evaluated on EM cell pro-
files at 24 and 48h post-infection (B). Combining three different experiment around 100 BCV were quantified
for each time-point and results are expressed by a percentage.
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contained lysosomal material or had not yet fused with ER mem-
branes. Upon G/IL15-DC infection only 38% of BCV harbored
ribosomes at 24 h post-infection and this percentage increased
up to 70% at 48 h post-infection. For FL-DC, bacteria were fre-
quently found in phagolysosomes-like vacuoles and only 20% of
the BCV were surrounded by ribosomes. This percentage reached
45% at 48 h post infection. These results show that although the

intracellular location of B. abortus varied according to the
BMDC model, the intracellular survival was not affected.

Acquisition of surface maturation markers
To assess the phenotypic maturation of the different BMDCs

models, we measured the expression of DC surface maturation
markers by flow cytometry. We compared the mean of

Figure 3. Surface marker expression BMDCs from C57BL/6 mice were infected at a MOI of 30. 4h, 24h and 48h post-infection, cells were fixed and stained
with antibodies for MHCII, CD86, CD80 and CD40. Results are presented in box plot and each point represent at least 5 experiments. Statistical analysis
were performed using a ratio paired T test (paired and parametric) to compare mean of fluorescence of more than 100 000 cells in non-infected vs
infected conditions. Statistical significance represent difference between infected and non-infected conditions. P values> 0.05 were not consider signifi-
cant, p values < 0.05 are represent with *, p values< 0.01 are represent with **, p values < 0.001 are represent with *** and p values < 0.0001 are repre-
sent with ****.
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fluorescence intensity ratio between non-infected and infected
cells (Fig. 3).

Upon B. abortus infection, G-DC maturation markers were
not significantly up-regulated at 24 h post-infection as it had pre-
viously been shown.20 At 48 h post-infection, costimulatory mol-
ecules were significantly upregulated but not MHCII molecules.
G/FL-DC response to B. abortus infection was comparable to G-
DC infection with a late maturation. Interestingly, G/IL15-DC
infection induced a significant maturation from 24 h post-

infection onwards. The FL-DC sub-type includes 3 different sub-
sets: pDC, CD8aC and CD11bC equivalents. By using a combi-
nation of different markers we were able to separate them by flow
cytometry and analyze the maturation level of each population.
Flt3l pDC maturation marker upregulation was observed at 48 h
post-infection and from 24 h onwards for CD40. Flt3l CD11bC

and CD8aC BMDCs were activated for all of the co-stimulatory
molecules from 24 h onwards. There was no effect on MHCII
expression in CD11bC BMDCs and a weak up-regulation in

CD8aC BMDCs.
Altogether, flow cytometry

results showed that G-DC, G/
FL-DC and FL-pDC were acti-
vated upon B. abortus infection
only at 48 h post-infection.
However, G/IL15-DC, Flt3l
CD11bC and CD8aC BMDCs
were activated from 24 h
onwards. We show here that B.
abortus can induce in vitro DC
activation with different kinetics
depending on the BMDC model.
These results can be related with
Brucella intracellular localization.
The less bacteria are in the ER
compartment, the more BMDCs
are activated.

BMDCs death
To compare the effect of B.

abortus infection on different
BMDCs subsets we also decided
to check the effect on cell death.
To this aim, we used a combina-
tion of a dead cell staining and
Annexin V labeling (Fig. 4).
Annexin V stained phosphatidyl-
serine in the outer leaflet, sign of
the early stage of programmed
cell death. Results show that
none of the BMDC models were
stained for the dead cell marker.
However, all DCs except Flt3l
pDC BMDCs were positive for
Annexin V at 48 h post-infec-
tion. In addition, CD11bC and
CD8C Flt3l BMDCs and G/
IL15-DCs were stained by
Annexin V at 24 h post-infec-
tion. These results indicate that
an early activation of DC induce
an early Annexin V staining.

We then checked for BMDCs
proliferation by measuring BrdU
incorporation and no significant
differences were obtained upon

Figure 4. Cell death BMDCs from C57BL/6 mice were infected at a MOI of 30. 4h, 24h and 48h post-infection,
cells were fixed and stained with Annexin V and with Fixable Viability Dye eFluor 506 to assess cell death.
Results are presented in box plot and each point represent at least 5 experiments. Statistical analysis were per-
formed using a ratio paired T test (paired and parametric) to compare mean of fluorescence of more than 100
000 cells in non-infected vs infected conditions. Statistical significance represent difference between infected
and non-infected conditions. P values > 0.05 were not consider significant, p values < 0.05 are represent with
*, p values< 0.01 are represent with **, p values< 0.001 are represent with *** and p values< 0.0001 are rep-
resent with ****.
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B. abortus infection (data not
shown).

Gene expression profile
To highlight some specific pat-

terns, we analyzed BMDC gene
expression profiles by comparing
the fold increase in infected cells as
compared to non-infected cells.
Statistical analysis was performed
by using the Comparative CT
Method (DD CT Method) given
by: 2–DDCT. The dotted line repre-
sent a fold increase of 2, the statisti-
cal significant threshold in this
method (Fig. 5).

At 2 h post-infection, IFNa,
IL1b, nitric oxide synthase 2
(NOS2) and IL10 started to be up-
regulated in all BMDCs subsets. At
8, 24 and 48 h post-infection all
genes tested were upregulated.
IL12 and IL1b gene expression fol-
lowed the same kinetics in all of
the BMDCs, with an increase from
8 h to 24 h and a decrease at 48 h
post-infection. However, we iden-
tified some important differences
between DC subsets. G-DC infec-
tion induced a strong and specific
IL10 upregulation at 48 h post-
infection. This strong IL10 up-reg-
ulation may explain that G-DC are
less activated than all the other
BMDCs. Analysis of the expression
of maturation markers and CFUs
counts showed that G-DC and G/
FL-DC respond in the same way to
B. abortus infection. Gene expres-
sion of these 2 subsets showed sim-
ilar kinetics except for IL10. It is
noteworthy that gene upregulation was lower in G-DCs than in
the other BMDC models for almost all of the gene tested. We
previously showed that G/IL15-DC infection induced an early
upregulation of surface maturation markers. Gene expression
profile showed many differences with G-DC. Kinetics of expres-
sion was different for IFNg, IFNb, TNFa and IL6. IFNg gene
was overexpressed earlier as compared to all the model tested and
was strongly down regulated at 48 h post-infection. IFNb,
TNFa and IL6 were expressed later than in other subsets with a
peak at 24 h of infection for IFNb and after 48 h of infection
for TNFa and IL6. FL-DC gene overexpression was the highest
observed for TNFa, IFNg, IL6, IFNa, IFNb, IL1b and NOS2.
Again, these results are in line with all the previous results show-
ing an early important FL-DC maturation.

We checked the expression of the chemokine C-C chemokine
ligand 2 (CCL2) and its receptor C-C chemokine receptor
(CCR) 2 (Fig. 6) as they correlate with DC maturation.47,48

A fold-increase of 2 represented by the dotted line shows the sta-
tistical significant threshold.

CCL2 also called monocyte chemotactic protein 1 (MCP-1) is
essential for monocyte recruitment from bone marrow to inflam-
matory sites. Upon B. abortus infection in all the BMDCs, we
found an increased expression of CCL2. However, we noticed
different levels of up-regulation between these subsets. G-DC
exhibited the lowest increase. In contrast infection of FL-DC was
responsible for a 300-fold increase of the CCL2 expression as
compared to the case of non-infected control cells. CCR2 expres-
sion is known to be down-regulated upon DC activation. Here,
results showed that CCR2 expression significantly decreased at

Figure 5. IL12, TNFa, IFNg, IL6, IFNa, IFNb, IL10 IL1b and NOS2 gene expression profile BMDCs from C57BL/
6 mice were infected at a MOI of 30. 2h, 4h, 24h and 48h post-infection, cells were recovered and RNA were
extracted. QPCR were performed to measure fold increase between non infected and infected conditions.
Statistical analysis was performed by using the Comparative CT Method (DD CT Method) given by. 2–DDCT.
The dotted line represent a fold increase of 2, the statistical significant threshold in this method.
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48 h post-infection. In G/15-DC, CCR2 expression started to
decrease at 24 h post-infection. Interestingly, G-DC presents the
lowest down-regulation of CCR2.

Then we checked the expression of CCR7 (Fig. 6). This
chemokine receptor has been identified as a key regulator of
immune cells trafficking to lymph node, expressed upon DC
maturation.47,49-51 Results showed a slight upregulation at 24 h
post-infection in G-DC, G/FL-DC and G/15-DC. Interestingly,

B. abortus infection induced a strong upregulation of CCR7
starting from 8 h post-infection in FL-DC.

Cytokine secretion
To assess the functional maturation of BMDCs, we also mea-

sured cytokine secretion by recovering BMDCs culture superna-
tants at 24 h and 48 h post-infection. We tested IL6, IL10, IL1b
IL12p40 and 70, IFNg, TNFa and CCL2 (Fig. 7).

Figure 6. CCL2, CCR2 and CCR7 gene expression profile BMDCs from C57BL/6 mice were infected at a MOI of 30. 2h, 4h, 24h and 48h post-infection, cells
were recovered and RNA were extracted. QPCR were performed to measure fold increase between non infected and infected conditions. Statistical anal-
ysis was performed by using the Comparative CT Method (DD CT Method) given by: 2–DDCT. The dotted line represent a fold increase of 2 or 0.5, the sta-
tistical significant threshold in this method for respectively an up-regulation or a downregulation.
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At 24 h and 48 h post-infection, TNFa, IL6, IL12p40, IL1b
and CCL2 were significantly secreted by all BMDCs models.

At 24 h post-infection, only G/IL15-DC and FL-DC secreted
IL12p70 and IFNg. IL10 was not significantly secreted by any
BMDCs. We can notice that G/IL15-DC secreted higher amounts
of IL12p70, TNFa, IFNg, IL1b and IL6 than all the other models.

At 48 h post-infection, G-DC secreted low levels of IL12p70
and G/FL-DC produced IL12p70 and IFNg. G-DC and FL-DC
significantly up-regulated IL10 production, as it has been shown

analyzing gene expression. Interestingly, G/IL15-DC TNFa,
IFNg and IL6 secretion decreased when compared to 24 h post-
infection time point.

Discussion

The present study shows that Brucella is capable of replicating
in all the BMDCs models tested with a high infection rate at early

Figure 7. Cytokine secretion in BMDCs supernatants BMDCs from C57BL/6 mice were infected at a MOI of 30. 24h and 48h post-infection, cells superna-
tant were recovered and cytokine concentration was determined by CBA and ELISA analysis. Statistical analysis was performed using a Wilcoxon test
(paired and non-parametric) to compare non-infected vs infected conditions and a Mann-Whitney test (unpaired and non-parametric) to compare results
between infected BMDCs models. P values over 0.05 were not considered as significant. Statistical significance between non infected and infected condi-
tions are presented in red and between models in black. P values > 0.05 were not consider significant, p values < 0.05 are represent with *, p values <
0.01 are represent with **, p values < 0.001 are represent with *** and p values< 0.0001 are represent with ****.
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time points in G/15-DCs and FL-DCs. In contrast, G-DC and G/
FL-DC are more activated than the other studied DC models and
consequently this may prevent intracellular bacteria to be effi-
ciently targeted to the ER replicative niche. This is illustrated by
the fact that in G/15-DC and FL-DC, the percentage of BCV sur-
rounded by ribosomes is lower than in G-DC and G/FL-DC.
These results can be correlated to all previous works on Brucella
intracellular survival, which have shown that BCVs need to fuse
with ERmembranes in order to ensure a safe replication.

One of the major characteristics of DC is the activation of na€ıve
T cells. This process is initiated byDCmaturation followed by anti-
gen presentation. The influence of BMDCs infection on T cell pro-
liferation and activation needs to be determined. It has been shown
that upon Brucella infection of G-DC, control of DC maturation
impedes T cell proliferation.20 The different levels of DC matura-
tion observed in the other models G/15-DCs and FL-DCs may
change the outcome ofDC function allowing then T cell activation.

We show that G-DC and G/FL-DC response to infection is
comparable, with an exception concerning migration capacity.
This result is in agreement with previous studies, which com-
pared G-DC and G/FL-DC function and concluded that adding
GMCSF to FL-DC inhibits pDC and CD8C differentiation and
induces production of CD11bC DC almost identical to G-
DC.41,52 The key difference between these 2 models concerns
IL10 secretion at 48 h post-infection. Interestingly, a study
showed that IL10 inhibition in G-DC induces Brucella clearance
with an increase in IL12p70 and TNFa secretion.30 IL10 secre-
tion can explain the weak secretion of these 2 cytokines in the G-
DC model and the low level of maturation observed when com-
pared to the other models G/15-DCs and FL-DCs.

Here, we show that G/15-DC maturation was followed by a
strong pro-inflammatory cytokine gene up-regulation and a
strong IFNg and IL12p70 production. These results can be cor-
related with literature in which G/15-DCs have been shown as
great producers of IL12p70 and IFNg.53 Moreover, it is known
that IFNg plays an important role in mediating Brucella resis-
tance,54-56 but in G/15-DC model Brucella significantly survives
and proliferates. In this context, pro-inflammatory cytokine
secretion was not sufficient to impede bacterial replication.
In vivo, we can expect an efficient stimulation of macrophages
with a important IFNg production. To investigate this point, it
will be interesting to test whether G/15-DC cytokine production

can stimulate macrophages and induce a killing effect on
Brucella.

Gene expression and cytokine secretion showed apparent dis-
crepancies. This can be explain by at least 2 different aspects. It is
known that mRNA and protein half-life can vary from minutes
to days and, as a result, experimental quantification may not
reflect the effective production. However, discrepancies observed
can also be due to a real mechanism induced by Brucella infec-
tion. As already discussed in Martirosyan et al.57 a strong cyto-
kine synthesis may trigger the activation of the proteasome
machinery leading to intracellular cytokine degradation and con-
sequently the decrease of their secretion.

It has been shown that Brucella induces splenic DC migration
and maturation.34 We show that FL-DC infection increases the
maturation of CD8C and CD11bC DCs and a strong CCR7
upregulation. As FL-DCs can be considered as splenic DC equiv-
alents, we demonstrate here that FL-DC represents a good model
to study Brucella interaction with splenic DC.

Altogether, this study may help to open a field of a wide range
of studies on interactions between Brucella and DC subtypes.
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